1
|
Koike T. Distinctive glial cells in the dorsal root ganglion: their morphology and functions. Anat Sci Int 2025; 100:261-269. [PMID: 39946031 DOI: 10.1007/s12565-025-00825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/28/2025] [Indexed: 05/01/2025]
Abstract
Satellite glial cells in the dorsal root ganglion are integral to the biology of sensory neurons. This review explores their unique fine structures, as well as their roles in pain signaling and neuronal differentiation. Satellite glial cells exhibit remarkable plasticity, including stem cell-like properties and the ability to influence neuronal morphology and function. Less-studied glial types, such as axonic satellite glial cells and newly identified glial populations, also offer insights into glial cell diversity and specialization. By focusing on the cellular and molecular mechanisms underlying satellite glial cell function, this review contributes to enhancing the foundational understanding of sensory system organization and glial biology.
Collapse
Affiliation(s)
- Taro Koike
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shin-Machi 2-5-1, Hirakata City, Osaka, 573-1010, Japan.
| |
Collapse
|
2
|
Zhang YY, Zhu DX, Wang MY, Yi YT, Feng YH, Zhou C, Li CJ, Liu F, Shen JF. Activation of NR2A-Wnt-TLR2 Signaling Axis in Satellite Glial Cells of the Dorsal Root Ganglion Contributes to Neuropathic Pain Induced by Nerve Injury in Diabetic Mice. Mol Neurobiol 2025:10.1007/s12035-025-04754-3. [PMID: 39964585 DOI: 10.1007/s12035-025-04754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/06/2025] [Indexed: 03/17/2025]
Abstract
Diabetic peripheral neuropathic pain (DPNP), a common diabetic mellitus (DM) complication, may result from the activation of satellite glial cells (SGCs) in the dorsal root ganglion (DRG), potentially enhancing peripheral sensitization. The N-methyl-D-aspartate receptor (NMDAR) subtype NR2A and Toll-like receptor (TLR)2 play key roles in neuroimmune interactions. However, their roles in SGCs of DRG and the precise mechanisms mediating peripheral sensitization in DPNP remain unclear. Here, we found that the expression of glial fibrillary acidic protein (GFAP), NR2A, and TLR2 in SGCs from DRG significantly increased under increased glucose and NMDA stimulation in vitro. Additionally, upregulation of interleukin (IL)-6 and nerve growth factor (NGF) was observed. Notably, lentivirus-induced NR2A knockdown (KD) and C29 (TLR2 inhibitor) significantly blocked the above SGCs changes induced by NMDA and increased glucose. Behavior tests showed mechanical and thermal sensitivities induced by sciatic nerve ligation (SNL) were more obvious in DM background related to streptozotocin (STZ) injection than non-DM background mice, which were significantly alleviated by NR2A conditional knockout (CKO) in SGCs and TLR2 KO. Moreover, immunofluorescence (IF) results revealed the co-expression of NR2A and TLR2 in neurons and SGCs in the DRG. Following SNL in DM mice, the upregulation of NR2A, TLR2, GFAP, β-catenin, p-GSK-3β, p-nuclear factor kappa (NF-κ)-B, IL-6, NGF, Bcl-2-associated X protein (Bax), and Caspase 3, and the significant downregulation of Bcl-2 were consistent with the changes observed after increased glucose and NMDA treatment. The upregulation of TLR2 was blocked by NR2A CKO and Wnt signal pathway inhibition. Additionally, the activation of SGCs, upregulated IL-6 as well as NGF secretion and increased apoptosis, associated with nerve injury in DM background were altered by TLR2 KO and NF-κB pathway inhibition. In conclusion, the activation of the NR2A-Wnt-TLR2 signaling axis mediated peripheral sensitization in the DRG by influencing SGCs' activation, and the synthesis and secretion of pro-inflammatory cytokines and NGF, promoting SGCs' apoptosis, thus exacerbating a peripheral nerve injury related-NP in DM background. Our study provided insights into the role of NR2A-Wnt-TLR2 signaling axis of SGCs in mediating the generation and maintenance of DPNP and suggested targeting this signaling axis may be a promising therapeutic approach for DPNP.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - De-Xin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mu-Yun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ya-Ting Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Yi Z, Si H, Liang S, Li G, Dang Y, Zhou C. P2Y12-mediated HIV gp120 and ddC-induced neuropathic pain improved by esculin. Neuroreport 2025; 36:117-126. [PMID: 39976049 DOI: 10.1097/wnr.0000000000002125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
