1
|
Chen K, Wu X, Li X, Pan H, Zhang W, Shang J, Di Y, Liu R, Zheng Z, Hou X. Antimicrobial Neuropeptides and Their Receptors: Immunoregulator and Therapeutic Targets for Immune Disorders. Molecules 2025; 30:568. [PMID: 39942672 PMCID: PMC11820534 DOI: 10.3390/molecules30030568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The interaction between the neuroendocrine system and the immune system plays a key role in the onset and progression of various diseases. Neuropeptides, recognized as common biochemical mediators of communication between these systems, are receiving increasing attention because of their potential therapeutic applications in immune-related disorders. Additionally, many neuropeptides share significant similarities with antimicrobial peptides (AMPs), and evidence shows that these antimicrobial neuropeptides are directly involved in innate immunity. This review examines 10 antimicrobial neuropeptides, including pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), ghrelin, adrenomedullin (AM), neuropeptide Y (NPY), urocortin II (UCN II), calcitonin gene-related peptide (CGRP), substance P (SP), and catestatin (CST). Their expression characteristics and the immunomodulatory mechanisms mediated by their specific receptors are summarized, along with potential drugs targeting these receptors. Future studies should focus on further investigating antimicrobial neuropeptides and advancing the development of related drugs in preclinical and/or clinical studies to improve the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Kaiqi Chen
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Xiaojun Wu
- College of Medical Engineering, Jining Medical University, Jining 272067, China; (X.W.); (R.L.)
| | - Xiaoke Li
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Haoxuan Pan
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Wenhui Zhang
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Jinxi Shang
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Yinuo Di
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining 272067, China; (X.W.); (R.L.)
| | - Zhaodi Zheng
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Xitan Hou
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| |
Collapse
|
2
|
Feng Y, Li Y, Liu H. Adrenomedullin-mediated depressor response with visceral afferent-specific membrane depolarization in isolated nodose ganglion neurons from adult female rat. Neuropeptides 2024; 108:102476. [PMID: 39427564 DOI: 10.1016/j.npep.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Adrenomedullin (ADM) is an endogenous and vasoactive neuropeptide that possesses potent central/peripheral regulations on blood pressure (BP) and sex-related vasodilation under physiological conditions. However, the role of ADM on baroreflex afferent function is largely unknown. Here, BP was monitored in adult female rats while ADM was microinjected into the nodose ganglion (NG); Fluorescent intensity against ADM was analyzed in the tissue level and membrane responses elicited by ADM were tested in identified NG neurons isolated from adult female rats with gap-free protocol under current-clamp mode with or without ADM antagonist. The results showed that BP was reduced by ADM (30-300 nM) concentration-dependently; myelinated (HCN1-positive) neurons showed significantly higher fluorescent intensity against ADM antibody vs. unmyelinated (HCN1-negative) neurons. Interestingly, patch-clamp data indicated that membrane potential was not changed in 50 % (6/12) of identified A-types, only 4/12 was hyperpolarized by 30 nM ADM, while 100 nM ADM induced brief hyperpolarization followed by depolarization in 2/12 of recordings; Robustly, ADM depolarized 100 % tested myelinated Ah-type neurons with dramatic and concentration-dependent repetitive discharges; While, a majority (8/9) of unmyelinated C-types were depolarized and few with repetitive dischargers. By application of ADM (22-52), the depolarization elicited by ADM 100 nM was partially or completely abolished in Ah-types or C-types, respectively. These datasets demonstrated for the first time that baroreflex afferents especially female-distributed subpopulation of Ah-types would be a key player in ADM-mediated depressor response unveiling the dominate role of peripheral ADM in neurocontrol of hypotension via baroreflex afferent function and gender-dependent vasodilation promoted by female sex steroid.
Collapse
Affiliation(s)
- Yan Feng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ying Li
- Department of Pharmacy, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center For Cancer, Tianjin 300308, China
| | - Hua Liu
- General Department, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, 214151, China.
