1
|
Senthil R, Archunan G, Vithya D, Saravanan KM. Hexadecanoic acid analogs as potential CviR-mediated quorum sensing inhibitors in Chromobacterium violaceum: an in silico study. J Biomol Struct Dyn 2025; 43:3635-3644. [PMID: 38165661 DOI: 10.1080/07391102.2023.2299945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
Chromobacterium violaceum is a Gram-negative, rod-shaped and opportunistic human pathogen. C. violaceum is resistant to various antibiotics due to the production of quorum sensing (QS)-controlled virulence factor and biofilm formation. Hence, we need to find alternative strategies to overcome the antimicrobial resistance and biofilm formation in Gram-negative bacteria. QS is a mechanism in which bacteria's ability to regulate the virulence factors and biofilm formations leads to disease progression. Previously, hexadecanoic acid was identified as a CviR-mediated quorum-sensing inhibitor. In this study, we aimed to discover potential analogs of hexadecanoic acid as a CviR-mediated quorum-sensing inhibitor against C. violaceum by using ADME/T prediction, density functional theory, molecular docking, molecular dynamics and free energy binding calculations. ADME/T properties predicted for analogs were acceptable for human oral absorption and feasibility. The highest occupied molecular orbitals and lowest unoccupied molecular orbitals gap energies predicted and found oleic acid with -0.3748 energies. Docosatrienoic acid exhibited the highest binding affinity -8.15 Kcal/mol and strong and stable interactions with the amino acid residues on the active site of the CviR protein. These compounds on MD simulations for 100 ns show strong hydrogen-bonding interactions with the protein and remain stable inside the active site. Our results suggest hexadecanoic acid analogs could serve as anti-QS and anti-biofilm molecules for treating C. violaceum infections. However, further validation and investigation of these inhibitors against CviR are needed to claim their candidacy for clinical trials.
Collapse
Affiliation(s)
- Renganathan Senthil
- Department of Bioinformatics, School of Lifesciences, Vel's Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
- Lysine Biotech Private Limited, Taramani, Chennai, Tamil Nadu, India
| | - Govindaraju Archunan
- Dean-Research, Maruthupandiyar College (Affiliated to Bharathidasan University), Thanjavur, Tamil Nadu, India
| | - Dharmaraj Vithya
- Department of Biotechnology, Dhanalakshmi Srinivasan College of Arts and Science for Women (Affiliated to Bharathidasan University), Perambalur, Tamil Nadu, India
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Bell I PJ, Muniyan R. Targeting the quorum sensing network in Acinetobacter baumannii: A dual target structure-based approach for the development of novel antimicrobials. Comput Biol Med 2025; 187:109828. [PMID: 39938338 DOI: 10.1016/j.compbiomed.2025.109828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Acinetobacter baumannii, a notorious opportunistic pathogen, has emerged as a significant threat to global healthcare due to its alarming rise in antibiotic resistance. This ability of this bacterium to develop and disseminate resistance mechanisms, facilitated by quorum-sensing (QS) systems, has rendered conventional antibiotic treatments ineffective. QS systems, particularly the AbaI and AbaR proteins, play a crucial role in its virulence and antibiotic resistance. AbaI, an autoinducer synthase, produces signalling molecules, while AbaR, a transcriptional regulator, controls gene expression in response to these signals. This study employed in-silico design and screening to identify potential dual-targeting inhibitors against proteins AbaI and AbaR, the key players in QS. Compounds from an open source library (Life Chemicals) was screened using Lipinski's filters, molecular docking (fast rank and exhaustive). The resulted six hit compounds were subsequently performed with molecular dynamics simulations (MDS). The MDS analysis reveals that among the six top hits, hit 2 demonstrated potent dual-targeting inhibition and favourable pharmacokinetic properties, displaying selectivity against the proteins. These findings offer a novel therapeutic agent to disrupt QS in A. baumannii, to develop effective treatments against antibiotic-resistant A. baumannii, addressing a critical health concern and improving patient outcomes.