We studied whether esculin (ES) has the effect of alleviating peripheral neuropathic pain (NP) in rat models of HIV glycoprotein 120 (gp120) together with zalcitabine (2',3'-dideoxycytidine; ddC) treatment and explored the possible mechanism of it. The rats pain behaviors were evaluated by observing the paw withdrawal threshold (PWT) and the paw withdrawal latency (PWL). The rats were divided into a control group, sham group, gp120 combined with a ddC treatment group (gp120& ddC group), gp120&ddC combined with ES treatment group (gp120&ddC+ES group), which ES was administered intragastrically, and gp120&ddC combined with short hair RNA of P2Y12 receptor (rP2Y12) treatment group (gp120&ddC+shP2Y12 group), which shRNA of rP2Y12 was injected intrathecally with a dose of 25 µg/20 µl for every rat, and a negative control plasmid was administered to the gp120&ddC+nc group. Western blotting was used to measure the protein expression levels of the rP2Y12, the nuclear factor of activated T-cells type c1 (NFATc1), phospho-NFATc1 and the C-C motif chemokine ligand 3 (CCL3) in the L4-L6 dorsal root ganglia (DRG). Real-time quantitative PCR (RT-qPCR) was used to test the mRNA expression level of the CCL3. Double-labeling immunofluorescence was used to identify the co-localization of the rP2Y12 with glial fibrillary acidic protein (GFAP) in DRG. Fluorescence imaging with calcium indicator fluo-3 AM (7.5 μM) was performed to observe the change of intracellular calcium concentration ([Ca2+]i). Molecular docking was performed to identify the interaction between rP2Y12 and the ligand ES. We found that accompanied by the attenuation of mechanical allodynia and thermal hyperalgesia, rP2Y12 expression in the gp120+ddC+ES group of rats was downregulated compared with the gp120+ddC ones, as was the coexpression of the rP2Y12 and GFAP of satellite glial cells (SGCs) in DRG, and the CCL3 mRNA levels and protein expression were both decreased. In addition, mechanistic studies have found that there is a docking pocket between ES and the rP2Y12 protein, which causes ES to decrease the [Ca2+]i, thus increasing the phosphorylation level of NFATc1. Taken together, the results suggest that ES can combine with the rP2Y12, inhibit DRG SGCs activation caused by gp120&ddC, reduce [Ca2+]i, and prevent the NFATc1-mediated gene transcription of CCL3, finally relieving NP in rats treated with gp120&ddC.
Collapse
Affiliation(s)
- Zhihua Yi
- School of Nursing, Jiangxi Medical College, Nanchang University
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease
| | - Han Si
- School of Nursing, Jiangxi Medical College, Nanchang University
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease
| | - Shangdong Liang
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease
- Department of Physiology
| | - Guilin Li
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease
- Department of Physiology
| | | | - Congfa Zhou
- Department of Anatomy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
4
|
Nguyen HS, Kang SJ, Kim S, Cha BH, Park KS, Jeong SW. Changes in the expression of satellite glial cell-specific markers during postnatal development of rat sympathetic ganglia. Brain Res 2024; 1829:148809. [PMID: 38354998 DOI: 10.1016/j.brainres.2024.148809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The sympathetic ganglia represent a final motor pathway that mediates homeostatic "fight and flight" responses in the visceral organs. Satellite glial cells (SGCs) form a thin envelope close to the neuronal cell body and synapses in the sympathetic ganglia. This unique morphological feature suggests that neurons and SGCs form functional units for regulation of sympathetic output. In the present study, we addressed whether SGC-specific markers undergo age-dependent changes in the postnatal development of rat sympathetic ganglia. We found that fatty acid-binding protein 7 (FABP7) is an early SGC marker, whereas the S100B calcium-binding protein, inwardly rectifying potassium channel, Kir4.1 and small conductance calcium-activated potassium channel, SK3 are late SGC markers in the postnatal development of sympathetic ganglia. Unlike in sensory ganglia, FABP7 + SGC was barely detectable in adult sympathetic ganglia. The expression of connexin 43, a gap junction channel gradually increased with age, although it was detected in both SGCs and neurons in sympathetic ganglia. Glutamine synthetase was expressed in sensory, but not sympathetic SGCs. Unexpectedly, the sympathetic SGCs expressed a water-selective channel, aquaporin 1 instead of aquaporin 4, a pan-glial marker. However, aquaporin 1 was not detected in the SGCs encircling large neurons. Nerve injury and inflammation induced the upregulation of glial fibrillary acidic protein, suggesting that this protein is a hall marker of glial activation in the sympathetic ganglia. In conclusion, our findings provide basic information on the in vivo profiles of specific markers for identifying sympathetic SGCs at different stages of postnatal development in both healthy and diseased states.