| |
Collapse
|
3
|
Parthasarathy S, Moreno de Lara L, Carrillo-Salinas FJ, Werner A, Borchers A, Iyer V, Vogell A, Fortier JM, Wira CR, Rodriguez-Garcia M. Human genital dendritic cell heterogeneity confers differential rapid response to HIV-1 exposure. Front Immunol 2024; 15:1472656. [PMID: 39524443 PMCID: PMC11543421 DOI: 10.3389/fimmu.2024.1472656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Dendritic cells (DCs) play critical roles in HIV pathogenesis and require further investigation in the female genital tract, a main portal of entry for HIV infection. Here we characterized genital DC populations at the single cell level and how DC subsets respond to HIV immediately following exposure. We found that the genital CD11c+HLA-DR+ myeloid population contains three DC subsets (CD1c+ DC2s, CD14+ monocyte-derived DCs and CD14+CD1c+ DC3s) and two monocyte/macrophage populations with distinct functional and phenotypic properties during homeostasis. Following HIV exposure, the antiviral response was dominated by DCs' rapid secretory response, activation of non-classical inflammatory pathways and host restriction factors. Further, we uncovered subset-specific differences in anti-HIV responses. CD14+ DCs were the main population activated by HIV and mediated the secretory antimicrobial response, while CD1c+ DC2s activated inflammasome pathways and IFN responses. Identification of subset-specific responses to HIV immediately after exposure could aid targeted strategies to prevent HIV infection.
Collapse
Affiliation(s)
- Siddharth Parthasarathy
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Laura Moreno de Lara
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | | | - Alexandra Werner
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Anna Borchers
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Vidya Iyer
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, United States
- Mass General Research Institute (MGRI), Division of Clinical Research, Massachusetts General Hospital, Boston, MA, United States
| | - Alison Vogell
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, United States
| | - Jared M. Fortier
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
4
|
Sacco MA, Gualtieri S, Cordasco F, Tarallo AP, Verrina MC, Princi A, Bruni A, Garofalo E, Aquila I. The Role of Adrenomedullin as a Predictive Marker of the Risk of Death and Adverse Clinical Events: A Review of the Literature. J Clin Med 2024; 13:4847. [PMID: 39200990 PMCID: PMC11355278 DOI: 10.3390/jcm13164847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Adrenomedullin (ADM) is a vasodilatory peptide that plays a crucial role in maintaining cardiovascular health through its various biological functions. ADM was discovered in the acidic extract of human pheochromocytoma tissue and has been recognized for its significant effects on the vascular system. The main functions of ADM include vasodilation, controlling blood pressure and maintaining vascular integrity, although its role on cardiovascular health is broader. Research has shown that elevated levels of adrenomedullin have been observed in a large number of severe diseases, with high risk of death. In this work, we examined the role of ADM as a predictive molecule of the risk of mortality and adverse clinical outcome through a narrative review of the scientific literature. The results were divided based on the pathologies and anatomical districts examined. This review demonstrates how ADM shows, in many diseases and different systems, a close correlation with the risk of mortality. These results prove the value of ADM as a prognostic marker in various clinical contexts and diseases, with utility in the stratification of the risk of clinical worsening and/or death and in the evaluation of therapeutic efficacy. The results open new perspectives with respect to the concrete possibility that ADM enters clinical practice as an effective diagnostic and prognostic marker of death as well as a molecular target for therapies aimed at patient survival.
Collapse
Affiliation(s)
- Matteo Antonio Sacco
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| | - Saverio Gualtieri
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| | - Fabrizio Cordasco
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| | - Alessandro Pasquale Tarallo
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| | - Maria Cristina Verrina
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| | - Aurora Princi
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| | - Andrea Bruni
- Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (A.B.); (E.G.)
| | - Eugenio Garofalo
- Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (A.B.); (E.G.)
| | - Isabella Aquila
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| |
Collapse
|
5
|
Liu SY, Wang Q, Zhou H, Tong N, Chang R, Wang FZ, Guo P, Li X, Zhou YB, Li ZZ. Adrenomedullin improved endothelial dysfunction via receptor-Akt pathway in rats with obesity-related hypertension. Hypertens Res 2024; 47:2157-2171. [PMID: 38769138 DOI: 10.1038/s41440-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/28/2024] [Accepted: 04/07/2024] [Indexed: 05/22/2024]
Abstract
Obesity-related hypertension (OH) is accompanied by obvious endothelial dysfunction, which contributes to increased peripheral vascular resistance and hypertension. Adrenomedullin (ADM), a multifunctional active peptide, is elevated in obese humans. The OH rats induced by high fat diet (HFD) for 28 weeks and the human umbilical vein endothelial cells (HUVECs)-treated by palmitic acid (PA) were used to investigate the effects of ADM on endothelial dysfunction and the underlying mechanisms. Vascular reactivity was assessed using mesenteric arteriole rings, and the protein expression levels were examined by Western blot analysis. Compared with the control rats, OH rats exhibited hypertension and endothelial dysfunction, along with reduced eNOS protein expression and Akt activation, and increased protein expression of proinflammatory cytokines and ROS levels. Four-week ADM administration improved hypertension and endothelial function, increased eNOS protein expression and Akt activation, and attenuated endothelial inflammation and oxidative stress in OH rats. In vitro experiment, the antagonism of ADM receptors with ADM22-52 and the suppression of Akt signaling with A6730 significantly blocked ADM-caused increase of NO content and activation of eNOS and Akt, and inhibited the anti-inflammatory and anti-oxidant effect of ADM in PA-stimulated HUVECs. These data indicate that endothelial dysfunction in OH rats is partially attributable to the decreased NO level, and the increased inflammation and oxidative stress. ADM improves endothelial function and exerts hypotensive effect depending on the increase of NO, and its anti-inflammatory and anti-oxidant effect via receptor-Akt pathway.