Collapse
Affiliation(s)
- Praisy Joy Bell I
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rajiniraja Muniyan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Motility of Acinetobacter baumannii: regulatory systems and controlling strategies. Appl Microbiol Biotechnol 2024; 108:3. [PMID: 38159120 DOI: 10.1007/s00253-023-12975-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic zoonotic pathogenic bacterium that causes nosocomial infections ranging from minor to life-threatening. The clinical importance of this zoonotic pathogen is rapidly increasing due to the development of multiple resistance mechanisms and the synthesis of numerous virulence factors. Although no flagellum-mediated motility exists, it may move through twitching or surface-associated motility. Twitching motility is a coordinated multicellular movement caused by the extension, attachment, and retraction of type IV pili, which are involved in surface adherence and biofilm formation. Surface-associated motility is a kind of movement that does not need appendages and is most likely driven by the release of extra polymeric molecules. This kind of motility is linked to the production of 1,3-diaminopropane, lipooligosaccharide formation, natural competence, and efflux pump proteins. Since A. baumannii's virulence qualities are directly tied to motility, it is possible that its motility may be used as a specialized preventative or therapeutic measure. The current review detailed the signaling mechanism and involvement of various proteins in controlling A. baumannii motility. As a result, we have thoroughly addressed the role of natural and synthetic compounds that impede A. baumannii motility, as well as the underlying action mechanisms. Understanding the regulatory mechanisms behind A. baumannii's motility features will aid in the development of therapeutic drugs to control its infection. KEY POINTS: • Acinetobacter baumannii exhibits multiple resistance mechanisms. • A. baumannii can move owing to twitching and surface-associated motility. • Natural and synthetic compounds can attenuate A. baumannii motility.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
4
|
Mitra A. Combatting biofilm-mediated infections in clinical settings by targeting quorum sensing. Cell Surf 2024; 12:100133. [PMID: 39634722 PMCID: PMC11615143 DOI: 10.1016/j.tcsw.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Biofilm-associated infections constitute a significant challenge in managing infectious diseases due to their high resistance to antibiotics and host immune responses. Biofilms are responsible for various infections, including urinary tract infections, cystic fibrosis, dental plaque, bone infections, and chronic wounds. Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to coordinate gene expression in response to cell density, which is crucial for biofilm formation and maintenance.. Its disruption has been proposed as a potential strategy to prevent or treat biofilm-associated infections leading to improved treatment outcomes for infectious diseases. This review article aims to provide a comprehensive overview of the literature on QS-mediated disruption of biofilms for treating infectious diseases. It will discuss the mechanisms of QS disruption and the various approaches that have been developed to disrupt QS in reference to multiple clinical pathogens. In particular, numerous studies have demonstrated the efficacy of QS disruption in reducing biofilm formation in various pathogens, including Pseudomonas aeruginosa and Staphylococcus aureus. Finally, the review will discuss the challenges and future directions for developing QS disruption as a clinical therapy for biofilm-associated infections. This includes the development of effective delivery systems and the identification of suitable targets for QS disruption. Overall, the literature suggests that QS disruption is a promising alternative to traditional antibiotic treatment for biofilm-associated infections and warrants further investigation.
Collapse
Affiliation(s)
- Arindam Mitra
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Alymanesh MR, Solhjoo A, Pishgar E, Akhlaghi M. Falcaria vulgaris extract: A mixture of quorum sensing inhibitors for controlling Pectobacterium carotovorum subsp. carotovorum. Food Microbiol 2024; 122:104535. [PMID: 38839215 DOI: 10.1016/j.fm.2024.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 04/05/2024] [Indexed: 06/07/2024]
Abstract
A promising strategy to control bacterial diseases involves using Quorum Sensing Inhibitor (QSI) compounds. This study aimed to evaluate the potential of Falcaria vulgaris plant extract to combat the phytopathogenic Pectobacterium carotovorum subsp. carotovorum (Pcc) via its QSI activity. Using biosensors and Minimum Inhibitory Concentration (MIC) assays, the QSI and antimicrobial aspects of the extract were assessed. Furthermore, the effect of the extract on the reduction of tuber maceration in potatoes was examined. Subsequently, homology modeling based on LasR was conducted to analyze interactions between ligand 3-oxo-C8-AHL, and ExpR2 protein. Docking studies were performed on all extract compounds identified via Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The extract effectively reduced maceration at sub-MIC concentrations across various pathogenic strains. Furthermore, Cyclopentadecanone, 2-hydroxy, showed more negative docking energy than the native ligand. Z,E-2,13-Octadecadien-1-ol showed energy equivalence to the native ligand. Additionally, this plant included certain compounds or their analogs that had previously been discovered as QSI compounds. These compounds included oleic acid, n-Hexadecanoic acid, cytidine, and linoleic acid, and they had energies that were comparable to that of the native ligand. In conclusion, the remarkable QSI property showed by this plant is likely attributed to a combination of compounds possessing this characteristic.