Collapse
Affiliation(s)
- Huu Son Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong Jun Kang
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sohyun Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Byung Ho Cha
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong-Woo Jeong
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
5
|
Abd-Elsayed A, Vardhan S, Aggarwal A, Vardhan M, Diwan SA. Mechanisms of Action of Dorsal Root Ganglion Stimulation. Int J Mol Sci 2024; 25:3591. [PMID: 38612402 PMCID: PMC11011701 DOI: 10.3390/ijms25073591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The dorsal root ganglion (DRG) serves as a pivotal site for managing chronic pain through dorsal root ganglion stimulation (DRG-S). In recent years, the DRG-S has emerged as an attractive modality in the armamentarium of neuromodulation therapy due to its accessibility and efficacy in alleviating chronic pain refractory to conventional treatments. Despite its therapeutic advantages, the precise mechanisms underlying DRG-S-induced analgesia remain elusive, attributed in part to the diverse sensory neuron population within the DRG and its modulation of both peripheral and central sensory processing pathways. Emerging evidence suggests that DRG-S may alleviate pain by several mechanisms, including the reduction of nociceptive signals at the T-junction of sensory neurons, modulation of pain gating pathways within the dorsal horn, and regulation of neuronal excitability within the DRG itself. However, elucidating the full extent of DRG-S mechanisms necessitates further exploration, particularly regarding its supraspinal effects and its interactions with cognitive and affective networks. Understanding these mechanisms is crucial for optimizing neurostimulation technologies and improving clinical outcomes of DRG-S for chronic pain management. This review provides a comprehensive overview of the DRG anatomy, mechanisms of action of the DRG-S, and its significance in neuromodulation therapy for chronic pain.
Collapse
Affiliation(s)
- Alaa Abd-Elsayed
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | - Swarnima Vardhan
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06605, USA; (S.V.); (A.A.)
- Advanced Spine on Park Avenue, New York, NY 10461, USA;
| | - Abhinav Aggarwal
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06605, USA; (S.V.); (A.A.)
| | - Madhurima Vardhan
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439, USA;
| | | |
Collapse
|
6
|
Estivill-Torrús G, Martínez-Padilla AB, Sánchez-Salido L, Evercooren ABV, García-Díaz B. The dorsal root ganglion as a target for neurorestoration in neuropathic pain. Neural Regen Res 2024; 19:296-301. [PMID: 37488881 PMCID: PMC10503598 DOI: 10.4103/1673-5374.374655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/19/2023] [Indexed: 07/26/2023] Open
Abstract
Neuropathic pain is a severe and chronic condition widely found in the general population. The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients. During the processing of pain, the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation. Furthermore, the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies. Here, we will review the complex interplay between cells (satellite glial cells and inflammatory cells) and factors (cytokines, neurotrophic factors and genetic factors) that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain. More importantly, we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | - Lourdes Sánchez-Salido
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Anne Baron-Van Evercooren
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Beatriz García-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| |
Collapse
|
7
|
Jager SE, Goodwin G, Chisholm KI, Denk F. In vivo calcium imaging shows that satellite glial cells have increased activity in painful states. Brain Commun 2024; 6:fcae013. [PMID: 38638153 PMCID: PMC11024818 DOI: 10.1093/braincomms/fcae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 04/20/2024] Open
Abstract
Satellite glial cells are important for proper neuronal function of primary sensory neurons for which they provide homeostatic support. Most research on satellite glial cell function has been performed with in vitro studies, but recent advances in calcium imaging and transgenic mouse models have enabled this first in vivo study of single-cell satellite glial cell function in mouse models of inflammation and neuropathic pain. We found that in naïve conditions, satellite glial cells do not respond in a time-locked fashion to neuronal firing. In painful inflammatory and neuropathic states, we detected time-locked signals in a subset of satellite glial cells, but only with suprathreshold stimulation of the sciatic nerve. Surprisingly, therefore, we conclude that most calcium signals in satellite glial cells seem to develop at arbitrary intervals not directly linked to neuronal activity patterns. More in line with expectations, our experiments also revealed that the number of active satellite glial cells was increased under conditions of inflammation or nerve injury. This could reflect the increased requirement for homeostatic support across dorsal root ganglion neuron populations, which are more active during such painful states.