Collapse
Affiliation(s)
- Si-Yu Liu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Qian Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hong Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ning Tong
- Department of Neurology of Heze Municipal Hospital, Heze, 274000, China
| | - Rui Chang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Fang-Zheng Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ping Guo
- Department of Cardiology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University Nanjing, Nanjing, 210021, Jiangsu, China
| | - Xin Li
- Department of Cardiology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University Nanjing, Nanjing, 210021, Jiangsu, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Zhen-Zhen Li
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Department of Cardiology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University Nanjing, Nanjing, 210021, Jiangsu, China.
| |
Collapse
|
6
|
Song G, Feng G, Li Q, Peng J, Ge W, Long Y, Cui Z. Transcriptomic Characterization of Key Factors and Signaling Pathways for the Regeneration of Partially Hepatectomized Liver in Zebrafish. Int J Mol Sci 2024; 25:7212. [PMID: 39000319 PMCID: PMC11241411 DOI: 10.3390/ijms25137212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Liver regeneration induced by partial hepatectomy (PHx) has attracted intensive research interests due to the great significance for liver resection and transplantation. The zebrafish (Danio rerio) is an excellent model to study liver regeneration. In the fish subjected to PHx (the tip of the ventral lobe was resected), the lost liver mass could be fully regenerated in seven days. However, the regulatory mechanisms underlying the liver regeneration remain largely unknown. In this study, gene expression profiles during the regeneration of PHx-treated liver were explored by RNA sequencing (RNA-seq). The genes responsive to the injury of PHx treatment were identified and classified into different clusters based on the expression profiles. Representative gene ontology (GO) enrichments for the early responsive genes included hormone activity, ribosome biogenesis and rRNA processing, etc., while the late responsive genes were enriched in biological processes such as glutathione metabolic process, antioxidant activity and cellular detoxification. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments were also identified for the differentially expressed genes (DEGs) between the time-series samples and the sham controls. The proteasome was overrepresented by the up-regulated genes at all of the sampling time points. Inhibiting proteasome activity by the application of MG132 to the fish enhanced the expression of Pcna (proliferating cell nuclear antigen), an indicator of hepatocyte proliferation after PHx. Our data provide novel insights into the molecular mechanisms underlying the regeneration of PHx-treated liver.
Collapse
Affiliation(s)
- Guili Song
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guohui Feng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Yong Long
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zongbin Cui
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
7
|
Chaumont L, Jouneau L, Huetz F, van Muilekom DR, Peruzzi M, Raffy C, Le Hir J, Minke J, Boudinot P, Collet B. Unexpected regulatory functions of cyprinid Viperin on inflammation and metabolism. BMC Genomics 2024; 25:650. [PMID: 38951796 PMCID: PMC11218377 DOI: 10.1186/s12864-024-10566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Viperin, also known as radical S-adenosyl-methionine domain containing protein 2 (RSAD2), is an interferon-inducible protein that is involved in the innate immune response against a wide array of viruses. In mammals, Viperin exerts its antiviral function through enzymatic conversion of cytidine triphosphate (CTP) into its antiviral analog ddhCTP as well as through interactions with host proteins involved in innate immune signaling and in metabolic pathways exploited by viruses during their life cycle. However, how Viperin modulates the antiviral response in fish remains largely unknown. RESULTS For this purpose, we developed a fathead minnow (Pimephales promelas) clonal cell line in which the unique viperin gene has been knocked out by CRISPR/Cas9 genome-editing. In order to decipher the contribution of fish Viperin to the antiviral response and its regulatory role beyond the scope of the innate immune response, we performed a comparative RNA-seq analysis of viperin-/- and wildtype cell lines upon stimulation with recombinant fathead minnow type I interferon. CONCLUSIONS Our results revealed that Viperin does not exert positive feedback on the canonical type I IFN but acts as a negative regulator of the inflammatory response by downregulating specific pro-inflammatory genes and upregulating repressors of the NF-κB pathway. It also appeared to play a role in regulating metabolic processes, including one carbon metabolism, bone formation, extracellular matrix organization and cell adhesion.