Collapse
Affiliation(s)
- Mohammad Reza Alymanesh
- Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Aida Solhjoo
- Department of Quality Control of Drug Products, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Pishgar
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | |
Collapse
|
6
|
Kurniawan J, Waturangi DE, Julyantoro PGS, Papuangan N. Ice nucleation active bacteria metabolites as antibiofilm agent to control Aeromonas hydrophila and Streptococcus agalactiae infections in Aquaculture. BMC Res Notes 2024; 17:166. [PMID: 38886828 PMCID: PMC11184859 DOI: 10.1186/s13104-024-06821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES The aim of this study was to quantify and identify metabolites of Ice Nucleation Active (INA) bacteria as an anti-biofilm agent against biofilms of fish pathogens such as Aeromonas hydrophila and Streptococcus agalactiae. RESULTS Ice nucleation active bacteria, which have the ability to catalyze ice nucleation, isolated from rainwater in previous studies, were used. All INA isolates were tested in several assays, including the antimicrobial test, which uses streptomycin as the positive control and none of the isolates were found positive in the antimicrobial test. As for the quorum quenching assay, it was found that four out of ten isolates were able to disturb the communication system in Chromobacterium violaceum wild type, which was used as the indicator bacteria. On the next assay, all ten isolates were tested for Biofilm Inhibition and Destruction and showed anti-biofilm activity with the highest percentage inhibition of 33.49% by isolate A40 against A. hydrophila and 77.26% by isolate A19 against S. agalactiae. C1 performed the highest destruction against A. hydrophila and S. agalactiae, with percentages of 32.11% and 51.88%, respectively. As for the GC-MS analysis, supernatants of INA bacteria contain bioactive compounds such as sarcosine and fatty acids, which are known to have antibiofilm activity against several biofilm-forming bacteria. Through 16s rRNA sequencing, identified bacteria are from the Pantoea, Enterobacter, and Acinetobacter genera. As for the conclusion, ice nucleation active bacteria metabolites tested showed positive results against pathogenic bacteria Aeromonas hydrophila and Streptococcus agalactiae in destructing and inhibiting biofilm growth.
Collapse
Affiliation(s)
- Jessica Kurniawan
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia
| | - Diana Elizabeth Waturangi
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia.
| | - Pande Gde Sasmita Julyantoro
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, University of Udayana, Denpasar, Bali, 80361, Indonesia
| | - Nurmaya Papuangan
- Department of Biology Education, Faculty of Teacher Training and Education, Khairun University, Ternate, 97728, Indonesia
| |
Collapse
|
7
|
Debroy R, Ramaiah S. Consolidated knowledge-guided computational pipeline for therapeutic intervention against bacterial biofilms - a review. BIOFOULING 2023; 39:928-947. [PMID: 38108207 DOI: 10.1080/08927014.2023.2294763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Biofilm-associated bacterial infections attributed to multifactorial antimicrobial resistance have caused worldwide challenges in formulating successful treatment strategies. In search of accelerated yet cost-effective therapeutics, several researchers have opted for bioinformatics-based protocols to systemize targeted therapies against biofilm-producing strains. The present review investigated the up-to-date computational databases and servers dedicated to anti-biofilm research to design/screen novel biofilm inhibitors (antimicrobial peptides/phytocompounds/synthetic compounds) and predict their biofilm-inhibition efficacy. Scrutinizing the contemporary in silico methods, a consolidated approach has been highlighted, referred to as a knowledge-guided computational pipeline for biofilm-targeted therapy. The proposed pipeline has amalgamated prominently employed methodologies in genomics, transcriptomics, interactomics and proteomics to identify potential target proteins and their complementary anti-biofilm compounds for effective functional inhibition of biofilm-linked pathways. This review can pave the way for new portals to formulate successful therapeutic interventions against biofilm-producing pathogens.