Collapse
Affiliation(s)
- Sara E Jager
- Wolfson Centre for Age-related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - George Goodwin
- Wolfson Centre for Age-related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Kim I Chisholm
- Pain Centre Versus Arthritis, School of Life Sciences, University of Nottingham, Nottingham NG5 1PB, UK
| | - Franziska Denk
- Wolfson Centre for Age-related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
| |
Collapse
|
8
|
Kim S, Kang SJ, Nguyen HS, Jeong SW. Store-operated calcium entry in the satellite glial cells of rat sympathetic ganglia. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:93-103. [PMID: 38154968 PMCID: PMC10762485 DOI: 10.4196/kjpp.2024.28.1.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Satellite glial cells (SGCs), a major type of glial cell in the autonomic ganglia, closely envelop the cell body and even the synaptic regions of a single neuron with a very narrow gap. This structurally unique organization suggests that autonomic neurons and SGCs may communicate reciprocally. Glial Ca2+ signaling is critical for controlling neural activity. Here, for the first time we identified the machinery of store-operated Ca2+ entry (SOCE) which is critical for cellular Ca2+ homeostasis in rat sympathetic ganglia under normal and pathological states. Quantitative realtime PCR and immunostaining analyses showed that Orai1 and stromal interaction molecules 1 (STIM1) proteins are the primary components of SOCE machinery in the sympathetic ganglia. When the internal Ca2+ stores were depleted in the absence of extracellular Ca2+, the number of plasmalemmal Orai1 puncta was increased in neurons and SGCs, suggesting activation of the Ca2+ entry channels. Intracellular Ca2+ imaging revealed that SOCE was present in SGCs and neurons; however, the magnitude of SOCE was much larger in the SGCs than in the neurons. The SOCE was significantly suppressed by GSK7975A, a selective Orai1 blocker, and Pyr6, a SOCE blocker. Lipopolysaccharide (LPS) upregulated the glial fibrillary acidic protein and Toll-like receptor 4 in the sympathetic ganglia. Importantly, LPS attenuated SOCE via downregulating Orai1 and STIM1 expression. In conclusion, sympathetic SGCs functionally express the SOCE machinery, which is indispensable for intracellular Ca2+ signaling. The SOCE is highly susceptible to inflammation, which may affect sympathetic neuronal activity and thereby autonomic output.
Collapse
Affiliation(s)
- Sohyun Kim
- Department of Physiology, Laboratory of Molecular Neurophysiology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Seong Jun Kang
- Department of Physiology, Laboratory of Molecular Neurophysiology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Huu Son Nguyen
- Department of Physiology, Laboratory of Molecular Neurophysiology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Seong-Woo Jeong
- Department of Physiology, Laboratory of Molecular Neurophysiology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| |
Collapse
|
9
|
Munuera I, Aragon-Navas A, Villacampa P, Gonzalez-Cela MA, Subías M, Pablo LE, Garcia-Feijoo J, Herrero-Vanrell R, Garcia-Martin E, Bravo-Osuna I, Rodrigo MJ. Chronic Glaucoma Induced in Rats by a Single Injection of Fibronectin-Loaded PLGA Microspheres: IOP-Dependent and IOP-Independent Neurodegeneration. Int J Mol Sci 2023; 25:9. [PMID: 38203183 PMCID: PMC10779403 DOI: 10.3390/ijms25010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Abstract
To evaluate a new animal model of chronic glaucoma induced using a single injection of fibronectin-loaded biodegradable PLGA microspheres (Ms) to test prolonged therapies. 30 rats received a single injection of fibronectin-PLGA-Ms suspension (MsF) in the right eye, 10 received non-loaded PLGA-Ms suspension (Control), and 17 were non-injected (Healthy). Follow-up was performed (24 weeks), evaluating intraocular pressure (IOP), optical coherence tomography (OCT), histology and electroretinography. The right eyes underwent a progressive increase in IOP, but only induced cohorts reached hypertensive values. The three cohorts presented a progressive decrease in ganglion cell layer (GCL) thickness, corroborating physiological age-related loss of ganglion cells. Injected cohorts (MsF > Control) presented greater final GCL thickness. Histological exams explain this paradox: the MsF cohort showed lower ganglion cell counts but higher astrogliosis and immune response. A sequential trend of functional damage was recorded using scotopic electroretinography (MsF > Control > Healthy). It seems to be a function-structure correlation: in significant astrogliosis, early functional damage can be detected by electroretinography, and structural damage can be detected by histological exams but not by OCT. Males presented higher IOP and retinal and GCL thicknesses and lower electroretinography. A minimally invasive chronic glaucoma model was induced by a single injection of biodegradable Ms.
Collapse
Affiliation(s)
- Ines Munuera
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
| | - Alba Aragon-Navas
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907 l’Hospitalet de Llobregat, Spain;
| | - Miriam A. Gonzalez-Cela
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
| | - Manuel Subías
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Biotech Vision SLP (Spin-Off Company), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain
| | - Luis E. Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Biotech Vision SLP (Spin-Off Company), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Julian Garcia-Feijoo
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
- Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Rocio Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Maria J. Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| |
Collapse
|
10
|
Wang H, Chen L, Xing J, Shi X, Xu C. Naringin inhibits P2X4 receptor expression on satellite glial cells in the neonatal rat dorsal root ganglion. J Appl Biomed 2023; 21:193-199. [PMID: 38112458 DOI: 10.32725/jab.2023.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
Naringin inhibits inflammation and oxidative stress, the P2 purinoreceptor X4 receptor (P2X4R) is associated with glial cell activation and inflammation, the purpose of this study is to investigate the effects of naringin on P2X4 receptor expression on satellite glial cells (SGCs) and its possible mechanisms. ATP promoted the SGC activation and upregulated P2X4R expression; naringin inhibited SGC activation, decreased expression of P2X4R, P38 MAPK/ERK, and NF-κB, and reduced levels of Ca2+, TNF-α, and IL-1β in SGCs in an ATP-containing environment. These findings suggest that naringin attenuates the ATP-induced SGC activation and reduces P2X4R expression via the Ca2+-P38 MAPK/ERK-NF-κB pathway.