Collapse
Affiliation(s)
- Lise Chaumont
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - François Huetz
- Unit of Antibodies in Therapy and Pathology, UMR 1222 INSERM, Institut Pasteur, 75015, Paris, France
| | | | - Mathilde Peruzzi
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | | | | | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| |
Collapse
|
8
|
Spoto S, Basili S, Cangemi R, Yuste JR, Lucena F, Romiti GF, Raparelli V, Argemi J, D’Avanzo G, Locorriere L, Masini F, Calarco R, Testorio G, Spiezia S, Ciccozzi M, Angeletti S. A Focus on the Pathophysiology of Adrenomedullin Expression: Endothelitis and Organ Damage in Severe Viral and Bacterial Infections. Cells 2024; 13:892. [PMID: 38891025 PMCID: PMC11172186 DOI: 10.3390/cells13110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Adrenomedullin (ADM) is a peptide hormone produced primarily in the adrenal glands, playing a crucial role in various physiological processes. As well as improving vascular integrity and decreasing vascular permeability, ADM acts as a vasodilator, positive inotrope, diuretic, natriuretic and bronchodilator, antagonizing angiotensin II by inhibiting aldosterone secretion. ADM also has antihypertrophic, anti-apoptotic, antifibrotic, antioxidant, angiogenic and immunoregulatory effects and antimicrobial properties. ADM expression is upregulated by hypoxia, inflammation-inducing cytokines, viral or bacterial substances, strength of shear stress, and leakage of blood vessels. These pathological conditions are established during systemic inflammation that can result from infections, surgery, trauma/accidents or burns. The ability to rapidly identify infections and the prognostic, predictive power makes it a valuable tool in severe viral and bacterial infections burdened by high incidence and mortality. This review sheds light on the pathophysiological processes that in severe viral or bacterial infections cause endothelitis up to the development of organ damage, the resulting increase in ADM levels dosed through its more stable peptide mid-regional proadrenomedullin (MR-proADM), the most significant studies that attest to its diagnostic and prognostic accuracy in highlighting the severity of viral or bacterial infections and appropriate therapeutic insights.
Collapse
Affiliation(s)
- Silvia Spoto
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University, Viale dell’Università, 30, 00185 Rome, Italy; (S.B.); (R.C.); (V.R.)
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza University, Viale dell’Università, 30, 00185 Rome, Italy; (S.B.); (R.C.); (V.R.)
| | - José Ramón Yuste
- Division of Infectious Diseases, Faculty of Medicine, Clinica Universidad de Navarra, University of Navarra, Avda. Pío XII, 36, 31008 Pamplona, Spain;
- Department of Internal Medicine, Faculty of Medicine, Clinica Universidad de Navarra, University of Navarra, Avda. Pío XII, 36, 31008 Pamplona, Spain
| | - Felipe Lucena
- Departamento de Medicina Interna, Clinica Universidad de Navarra, Avda. Pío XII, 36, 31008 Pamplona, Spain; (F.L.); (J.A.)
| | - Giulio Francesco Romiti
- Department of Translational and Precision Medicine, Sapienza University, Viale dell’Università, 30, 00185 Rome, Italy; (S.B.); (R.C.); (V.R.)
| | - Valeria Raparelli
- Department of Translational and Precision Medicine, Sapienza University, Viale dell’Università, 30, 00185 Rome, Italy; (S.B.); (R.C.); (V.R.)
| | - Josepmaria Argemi
- Departamento de Medicina Interna, Clinica Universidad de Navarra, Avda. Pío XII, 36, 31008 Pamplona, Spain; (F.L.); (J.A.)