Collapse
Affiliation(s)
- Reetika Debroy
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Medical Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Abdulrahman I, Jamal MT, Pugazhendi A, Dhavamani J, Al-Shaeri M, Al-Maaqar S, Satheesh S. Antibacterial and antibiofilm activity of extracts from sponge-associated bacterial endophytes. Prep Biochem Biotechnol 2023; 53:1143-1153. [PMID: 36840506 DOI: 10.1080/10826068.2023.2175366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Sponges forms association with many bacteria that serve as sources of new bioactive compounds. The compounds are produced in response to environmental and nutritional conditions of the environment that enable them to protect their host from colonization. In this study, three sponge bacterial endophytes were isolated, identified, and subjected to solvent extraction processes. The identified bacteria are Bacillus amyloquifaciens, Bacillus paramycoides, and Enterobacter sp. The bacteria were cultured in two different fermentation media with varying nutritional composition for the extraction process. The extracts were evaluated for antibacterial and antibiofilm activity against microfouling bacteria and the chemical composition of each extract was analyzed via gas chromatography-mass spectrometry (GC-MS). The extract from the endophytes shows varying antibacterial and antibiofilm activity against the tested strains. Several compounds were detected from the extracts including some with known antibacterial/antibiofilm activity. The results showed variations in activity and secondary metabolite production between the extracts obtained under different nutritional composition of the media. In conclusion, this study indicated the role of nutrient composition in the activity and secondary metabolites production by bacteria associated with sponge Also, this study confirmed the role of sponge bacterial endophytes as producers of bioactive compounds with potential application as antifouling (AF) agents.
Collapse
Affiliation(s)
- Idris Abdulrahman
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Microbiology, Faculty of Sciences, Kaduna State University, Kaduna, Nigeria
| | - Mamdoh Taha Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jeyakumar Dhavamani
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saleh Al-Maaqar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Education, Al-Baydha University, Al-Baydha, Yemen
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Pyrogallol downregulates the expression of virulence-associated proteins in Acinetobacter baumannii and showing anti-infection activity by improving non-specific immune response in zebrafish model. Int J Biol Macromol 2023; 226:853-869. [PMID: 36526063 DOI: 10.1016/j.ijbiomac.2022.12.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Acinetobacter baumannii, a virulent uropathogen with widespread antibiotic resistance, has arisen as a critical scientific challenge, necessitating the development of innovative therapeutic agents. This is the first study reveal the proteomic changes in A. baumannii upon pyrogallol treatment for understanding the mechanisms using nano-LC-MS/MS-based quantitative proteomics and qPCR analysis. The obtained results found that pyrogallol treatment dramatically downregulated the expression level of several key proteins such as GroEL, DnaK, ClpB, SodB, KatE, Bap, CsuA/B, PgaA, PgaC, BfmR, OmpA, and SecA in A. baumannii, which are involved in chaperone-mediated oxidative stress responses, antioxidant defence system, biofilm formation, virulence enzyme production, bacterial adhesion, capsule formation, and antibiotic resistance. Accordingly, the pyrogallol dramatically enhanced the lifespan of A. baumannii-infected zebrafish by inhibiting bacterial colonization, demonstrating the anti-infective potential of pyrogallol against A. baumannii. Further, the histopathological results also demonstrated the disease protection efficacy of pyrogallol against the pathognomonic sign of A. baumannii infection. In addition, the pyrogallol treatment effectively improved the immune parameters such as serum myeloperoxidase activity, leukocyte respiratory burst activity, and serum lysozyme activity in zebrafish against A. baumannii infection. Based on the results, the present study strongly proposes pyrogallol as a promising therapeutic agent for treating A. baumannii infection.