Collapse
Affiliation(s)
- Hongji Wang
- Basic Medical College of Nanchang University, Department of Physiology, Nanchang, 330006, P.R. China
| | - Lisha Chen
- Basic Medical College of Nanchang University, Department of Physiology, Nanchang, 330006, P.R. China
| | - Juping Xing
- Basic Medical College of Nanchang University, Department of Physiology, Nanchang, 330006, P.R. China
| | - Xiangchao Shi
- Basic Medical College of Nanchang University, Department of Physiology, Nanchang, 330006, P.R. China
| | - Changshui Xu
- Basic Medical College of Nanchang University, Department of Physiology, Nanchang, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, P.R. China
- Jiangxi Medical College, School of Clinical Medicine, Shangrao, 334000, P.R. China
- Jiangxi Medical College, The First Affiliated Hospital, Shangrao, 334000, P.R. China
| |
Collapse
|
11
|
Konnova EA, Deftu AF, Chu Sin Chung P, Pertin M, Kirschmann G, Decosterd I, Suter MR. Characterisation of GFAP-Expressing Glial Cells in the Dorsal Root Ganglion after Spared Nerve Injury. Int J Mol Sci 2023; 24:15559. [PMID: 37958541 PMCID: PMC10647921 DOI: 10.3390/ijms242115559] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Satellite glial cells (SGCs), enveloping primary sensory neurons' somas in the dorsal root ganglion (DRG), contribute to neuropathic pain upon nerve injury. Glial fibrillary acidic protein (GFAP) serves as an SGC activation marker, though its DRG satellite cell specificity is debated. We employed the hGFAP-CFP transgenic mouse line, designed for astrocyte studies, to explore its expression within the peripheral nervous system (PNS) after spared nerve injury (SNI). We used diverse immunostaining techniques, Western blot analysis, and electrophysiology to evaluate GFAP+ cell changes. Post-SNI, GFAP+ cell numbers increased without proliferation, and were found near injured ATF3+ neurons. GFAP+ FABP7+ SGCs increased, yet 75.5% of DRG GFAP+ cells lacked FABP7 expression. This suggests a significant subset of GFAP+ cells are non-myelinating Schwann cells (nmSC), indicated by their presence in the dorsal root but not in the ventral root which lacks unmyelinated fibres. Additionally, patch clamp recordings from GFAP+ FABP7-cells lacked SGC-specific Kir4.1 currents, instead displaying outward Kv currents expressing Kv1.1 and Kv1.6 channels specific to nmSCs. In conclusion, this study demonstrates increased GFAP expression in two DRG glial cell subpopulations post-SNI: GFAP+ FABP7+ SGCs and GFAP+ FABP7- nmSCs, shedding light on GFAP's specificity as an SGC marker after SNI.
Collapse
Affiliation(s)
- Elena A. Konnova
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Alexandru-Florian Deftu
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Paul Chu Sin Chung
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Marie Pertin
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Guylène Kirschmann
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Marc R. Suter
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
12
|
Schulte A, Lohner H, Degenbeck J, Segebarth D, Rittner HL, Blum R, Aue A. Unbiased analysis of the dorsal root ganglion after peripheral nerve injury: no neuronal loss, no gliosis, but satellite glial cell plasticity. Pain 2023; 164:728-740. [PMID: 35969236 PMCID: PMC10026836 DOI: 10.1097/j.pain.0000000000002758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Pain syndromes are often accompanied by complex molecular and cellular changes in dorsal root ganglia (DRG). However, the evaluation of cellular plasticity in the DRG is often performed by heuristic manual analysis of a small number of representative microscopy image fields. In this study, we introduce a deep learning-based strategy for objective and unbiased analysis of neurons and satellite glial cells (SGCs) in the DRG. To validate the approach experimentally, we examined serial sections of the rat DRG after spared nerve injury (SNI) or sham surgery. Sections were stained for neurofilament, glial fibrillary acidic protein (GFAP), and glutamine synthetase (GS) and imaged using high-resolution large-field (tile) microscopy. After training of deep learning models on consensus information of different experts, thousands of image features in DRG sections were analyzed. We used known (GFAP upregulation), controversial (neuronal loss), and novel (SGC phenotype switch) changes to evaluate the method. In our data, the number of DRG neurons was similar 14 d after SNI vs sham. In GFAP-positive subareas, the percentage of neurons in proximity to GFAP-positive cells increased after SNI. In contrast, GS-positive signals, and the percentage of neurons in proximity to GS-positive SGCs decreased after SNI. Changes in GS and GFAP levels could be linked to specific DRG neuron subgroups of different size. Hence, we could not detect gliosis but plasticity changes in the SGC marker expression. Our objective analysis of DRG tissue after peripheral nerve injury shows cellular plasticity responses of SGCs in the whole DRG but neither injury-induced neuronal death nor gliosis.
