1
|
Bautista-Bautista G, Salguero-Zacarias S, Villeda-Gabriel G, García-López G, Osorio-Caballero M, Palafox-Vargas ML, Acuña-González RJ, Lara-Pereyra I, Díaz-Ruíz O, Flores-Herrera H. Escherichia coli induced matrix metalloproteinase-9 activity and type IV collagen degradation is regulated by progesterone in human maternal decidual. BMC Pregnancy Childbirth 2024; 24:645. [PMID: 39367340 PMCID: PMC11451097 DOI: 10.1186/s12884-024-06847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is one of the main bacteria associated with preterm premature rupture of membranes by increasing pro-matrix metalloproteinase 9 (proMMP-9) and degradation of type IV collagen in human feto-maternal interface (HFMi). proMMP-9 is regulated by progesterone (P4) but it is unclear whether P4 inhibits proMMP in human maternal decidual (MDec). This study aimed to determine a role of P4 on proMMP-2 and - 9 and type IV collagen induced by E. coli infection in MDec. METHODS Nine HFMi were mounted in a Transwell system. MDec was stimulated with P4 or E. coli for 3-, 6-, or 24-hours. proMMP-2, -9 and type IV collagen were assessed. RESULTS Gelatin zymography revealed an increase in proMMP-9 after 3, 6, and 24 h of stimulating MDec with E. coli. Using immunofluorescence, it was confirmed the increase in the HFMi tissue and a reduction on the amount of type IV collagen leading to the separation of fetal amniochorion and MDEc. The degradative activity of proMMP-9 was reduced by 20% by coincubation with P4. CONCLUSIONS P4 modulates the activity of proMMP-9 induced by E. coli stimulation but it was unable to completely reverse the degradation of type IV collagen in human MDec tissue.
Collapse
Affiliation(s)
- Gerardo Bautista-Bautista
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Santos Salguero-Zacarias
- Departamento de Tococirugia y Urgencias, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Graciela Villeda-Gabriel
- Departamento de Inmunología e infectología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes , Ciudad de México, México
| | - Mauricio Osorio-Caballero
- Departamento de Salud Sexual y Reproductiva, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Martha Leticia Palafox-Vargas
- Departamento de Anatomía Patológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Ricardo Josué Acuña-González
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Irlando Lara-Pereyra
- Departamento de Ginecología, Hospital General de Zona 252, Instituto Mexicano del Seguro Social, Atlacomulco, México
| | - Oscar Díaz-Ruíz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hector Flores-Herrera
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México.
| |
Collapse
|
2
|
Underhill LA, Mennella JM, Tollefson GA, Uzun A, Lechner BE. Transcriptomic analysis delineates preterm prelabor rupture of membranes from preterm labor in preterm fetal membranes. BMC Med Genomics 2024; 17:72. [PMID: 38443884 PMCID: PMC10916314 DOI: 10.1186/s12920-024-01841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Globally, preterm birth remains the leading cause of death in children younger than 5 years old. Spontaneous preterm birth is comprised of two events that may or may not occur simultaneously: preterm labor and preterm prelabor rupture of membranes (PPROM). To further explore the concept that spontaneous preterm birth can result from the initializing of two separate but overlapping pathological events, we compared fetal membrane tissue from preterm labor deliveries to fetal tissue from preterm labor with PPROM deliveries. We hypothesized that the fetal membrane tissue from preterm labor with PPROM cases will have an RNA-seq profile divergent from the fetal membrane tissue from preterm labor controls. METHODS Chorioamnion, separated into amnion and chorion, was collected from eight gestationally age-matched cases and controls within 15 min of birth, and analyzed using RNA sequencing. Pathway enrichment analyses and functional annotations of differentially expressed genes were performed using KEGG and Gene Ontogeny Pathway enrichment analyses. RESULTS A total of 1466 genes were differentially expressed in the amnion, and 484 genes were differentially expressed in the chorion (log2 fold change > 1, FDR < 0.05) in cases (preterm labor with PPROM), versus controls (preterm labor only). In the amnion, the most significantly enriched (FDR < 0.01) KEGG pathway among down-regulated genes was the extracellular matrix receptor interaction pathway. Seven of the most significantly enriched pathways were comprised of multiple genes from the COL family, including COL1A, COL3A1, COL4A4, and COL4A6. In the chorion, the most significantly enriched KEGG pathways in up-regulated genes were chemokine, NOD receptor, Toll-like receptor, and cytokine-cytokine receptor signaling pathways. Similarly, KEGG pathway enrichment analysis for up-regulated genes in the amnion included three inflammatory pathways: cytokine-cytokine interaction, TNF signaling and the CXCL family. Six genes were significantly up regulated in chorionic tissue discriminated between cases (preterm labor with PPROM) and controls (preterm labor only) including GBP5, CXCL9, ALPL, S100A8, CASP5 and MMP25. CONCLUSIONS In our study, transcriptome analysis of preterm fetal membranes revealed distinct differentially expressed genes for PPROM, separate from preterm labor. This study is the first to report transcriptome data that reflects the individual pathophysiology of amnion and chorion tissue from PPROM deliveries.