Collapse
|
10
|
Pourhajibagher M, Hosseini N, Bahador A. Antimicrobial activity of D-amino acid in combination with photo-sonoactivated hypericin nanoparticles against Acinetobacter baumannii. BMC Microbiol 2023; 23:23. [PMID: 36658487 PMCID: PMC9850556 DOI: 10.1186/s12866-023-02758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The emergence of multidrug-resistant Acinetobacter baumannii strains is increasing worldwide. To overcome these life-threatening infections, the development of new treatment approaches is critical. For this purpose, this study was conducted to determine the antimicrobial photo-sonodynamic therapy (aPSDT) using hypericin nanoparticles (HypNP) in combination with D-Tryptophan (D-Trp) against A. baumannii. MATERIALS AND METHODS HypNP was synthesized and characterized, followed by the determination of the fractional inhibitory concentration (FIC) index of HypNP and D-Trp by checkerboard assay. Next, the antimicrobial and anti-biofilm potential of HypNP@D-Trp-mediated aPSDT against A. baumannii was evaluated. Finally, the anti-virulence activity of aPSDT using HypNP@D-Trp was accessed following the characterization of HypNP@D-Trp interaction with AbaI using in silico virtual screening and molecular docking. RESULTS A synergistic activity in the combination of HypNP and D-Trp against A. baumannii was observed with a FIC index value of 0.5. There was a 5.10 log10 CFU/mL reduction in the cell viability of A. baumannii when the bacterial cells were treated with 1/2 × MIC of HypNP@D-Trp and subsequently exposed to ultrasound waves and blue light (P < 0.05). Moreover, a significant biofilm degradation effect on biofilm-associated cells of A. baumannii was observed after treatment with aPSDT using 2 × MIC of HypNP@D-Trp in comparison with the control groups (P < 0.05). According to the molecular docking analysis of the protein-ligand complex, Hyp with a high affinity for AbaI showed a binding affinity of - 9.41 kcal/mol. Also, the expression level of abaI gene was significantly downregulated by 10.32-fold in A. baumannii treated with aPSDT as comprised with the control group (P < 0.05). CONCLUSIONS It can be concluded that HypNP@D-Trp-mediated aPSDT can be considered a promising strategy to overcome the infections caused by A. baumannii by reducing the growth of bacterial biofilm and decreasing the expression of abaI as a gene involved in A. baumannii biofilm formation.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- grid.411705.60000 0001 0166 0922Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nava Hosseini
- grid.23856.3a0000 0004 1936 8390Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6 Canada ,grid.23856.3a0000 0004 1936 8390Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6 Canada ,grid.421142.00000 0000 8521 1798Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5 Canada
| | - Abbas Bahador
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Malebari AM, E A Ahmed H, Ihmaid SK, Omar AM, Muhammad YA, Althagfan SS, Aljuhani N, A A El-Sayed AA, Halawa AH, El-Tahir HM, Turkistani SA, Almaghrabi M, K B Aljohani A, El-Agrody AM, Abulkhair HS. Exploring the dual effect of novel 1,4-diarylpyranopyrazoles as antiviral and anti-inflammatory for the management of SARS-CoV-2 and associated inflammatory symptoms. Bioorg Chem 2023; 130:106255. [PMID: 36403336 PMCID: PMC9671780 DOI: 10.1016/j.bioorg.2022.106255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
COVID-19 and associated substantial inflammations continue to threaten humankind triggering death worldwide. So, the development of new effective antiviral and anti-inflammatory medications is a major scientific goal. Pyranopyrazoles have occupied a crucial position in medicinal chemistry because of their biological importance. Here, we report the design and synthesis of a series of sixteen pyranopyrazole derivatives substituted with two aryl groups at N-1 and C-4. The designed compounds are suggested to show dual activity to combat the emerging Coronaviruses and associated substantial inflammations. All compounds were evaluated for their in vitro antiviral activity and cytotoxicity against SARS-CoV infected Vero cells. As well, the in vitro assay of all derivatives against the SARS-CoV Mpro target was performed. Results revealed the potential of three pyranopyrazoles (22, 27, and 31) to potently inhibit the viral main protease with IC50 values of 2.01, 1.83, and 4.60 μM respectively compared with 12.85 and 82.17 μM for GC-376 and lopinavir. Additionally, in vivo anti-inflammatory testing for the most active compound 27 proved its ability to reduce levels of two cytokines (TNF-α and IL-6). Molecular docking and dynamics simulation revealed consistent results with the in vitro enzymatic assay and indicated the stability of the putative complex of 27 with SARS-CoV-2 Mpro. The assessment of metabolic stability and physicochemical properties of 27 have also been conducted. This investigation identified a set of metabolically stable pyranopyrazoles as effective anti-SARS-CoV-2 Mpro and suppressors of host cell cytokine release. We believe that the new compounds deserve further chemical optimization and evaluation for COVID-19 treatment.