Collapse
Affiliation(s)
- Annemarie Schulte
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Hannah Lohner
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Johannes Degenbeck
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Dennis Segebarth
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L. Rittner
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Annemarie Aue
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
McGinnis A, Ji RR. The Similar and Distinct Roles of Satellite Glial Cells and Spinal Astrocytes in Neuropathic Pain. Cells 2023; 12:965. [PMID: 36980304 PMCID: PMC10047571 DOI: 10.3390/cells12060965] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Preclinical studies have identified glial cells as pivotal players in the genesis and maintenance of neuropathic pain after nerve injury associated with diabetes, chemotherapy, major surgeries, and virus infections. Satellite glial cells (SGCs) in the dorsal root and trigeminal ganglia of the peripheral nervous system (PNS) and astrocytes in the central nervous system (CNS) express similar molecular markers and are protective under physiological conditions. They also serve similar functions in the genesis and maintenance of neuropathic pain, downregulating some of their homeostatic functions and driving pro-inflammatory neuro-glial interactions in the PNS and CNS, i.e., "gliopathy". However, the role of SGCs in neuropathic pain is not simply as "peripheral astrocytes". We delineate how these peripheral and central glia participate in neuropathic pain by producing different mediators, engaging different parts of neurons, and becoming active at different stages following nerve injury. Finally, we highlight the recent findings that SGCs are enriched with proteins related to fatty acid metabolism and signaling such as Apo-E, FABP7, and LPAR1. Targeting SGCs and astrocytes may lead to novel therapeutics for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
14
|
Avraham O, Chamessian A, Feng R, Yang L, Halevi AE, Moore AM, Gereau RW, Cavalli V. Profiling the molecular signature of satellite glial cells at the single cell level reveals high similarities between rodents and humans. Pain 2022; 163:2348-2364. [PMID: 35503034 PMCID: PMC9522926 DOI: 10.1097/j.pain.0000000000002628] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Peripheral sensory neurons located in dorsal root ganglia relay sensory information from the peripheral tissue to the brain. Satellite glial cells (SGCs) are unique glial cells that form an envelope completely surrounding each sensory neuron soma. This organization allows for close bidirectional communication between the neuron and its surrounding glial coat. Morphological and molecular changes in SGC have been observed in multiple pathological conditions such as inflammation, chemotherapy-induced neuropathy, viral infection, and nerve injuries. There is evidence that changes in SGC contribute to chronic pain by augmenting the neuronal activity in various rodent pain models. Satellite glial cells also play a critical role in axon regeneration. Whether findings made in rodent model systems are relevant to human physiology have not been investigated. Here, we present a detailed characterization of the transcriptional profile of SGC in mice, rats, and humans at the single cell level. Our findings suggest that key features of SGC in rodent models are conserved in humans. Our study provides the potential to leverage rodent SGC properties and identify potential targets in humans for the treatment of nerve injuries and alleviation of painful conditions.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Alexander Chamessian
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis 63110, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Rui Feng
- Department of Neuroscience, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Lite Yang
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis 63110, Missouri, USA
- Neuroscience Program, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Alexandra E. Halevi
- Department of Plastic and Reconstructive Surgery, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Amy M. Moore
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus Ohio, USA
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis 63110, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
15
|
Zdora I, Jubran L, Allnoch L, Hansmann F, Baumgärtner W, Leitzen E. Morphological and phenotypical characteristics of porcine satellite glial cells of the dorsal root ganglia. Front Neuroanat 2022; 16:1015281. [PMID: 36337140 PMCID: PMC9626980 DOI: 10.3389/fnana.2022.1015281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 10/23/2023] Open
Abstract
Satellite glial cells (SGCs) of the dorsal root ganglia (DRG) ensure homeostasis and proportional excitability of sensory neurons and gained interest in the field of development and maintenance of neuropathic pain. Pigs represent a suitable species for translational medicine with a more similar anatomy and physiology to humans compared to rodents, and are used in research regarding treatment of neuropathic pain. Knowledge of anatomical and physiological features of porcine SGCs is prerequisite for interpreting potential alterations. However, state of knowledge is still limited. In the present study, light microscopy, ultrastructural analysis and immunofluorescence staining was performed. SGCs tightly surround DRG neurons with little vascularized connective tissue between SGC-neuron units, containing, among others, axons and Schwann cells. DRG were mainly composed of large sized neurons (∼59%), accompanied by fewer medium sized (∼36%) and small sized sensory neurons (∼6%). An increase of neuronal body size was concomitant with an increased number of surrounding SGCs. The majority of porcine SGCs expressed glutamine synthetase and inwardly rectifying potassium channel Kir 4.1, known as SGC-specific markers in other species. Similar to canine SGCs, marked numbers of porcine SGCs were immunopositive for glial fibrillary acidic protein, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and the transcription factor Sox2. Low to moderate numbers of SGCs showed aquaporin 4-immunoreactivity (AQP4) as described for murine SGCs. AQP4-immunoreactivity was primarily found in SGCs ensheathing small and medium sized neuronal somata. Low numbers of SGCs were immunopositive for ionized calcium-binding adapter molecule 1, indicating a potential immune cell character. No immunoreactivity for common leukocyte antigen CD45 nor neural/glial antigen 2 was detected. The present study provides essential insights into the characteristic features of non-activated porcine SGCs, contributing to a better understanding of this cell population and its functional aspects. This will help to interpret possible changes that might occur under activating conditions such as pain.