Collapse
Affiliation(s)
- Lori A Underhill
- Warren Alpert Medical School at Brown University, Providence, RI, USA.
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA.
- Women and Infants Hospital, 101 Dudley St, 02905, Providence, RI, USA.
| | - J M Mennella
- Warren Alpert Medical School at Brown University, Providence, RI, USA
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | - G A Tollefson
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | - A Uzun
- Warren Alpert Medical School at Brown University, Providence, RI, USA
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | - B E Lechner
- Warren Alpert Medical School at Brown University, Providence, RI, USA
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| |
Collapse
|
3
|
Soucek O, Kacerovsky M, Kacerovska Musilova I, Stranik J, Kukla R, Bolehovska R, Andrys C. Amniotic fluid CD36 in pregnancies complicated by spontaneous preterm delivery: a retrospective cohort study. J Matern Fetal Neonatal Med 2023; 36:2214838. [PMID: 37217453 DOI: 10.1080/14767058.2023.2214838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate CD36 concentrations in amniotic fluid in pregnancies complicated by spontaneous delivery with intact fetal membranes (preterm labor, PTL) and preterm prelabor rupture of membranes (PPROM) with respect to the presence of the intra-amniotic infection. METHODS A total of 80 women with PPROM and 71 with PTL were included in the study. Amniotic fluid samples were obtained by transabdominal amniocentesis. Amniotic fluid CD36 concentrations were assessed by enzyme-linked immunosorbent assay. Microbial colonization of the amniotic cavity (MIAC) was determined by the cultivation and non-cultivation approach. Intra-amniotic inflammation (IAI) was defined as an amniotic fluid bedside interleukin-6 concentration ≥3000 pg/mL. Intra-amniotic infection was characterized by the presence of both MIAC and IAI. RESULTS Women with PPROM with intra-amniotic infection had higher amniotic fluid CD36 concentrations than women without infection (with infection: median 346 pg/mL, IQR 262-384 vs. without infection: median 242 pg/mL, IQR 199-304; p = .006) A positive correlation between amniotic fluid CD36 concentrations and interleukin-6 concentrations was found (rho = 0.48; p < .0001). In PTL pregnancies, no statistically significant difference was found in the amniotic fluid level of CD36 between intra-amniotic infection, sterile IAI, and negative amniotic fluid. CONCLUSIONS The presence of intra-amniotic infection is characterized by higher amniotic fluid CD36 concentrations in pregnancies complicated by PPROM. An amniotic fluid CD36 cutoff value of 252.5 pg/mL was found to be optimal for the prediction of intra-amniotic infection. In PTL pregnancies, no statistically significant change in CD36 concentration was found with respect to the presence of intra-amniotic infection.