| | - Giorgio D’Avanzo
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Luciana Locorriere
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Francesco Masini
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Rodolfo Calarco
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Giulia Testorio
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Serenella Spiezia
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Silvia Angeletti
- Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy;
- Research Unit of Clinical Laboratory Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
9
|
Wang W, Jiang J, Yang C, Meng X, Gao L, Yuan Y, Lei T, Ding P, Yin R, Li Q. A critical time window for leukapheresis product transportation to manufacture clinical-grade dendritic cells with optimal anti-tumor activities. Cytotherapy 2024; 26:210-220. [PMID: 38127032 DOI: 10.1016/j.jcyt.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND AIMS Dendritic cell (DC)-based immunotherapy is a promising approach to treat cancer. However, key aspects governing the reproducible manufacturing of high-quality DC remain incompletely defined. Here, we show that the time window between leukapheresis and DC manufacturing is critical. METHODS Transcriptomic profiling by RNA-seq was used to unbiasedly characterize cellular states during each step of DC manufacturing process, and functional assays were used to determine the anti-tumor activities of DC. RESULTS During preclinical development of a DC-based cytotherapy platform, CUD-002 (NCT05270720), we found that DC quality varied among different batches, even though commonly used DC maturation markers CD80, CD83 and CD86 were indistinguishable. Multivariate analysis indicated that DC quality was negatively associated with the shipping time from the leukapheresis site to the manufacturing center. To investigate the potential effect of shipping time, we stored leukapheresis materials from three donors for 0, 1, 2 or 3 days before DC manufacturing. For each step, we carried out RNA-seq analysis to unbiasedly characterize cellular states. Integrated bioinformatic analyses indicated that longer storage time reduced the expression of several transcription factors to attenuate interferon pathways. CONCLUSIONS Consistently, we found that 3-day storage of leukapheresis materials significantly lowered the efficiency to generate DC but also impaired DC responses to inflammatory signals, resulting in inferior antigen-presentation and cytotoxic T-cell activities. Thus, we recommend using leukapheresis materials within 48 h to manufacture therapeutic DCs.
Collapse
Affiliation(s)
- Wenxiang Wang
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China; Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinfeng Jiang
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chao Yang
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xiangjun Meng
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu, Sichuan, China
| | - Li Gao
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu, Sichuan, China
| | - Yuan Yuan
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu, Sichuan, China
| | - Tingjun Lei
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu, Sichuan, China
| | - Ping Ding
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Rutie Yin
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China.
| | - Qintong Li
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Montenegro-Navarro N, García-Báez C, García-Caballero M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology. Nat Commun 2023; 14:8389. [PMID: 38104163 PMCID: PMC10725466 DOI: 10.1038/s41467-023-44133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Nieves Montenegro-Navarro
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Claudia García-Báez
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain.
| |
Collapse
|
11
|
Pallio G. Editorial: Novel Therapeutic Approaches in Inflammatory Bowel Diseases. Biomedicines 2023; 11:2466. [PMID: 37760907 PMCID: PMC10526183 DOI: 10.3390/biomedicines11092466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) encompass ulcerative colitis (UC) and Crohn's disease (CD), both of which are inflammatory ailments affecting the gastrointestinal tract [...].
Collapse
Affiliation(s)
- Giovanni Pallio
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Via C. Valeria, 98125 Messina, Italy
| |
Collapse
|
12
|
Procalcitonin and Adrenomedullin in Infectious Diseases. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Calcitonin (CT) and adrenomedullin (ADM) are members of the CT family. Procalcitonin (PCT) is a prohormone of CT. Elevations in serum PCT and ADM levels are associated with severe sepsis and coronavirus disease 2019 (COVID-19). PCT enhances sepsis mortality and it binds to the CGRP receptor, which is a heterodimer of CT receptor-like receptor and receptor activity-modifying protein 1. The N-terminal truncated form of PCT, PCT3-116, is produced by the cleavage of PCT by dipeptidyl peptidase 4 (DPP-4) and is the main form of PCT in serum during sepsis, inducing microvascular permeability. Mid-regional pro-adrenomedullin (MR-proADM) is used instead of ADM as a biological indicator because ADM is rapidly degraded, and MR-proADM is released at the same rate as ADM. ADM reduces endothelial permeability and promotes endothelial stability. Endothelial dysfunction is responsible for multiple organ failure in sepsis and COVID-19 patients. Therefore, ADM may be an important molecule for improving the severity associated with sepsis and COVID-19. This review focuses on the current knowledge of PCT and ADM in sepsis and COVID-19.