Collapse
Affiliation(s)
- Isabel Zdora
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Lorna Jubran
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Lisa Allnoch
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
16
|
Mapps AA, Boehm E, Beier C, Keenan WT, Langel J, Liu M, Thomsen MB, Hattar S, Zhao H, Tampakakis E, Kuruvilla R. Satellite glia modulate sympathetic neuron survival, activity, and autonomic function. eLife 2022; 11:74295. [PMID: 35997251 PMCID: PMC9433091 DOI: 10.7554/elife.74295] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Satellite glia are the major glial cells in sympathetic ganglia, enveloping neuronal cell bodies. Despite this intimate association, the extent to which sympathetic functions are influenced by satellite glia in vivo remains unclear. Here, we show that satellite glia are critical for metabolism, survival, and activity of sympathetic neurons and modulate autonomic behaviors in mice. Adult ablation of satellite glia results in impaired mTOR signaling, soma atrophy, reduced noradrenergic enzymes, and loss of sympathetic neurons. However, persisting neurons have elevated activity, and satellite glia-ablated mice show increased pupil dilation and heart rate, indicative of enhanced sympathetic tone. Satellite glia-specific deletion of Kir4.1, an inward-rectifying potassium channel, largely recapitulates the cellular defects observed in glia-ablated mice, suggesting that satellite glia act in part via K+-dependent mechanisms. These findings highlight neuron–satellite glia as functional units in regulating sympathetic output, with implications for disorders linked to sympathetic hyper-activity such as cardiovascular disease and hypertension.
Collapse
Affiliation(s)
- Aurelia A Mapps
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Erica Boehm
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Corinne Beier
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - William T Keenan
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Jennifer Langel
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - Michael Liu
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Michael B Thomsen
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | | | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
17
|
Jager SE, Pallesen LT, Lin L, Izzi F, Pinheiro AM, Villa-Hernandez S, Cesare P, Vaegter CB, Denk F. Comparative transcriptional analysis of satellite glial cell injury response. Wellcome Open Res 2022; 7:156. [PMID: 35950162 PMCID: PMC9329822 DOI: 10.12688/wellcomeopenres.17885.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Satellite glial cells (SGCs) tightly surround and support primary sensory neurons in the peripheral nervous system and are increasingly recognized for their involvement in the development of neuropathic pain following nerve injury. SGCs are difficult to investigate due to their flattened shape and tight physical connection to neurons in vivo and their rapid changes in phenotype and protein expression when cultured in vitro. Consequently, several aspects of SGC function under normal conditions as well as after a nerve injury remain to be explored. The recent advance in single cell RNA sequencing (scRNAseq) technologies has enabled a new approach to investigate SGCs. Methods: In this study we used scRNAseq to investigate SGCs from mice subjected to sciatic nerve injury. We used a meta-analysis approach to compare the injury response with that found in other published datasets. Furthermore, we also used scRNAseq to investigate how cells from the dorsal root ganglion (DRG) change after 3 days in culture. Results: From our meta-analysis of the injured conditions, we find that SGCs share a common signature of 18 regulated genes following sciatic nerve crush or sciatic nerve ligation, involving transcriptional regulation of cholesterol biosynthesis. We also observed a considerable transcriptional change when culturing SGCs, suggesting that some differentiate into a specialised in vitro state while others start resembling Schwann cell-like precursors. Conclusion: By using integrated analyses of new and previously published scRNAseq datasets, this study provides a consensus view of which genes are most robustly changed in SGCs after injury. Our results are available via the Broad Institute Single Cell Portal, so that readers can explore and search for genes of interest.