Collapse
Affiliation(s)
- Azizah M Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| | - Saleh K Ihmaid
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Jadara University Irbid, Jordan
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia; Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Yosra A Muhammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| | - Sultan S Althagfan
- Clinical and Hospital Pharmacy Department, Taibah University, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Naif Aljuhani
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Abdel-Aziz A A El-Sayed
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia; Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ahmed H Halawa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Heba M El-Tahir
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | | | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt.
| |
Collapse
|
12
|
Fratianni F, Amato G, De Feo V, d'Acierno A, Coppola R, Nazzaro F. Potential therapeutic benefits of unconventional oils: assessment of the potential in vitro biological properties of some Rubiaceae, Cucurbitaceae, and Brassicaceae seed oils. Front Nutr 2023; 10:1171766. [PMID: 37153908 PMCID: PMC10160382 DOI: 10.3389/fnut.2023.1171766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction Seed oils are versatile in the food sector and for pharmaceutical purposes. In recent years, their biological properties aroused the interest of the scientific world. Materials and methods We studied the composition of fatty acids (FAs) and some in vitro potential therapeutic benefits of five cold-pressed commercial oils obtained from broccoli, coffee, green coffee, pumpkin, and watermelon seeds. In particular, we assayed the antioxidant activity (using diphenyl-1-picrylhydrazyl (DPPH) and azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays). In addition, through the fatty acid composition, we calculated the atherogenicity index (AI) and thrombogenicity index (TI) to evaluate the potential impact of such oils on cardiovascular diseases. Furthermore, we assessed the in vitro anti-inflammatory capacity of the oils (evaluated through their effectiveness in preventing protein degradation, using bovine serum albumin as protein standard) and the ability of the oils to inhibit in vitro activity of three among the essential enzymes, cholinesterases and tyrosinase, involved in the Alzheimer's and Parkinson's neurodegenerative diseases. Finally, we evaluated the capacity of the oils to inhibit the biofilm of some pathogenic bacteria. Results The unsaturated fatty acids greatly predominated in broccoli seed oil (84.3%), with erucic acid as the main constituent (33.1%). Other unsaturated fatty acids were linolenic (20.6%) and linoleic (16.1%) acids. The saturated fatty acids fraction comprised the palmitic (6.8%) and stearic acids (0.2%). Broccoli seed oil showed the best AI (0.080) and TI (0.16) indexes. The oils expressed a good antioxidant ability. Except for the watermelon seed oil, the oils exhibited a generally good in vitro anti-inflammatory activity, with IC50 values not exceeding 8.73 micrograms. Broccoli seed oil and green coffee seed oil showed the best acetylcholinesterase inhibitory activity; coffee seed oil and broccoli seed oil were the most effective in inhibiting butyrylcholinesterase (IC50 = 15.7 μg and 20.7 μg, respectively). Pumpkin and green coffee seed oil showed the best inhibitory activity against tyrosinase (IC50 = 2 μg and 2.77 μg, respectively). In several cases, the seed oils inhibited the biofilm formation and the mature biofilm of some gram-positive and gram-negative bacteria, with Staphylococcus aureus resulting in the most sensitive strain. Such activity seemed related only in some cases to the capacity of the oils to act on the sessile bacterial cells' metabolism, as indicated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric method.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Vincenzo De Feo