Collapse
|
13
|
Kotliar IB, Lorenzen E, Schwenk JM, Hay DL, Sakmar TP. Elucidating the Interactome of G Protein-Coupled Receptors and Receptor Activity-Modifying Proteins. Pharmacol Rev 2023; 75:1-34. [PMID: 36757898 PMCID: PMC9832379 DOI: 10.1124/pharmrev.120.000180] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are known to interact with several other classes of integral membrane proteins that modulate their biology and pharmacology. However, the extent of these interactions and the mechanisms of their effects are not well understood. For example, one class of GPCR-interacting proteins, receptor activity-modifying proteins (RAMPs), comprise three related and ubiquitously expressed single-transmembrane span proteins. The RAMP family was discovered more than two decades ago, and since then GPCR-RAMP interactions and their functional consequences on receptor trafficking and ligand selectivity have been documented for several secretin (class B) GPCRs, most notably the calcitonin receptor-like receptor. Recent bioinformatics and multiplexed experimental studies suggest that GPCR-RAMP interactions might be much more widespread than previously anticipated. Recently, cryo-electron microscopy has provided high-resolution structures of GPCR-RAMP-ligand complexes, and drugs have been developed that target GPCR-RAMP complexes. In this review, we provide a summary of recent advances in techniques that allow the discovery of GPCR-RAMP interactions and their functional consequences and highlight prospects for future advances. We also provide an up-to-date list of reported GPCR-RAMP interactions based on a review of the current literature. SIGNIFICANCE STATEMENT: Receptor activity-modifying proteins (RAMPs) have emerged as modulators of many aspects of G protein-coupled receptor (GPCR)biology and pharmacology. The application of new methodologies to study membrane protein-protein interactions suggests that RAMPs interact with many more GPCRs than had been previously known. These findings, especially when combined with structural studies of membrane protein complexes, have significant implications for advancing GPCR-targeted drug discovery and the understanding of GPCR pharmacology, biology, and regulation.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Jochen M Schwenk
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Debbie L Hay
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| |
Collapse
|
14
|
Kreiniz N, Gertz MA. Bad players in AL amyloidosis in the current era of treatment. Expert Rev Hematol 2023; 16:33-49. [PMID: 36620914 PMCID: PMC9905376 DOI: 10.1080/17474086.2023.2166924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Systemic AL amyloidosis (ALA) is a clonal plasma cell (PC) disease characterized by deposition of amyloid fibrils in different organs and tissues. Traditionally, the prognosis of ALA is poor and is primarily defined by cardiac involvement. The modern prognostic models are based on cardiac markers and free light chain difference (dFLC). Cardiac biomarkers have low specificity and are dependent on renal function, volume status, and cardiac diseases other than ALA. New therapies significantly improved the prognosis of the disease. The advancements in technologies - cardiac echocardiography (ECHO) and cardiac MRI (CMR), as well as new biological markers, relying on cardiac injury, inflammation, endothelial damage, and clonal and non-clonal PC markers are promising. AREAS COVERED An update on the prognostic significance of cardiac ALA, number of involved organs, response to treatment, including minimal residual disease (MRD), ECHO, MRI, and new biological markers will be discussed. The literature search was done in PubMed and Google Scholar, and the most recent and relevant data are included. EXPERT OPINION Prospective multicenter trials, evaluating multiple clinical and laboratory parameters, should be done to improve the risk assessment models in ALA in the modern era of therapy.
Collapse
Affiliation(s)
- Natalia Kreiniz
- Division of Hematology, Bnai Zion Medical Centre, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | |
Collapse
|
15
|
Mucke HA. Patent Highlights April - May 2022. Pharm Pat Anal 2022; 11:139-145. [PMID: 36052651 DOI: 10.4155/ppa-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
16
|
Ye L, Zuo Y, Chen F, Xu Y, Zhang P, Yang H, Peng Q, Wang G, Shu X. Adrenomedullin Expression Is Associated With the Severity and Poor Prognosis of Interstitial Lung Disease in Dermatomyositis Patients. Front Immunol 2022; 13:885142. [PMID: 35720354 PMCID: PMC9200949 DOI: 10.3389/fimmu.2022.885142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate adrenomedullin mRNA levels in the peripheral blood mononuclear cells (PBMCs) of patients with dermatomyositis (DM) as well as their correlation with the severity of interstitial lung disease (ILD). Methods A total of 41 DM patients and seven immune-mediated necrotizing myopathy (IMNM) patients were recruited, in addition to 21 healthy controls (HCs). The adrenomedullin mRNA levels in PBMCs were measured via quantitative reverse-transcription real-time polymerase chain reaction (qRT-PCR). The associations between adrenomedullin expression levels and major clinical, laboratory, pulmonary function parameters and the prognosis of patients with DM-related ILD (DM-ILD) were analyzed. Immunohistochemical analysis was performed on lung tissues of DM-ILD patients to determine adrenomedullin expression. Results Adrenomedullin mRNA levels in PBMCs were significantly higher in DM patients than in IMNM patients and HCs (p = 0.022 and p<0.001, respectively). Among DM patients, the levels were significantly higher in those with rapidly progressive ILD (RP-ILD) than in those with chronic ILD (p = 0.002) or without ILD (p < 0.001). The adrenomedullin mRNA levels in DM-ILD were positively correlated with serum ferritin (r =0.507, p =0.002), lactate dehydrogenase (LDH) (r =0.350, p =0.045), and lung visual analog scale (VAS) (r=0.392, p=0.021) and were negatively