Collapse
Affiliation(s)
- Sara Elgaard Jager
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - Lone Tjener Pallesen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Denmark & Steno and Diabetes Center, Aarhus, Denmark
| | - Francesca Izzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Alana Miranda Pinheiro
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Sara Villa-Hernandez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - Paolo Cesare
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Christian Bjerggaard Vaegter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| |
Collapse
|
18
|
Satellite Glial Cells and Neurons in Trigeminal Ganglia Are Altered in an Itch Model in Mice. Cells 2022; 11:cells11050886. [PMID: 35269508 PMCID: PMC8909456 DOI: 10.3390/cells11050886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Itch (pruritus) is a common chronic condition with a lifetime prevalence of over 20%. The mechanisms underlying itch are poorly understood, and its therapy is difficult. There is recent evidence that following nerve injury or inflammation, intercellular communications in sensory ganglia are augmented, which may lead to abnormal neuronal activity, and hence to pain, but there is no information whether such changes take place in an itch model. We studied changes in neurons and satellite glial cells (SGCs) in trigeminal ganglia in an itch model in mice using repeated applications of 2,4,6-trinitro-1-chlorobenzene (TNCB) to the external ear over a period of 11 days. Treated mice showed augmented scratching behavior as compared with controls during the application period and for several days afterwards. Immunostaining for the activation marker glial fibrillary acidic protein in SGCs was greater by about 35% after TNCB application, and gap junction-mediated coupling between neurons increased from about 2% to 13%. The injection of gap junction blockers reduced scratching behavior, suggesting that gap junctions contribute to itch. Calcium imaging studies showed increased responses of SGCs to the pain (and presumed itch) mediator ATP. We conclude that changes in both neurons and SGCs in sensory ganglia may play a role in itch.
Collapse
|
19
|
Yardim A, Gur C, Comakli S, Ozdemir S, Kucukler S, Celik H, Kandemir FM. Investigation of the effects of berberine on bortezomib-induced sciatic nerve and spinal cord damage in rats through pathways involved in oxidative stress and neuro-inflammation. Neurotoxicology 2022; 89:127-139. [PMID: 35121005 DOI: 10.1016/j.neuro.2022.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022]
Abstract
Bortezomib (BTZ), a proteasome inhibitor, causes dose-limiting peripheral neuropathy in humans. Berberine (BBR), which has various biological and pharmacological properties, is known to have neuroprotective properties. The possible protective effects of BBR on peripheral neuropathy caused by BTZ were investigated in this study. For this purpose, BTZ was intraperitoneally given to Sprague dawley rats on the 1 st, 3rd, 5th, and 7th days with a cumulative dose of 0.8 mg/kg. Moreover, animals were orally administered 50 or 100 mg/kg BBR daily from day 1 to day 10. As a result of the analyzes performed on the sciatic nerve and spinal cord, it was observed that MDA levels and NRF-2, HO-1, NQO1, GCLC and GCLM mRNA transcript levels increased due to oxidative stress caused by BTZ, and the levels of these markers decreased after BBR administration. Also, it was determined that SOD, CAT, GPx and GSH levels increased after BBR treatment. It was observed that BTZ caused inflammation by triggering NF-κB, TNF-α, IL-1β and IL-6 cytokines, on the other hand, with BBR treatment, these cytokines were suppressed and inflammation was alleviated. In addition, it was determined that the expressions of RAGE, STAT3, NLRP3 and TLR4, which have important roles in inflammation, increased with BTZ administration, but BBR suppressed the expressions of these genes. It was determined that the expressions of SIRT1, which plays an important role in neuropathic pain, and CREB-LI neurons, which has an active role in neurite outgrowth and survival, decreased with BTZ administration. It was observed that GFAP levels increased with BTZ administration and decreased with BBR administration. Given all the findings, it was concluded that BBR exhibits protective qualities in the sciatic nerve and spinal cord induced by BTZ.
Collapse
Affiliation(s)
- Ahmet Yardim
- Department of Neurosurgery, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selim Comakli
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selcuk Ozdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Hamit Celik
- Department of Neurology, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
20
|
How Is Peripheral Injury Signaled to Satellite Glial Cells in Sensory Ganglia? Cells 2022; 11:cells11030512. [PMID: 35159321 PMCID: PMC8833977 DOI: 10.3390/cells11030512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Injury or inflammation in the peripheral branches of neurons of sensory ganglia causes changes in neuronal properties, including excessive firing, which may underlie chronic pain. The main types of glial cell in these ganglia are satellite glial cells (SGCs), which completely surround neuronal somata. SGCs undergo activation following peripheral lesions, which can enhance neuronal firing. How neuronal injury induces SGC activation has been an open question. Moreover, the mechanisms by which the injury is signaled from the periphery to the ganglia are obscure and may include electrical conduction, axonal and humoral transport, and transmission at the spinal level. We found that peripheral inflammation induced SGC activation and that the messenger between injured neurons and SGCs was nitric oxide (NO), acting by elevating cyclic guanosine monophosphate (cGMP) in SGCs. These results, together with work from other laboratories, indicate that a plausible (but not exclusive) mechanism for neuron-SGCs interactions can be formulated as follows: Firing due to peripheral injury induces NO formation in neuronal somata, which diffuses to SGCs. This stimulates cGMP synthesis in SGCs, leading to their activation and to other changes, which contribute to neuronal hyperexcitability and pain. Other mediators such as proinflammatory cytokines probably also contribute to neuron-SGC communications.
Collapse
|