Collapse
Affiliation(s)
- Ondrej Soucek
- Department of Immunology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ivana Kacerovska Musilova
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jaroslav Stranik
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rudolf Kukla
- Department of Microbiology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Radka Bolehovska
- Department of Microbiology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Immunology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Richardson L, Kammala AK, Kim S, Lam PY, Truong N, Radnaa E, Urrabaz-Garza R, Han A, Menon R. Development of oxidative stress-associated disease models using feto-maternal interface organ-on-a-chip. FASEB J 2023; 37:e23000. [PMID: 37249377 PMCID: PMC10259454 DOI: 10.1096/fj.202300531r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Oxidative stress (OS) and inflammation arising from cellular derangements at the fetal membrane-decidual interface (feto-maternal interface [FMi]) is a major antecedent to preterm birth (PTB). However, it is impractical to study OS-associated FMi disease state during human pregnancy, and thus it is difficult to develop strategies to reduce the incidences of PTB. A microfluidic organ-on-chip model (FMi-OOC) that mimics the in vivo structure and functions of FMi in vitro was developed to address this challenge. The FMi-OOC contained fetal (amnion epithelial, mesenchymal, and chorion) and maternal (decidua) cells cultured in four compartments interconnected by arrays of microchannels to allow independent but interconnected co-cultivation. Using this model, we tested the effects of OS and inflammation on both fetal (fetal → maternal) and maternal (maternal → fetal) sides of the FMi and determined their differential impact on PTB-associated pathways. OS was induced using cigarette smoke extract (CSE) exposure. The impacts of OS were assessed by measuring cell viability, disruption of immune homeostasis, epithelial-to-mesenchymal transition (EMT), development of senescence, and inflammation. CSE propagated (LC/MS-MS analysis for nicotine) over a 72-hour period from the maternal to fetal side, or vice versa. However, they caused two distinct pathological effects on the maternal and fetal cells. Specifically, fetal OS induced cellular pathologies and inflammation, whereas maternal OS caused immune intolerance. The pronounced impact produced by the fetus supports the hypothesis that fetal inflammatory response is a mechanistic trigger for parturition. The FMi disease-associated changes identified in the FMi-OOC suggest the unique capability of this in vitro model in testing in utero conditions.
Collapse
Affiliation(s)
- Lauren Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ananth Kumar Kammala
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Nina Truong
- John Sealy School of Medicine at Galveston, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Rheanna Urrabaz-Garza
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA5
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
5
|
Kurashima CK, Ng PK, Kendal-Wright CE. RAGE against the Machine: Can Increasing Our Understanding of RAGE Help Us to Battle SARS-CoV-2 Infection in Pregnancy? Int J Mol Sci 2022; 23:6359. [PMID: 35742804 PMCID: PMC9224312 DOI: 10.3390/ijms23126359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/05/2022] Open
Abstract
The receptor of advanced glycation end products (RAGE) is a receptor that is thought to be a key driver of inflammation in pregnancy, SARS-CoV-2, and also in the comorbidities that are known to aggravate these afflictions. In addition to this, vulnerable populations are particularly susceptible to the negative health outcomes when these afflictions are experienced in concert. RAGE binds a number of ligands produced by tissue damage and cellular stress, and its activation triggers the proinflammatory transcription factor Nuclear Factor Kappa B (NF-κB), with the subsequent generation of key proinflammatory cytokines. While this is important for fetal membrane weakening, RAGE is also activated at the end of pregnancy in the uterus, placenta, and cervix. The comorbidities of hypertension, cardiovascular disease, diabetes, and obesity are known to lead to poor pregnancy outcomes, and particularly in populations such as Native Hawaiians and Pacific Islanders. They have also been linked to RAGE activation when individuals are infected with SARS-CoV-2. Therefore, we propose that increasing our understanding of this receptor system will help us to understand how these various afflictions converge, how forms of RAGE could be used as a biomarker, and if its manipulation could be used to develop future therapeutic targets to help those at risk.
Collapse
Affiliation(s)
- Courtney K. Kurashima
- School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.K.K.); (P.K.N.)
| | - Po’okela K. Ng
- School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.K.K.); (P.K.N.)
| | - Claire E. Kendal-Wright
- School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.K.K.); (P.K.N.)
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawai’i, Honolulu, HI 96813, USA
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i, Honolulu, HI 96813, USA
| |
Collapse
|