correlated with pulmonary function test parameters, including predicted forced vital capacity (FVC)% (r = −0.523, p = 0.025), forced expiratory volume in 1 s (FEV1)% (r = -0.539, p = 0.020), and diffusing capacity of carbon monoxide (DLco)% (r = -0.495, p = 0.036). Immunohistochemical analysis of adrenomedullin confirmed higher expression in the alveolar epithelial cells and macrophages of DM patients with RP-ILD. Among the DM patients with ILD, the six decedents exhibited higher adrenomedullin levels than the 28 survivors (p = 0.042). The cumulative survival rate was significantly lower (62.5% vs. 100%, P = 0.005) in patients with an adrenomedullin level > 0.053 than in those with a level <0.053. Conclusions Adrenomedullin levels are upregulated in DM patients with RP-ILD and are associated with ILD severity and poor prognosis. Adrenomedullin may be a potential prognostic biomarker in DM patients with ILD, although need further investigation.
Collapse
Affiliation(s)
- Lifang Ye
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Zuo
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China
| | - Fang Chen
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China
| | - Yuetong Xu
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Puli Zhang
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China
| | - Hongxia Yang
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China
| | - Qinglin Peng
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China
| | - Guochun Wang
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoming Shu
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
17
|
Dai HB, Wang HY, Wang FZ, Qian P, Gao Q, Zhou H, Zhou YB. Adrenomedullin ameliorates palmitic acid-induced insulin resistance through PI3K/Akt pathway in adipocytes. Acta Diabetol 2022; 59:661-673. [PMID: 34978596 DOI: 10.1007/s00592-021-01840-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
AIMS White adipose tissue (WAT) dysfunction has been associated with adipose tissue low-grade inflammation and oxidative stress leading to insulin resistance (IR). Adrenomedullin (ADM), an endogenous active peptide considered as an adipokine, is associated with adipocytes function. METHODS We evaluated the protective effects of ADM against IR in 3T3-L1 adipocytes treated by palmitic acid (PA) and in visceral white adipose tissue (vWAT) of obese rats fed with high-fat diet. RESULTS We found that endogenous protein expressions of ADM and its receptor in PA-treated adipocytes were markedly increased. PA significantly induced impaired insulin signaling by affecting phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) axis and glucose transporter-4 (GLUT-4) levels, whereas ADM pretreatment enhanced insulin signaling PI3K/Akt and GLUT-4 membrane protein levels, decreased pro-inflammatory cytokines tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and IL-6 levels, and improved oxidative stress accompanied with reduced reactive oxygen species (ROS) levels and increased anti-oxidant enzymes manganese superoxide dismutase 2 (SOD2), glutathione peroxidase (GPx1) and catalase (CAT) protein expressions. Furthermore, ADM treatment not only improved IR in obese rats, but also effectively restored insulin signaling, and reduced inflammation and oxidative stress in vWAT of obese rats. CONCLUSIONS This study demonstrates a prevention potential of ADM against obesity-related metabolic disorders, due to its protective effects against IR, inflammation and oxidative stress in adipocytes.
Collapse
Affiliation(s)
- Hang-Bing Dai
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Hong-Yu Wang
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Fang-Zheng Wang
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Pei Qian
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Qing Gao
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Hong Zhou
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
18
|
Pagán-Busigó JE, López-Carrasquillo J, Appleyard CB, Torres-Reverón A. Beyond depression and anxiety; a systematic review about the role of corticotropin-releasing hormone antagonists in diseases of the pelvic and abdominal organs. PLoS One 2022; 17:e0264909. [PMID: 35275963 PMCID: PMC8916623 DOI: 10.1371/journal.pone.0264909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Evidence for beneficial effects of corticotropin releasing hormone (CRH) antagonists in abdominal and pelvic organs is emerging in preclinical studies. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement a compilation of preclinical studies using CRH receptor antagonists as a treatment for abdominal and pelvic disease was carried out. The Animal Research: Reporting of In Vivo Experiments (ARRIVE) essential 10 guidelines were used to determine quality of the included studies. A total of 40 studies from the last 15 years studying irritable bowel syndrome, inflammatory bowel disease, endometriosis, enteritis, stress impact on gastrointestinal processes and exogenous CRH administration effects were included. Blockage of the CRH receptor 1 was mainly associated with beneficial effects while that of CRH receptor 2 worsened studied effects. However, time of administration, route of administration and the animal model used, all had an impact on the beneficial outcomes. Frequency of drugs administered indicated that astressin-2B, astressin and antalarmin were among the most utilized antagonists. Of concern, studies included were predominantly carried out in male models only, representing a gender discrepancy in preclinical studies compared to the clinical scenario. The ARRIVE score average was 13 with ~60% of the studies failing to randomize or blind the experimental units. Despite the failure to date of the CRH antagonists in moving across the clinical trials pipeline, there is evidence for their beneficial effects beyond mood disorders. Future pre-clinical studies should be tailored towards effectively predicting the clinical scenario, including reduction of bias and randomization.
Collapse
Affiliation(s)
- Joshua E. Pagán-Busigó
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Jonathan López-Carrasquillo
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Caroline B. Appleyard
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Sur180 Therapeutics, LLC, McAllen, Texas, United States of America
| | - Annelyn Torres-Reverón
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Sur180 Therapeutics, LLC, McAllen, Texas, United States of America
- * E-mail: ,
| |
Collapse
|
19
|
Kita T, Kitamura K. Translational studies of adrenomedullin and related peptides regarding cardiovascular diseases. Hypertens Res 2022; 45:389-400. [PMID: 34992239 PMCID: PMC8732970 DOI: 10.1038/s41440-021-00806-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
Adrenomedullin (AM) is a vasodilative peptide with various physiological functions, including the maintenance of vascular tone and endothelial barrier function. AM levels are markedly increased during severe inflammation, such as that associated with sepsis; thus, AM is expected to be a useful clinical marker and therapeutic agent for inflammation. However, as the increase in AM levels in cardiovascular diseases (CVDs) is relatively low compared to that in infectious diseases, the value of AM as a marker of CVDs seems to be less important. Limitations pertaining to the administrative route and short half-life of AM in the bloodstream (<30 min) restrict the therapeutic applications of AM for CVDs. In early human studies, various applications of AM for CVDs were attempted, including for heart failure, myocardial infarction, pulmonary hypertension, and peripheral artery disease; however, none achieved success. We have developed AM as a therapeutic agent for inflammatory bowel disease in which the vasodilatory effect of AM is minimized. A clinical trial evaluating this AM formulation for acute cerebral infarction is ongoing. We have also developed AM derivatives that exhibit a longer half-life and less vasodilative activity. These AM derivatives can be administered by subcutaneous injection at long-term intervals. Accordingly, these derivatives will reduce the inconvenience in use compared to that for native AM and expand the possible applications of AM for treating CVDs. In this review, we present the latest translational status of AM and its derivatives.
Collapse
Affiliation(s)
- Toshihiro Kita
- Department of Projects Research, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan.
| | - Kazuo Kitamura
- Department of Projects Research, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
20
|
Martínez-Herrero S, Martínez A. Adrenomedullin: Not Just Another Gastrointestinal Peptide. Biomolecules 2022; 12:biom12020156. [PMID: 35204657 PMCID: PMC8961556 DOI: 10.3390/biom12020156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022] Open
Abstract
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two bioactive peptides derived from the same precursor with several biological functions including vasodilation, angiogenesis, or anti-inflammation, among others. AM and PAMP are widely expressed throughout the gastrointestinal (GI) tract where they behave as GI hormones, regulating numerous physiological processes such as gastric emptying, gastric acid release, insulin secretion, bowel movements, or intestinal barrier function. Furthermore, it has been recently demonstrated that AM/PAMP have an impact on gut microbiome composition, inhibiting the growth of bacteria related with disease and increasing the number of beneficial bacteria such as Lactobacillus or Bifidobacterium. Due to their wide functions in the GI tract, AM and PAMP are involved in several digestive pathologies such as peptic ulcer, diabetes, colon cancer, or inflammatory bowel disease (IBD). AM is a key protective factor in IBD onset and development, as it regulates cytokine production in the intestinal mucosa, improves vascular and lymphatic regeneration and function and mucosal epithelial repair, and promotes a beneficial gut microbiome composition. AM and PAMP are relevant GI hormones that can be targeted to develop novel therapeutic agents for IBD, other GI disorders, or microbiome-related pathologies.
Collapse
|