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Antonio d'Acierno
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Raffaele Coppola
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Filomena Nazzaro
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
- *Correspondence: Filomena Nazzaro
| |
Collapse
|
13
|
Elshaer SL, Shaldam MA, Shaaban MI. Ketoprofen, Piroxicam and Indomethacin Suppressed Quorum Sensing and Virulence Factors in Acinetobacter baumannii. J Appl Microbiol 2022; 133:2182-2197. [PMID: 35503000 DOI: 10.1111/jam.15609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022]
Abstract
AIM Quorum sensing (QS) inhibition is a promising strategy to suppress bacterial virulence, and control infection caused by Gram-negative and Gram-positive bacteria. This study explores the quorum sensing inhibiting activity of the non-steroidal anti-inflammatory drugs (NSAIDs) in Acinetobacter baumannii. METHODS AND RESULTS Ketoprofen, piroxicam, and indomethacin revealed QS inhibition via elimination of violacein production of the reporter strain Chromobacterium violaceum ATCC 12472 without affecting bacterial growth. The minimal inhibitory concentration (MIC) of ketoprofen, piroxicam, and indomethacin was determined against A. baumannii strains ATCC 17978, ATCC 19606, A1, A11, and A27 by the microbroth dilution method. The MICs of ketoprofen against tested isolates were 3.12-6.25 mg mL-1 , piroxicam MICs were 1.25-2.5 mg mL-1 , and indomethacin MICs were 3.12-12.5 mg mL-1 . Those compounds significantly inhibited QS-associated virulence factors such as biofilm formation, and surface motility, as well as, significantly increased bacterial tolerance to oxidative stress without affecting bacterial growth. On the molecular level, the three compounds significantly inhibited the transcription of QS regulatory genes abaI/abaR, and biofilm regulated genes cusD, and pgaB. Molecular docking analysis revealed potent binding affinity of the three compounds with AbaI via hydrogen and/or hydrophobic bonds. CONCLUSION These results indicate that NSAIDs, ketoprofen, piroxicam, and indomethacin, could be potential inhibitors of the QS and could suppress the QS-related virulence factors of A. baumannii. SIGNIFICANCE AND IMPACT Ketoprofen, piroxicam, and indomethacin could provide promising implications and strategies for combating the virulence, and pathogenesis of A. baumannii.
Collapse
Affiliation(s)
- Soha Lotfy Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| |
Collapse
|
14
|
Khadke SK, Lee JH, Kim YG, Raj V, Lee J. Appraisal of Cinnamaldehyde Analogs as Dual-Acting Antibiofilm and Anthelmintic Agents. Front Microbiol 2022; 13:818165. [PMID: 35369516 PMCID: PMC8966877 DOI: 10.3389/fmicb.2022.818165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Cinnamaldehyde has a broad range of biological activities, which include antibiofilm and anthelmintic activities. The ever-growing problem of drug resistance and limited treatment options have created an urgent demand for natural molecules with antibiofilm and anthelmintic properties. Hence, we hypothesized that molecules with a scaffold structurally similar to that of cinnamaldehyde might act as dual inhibitors against fungal biofilms and helminths. In this regard, eleven cinnamaldehyde analogs were tested to determine their effects on fungal Candida albicans biofilm and nematode Caenorhabditis elegans. α-Methyl and trans-4-methyl cinnamaldehydes efficiently inhibited C. albicans biofilm formation (>90% inhibition at 50 μg/mL) with minimum inhibitory concentrations (MICs) of ≥ 200 μg/mL and 4-bromo and 4-chloro cinnamaldehydes exhibited anthelmintic property at 20 μg/mL against C. elegans. α-Methyl and trans-4-methyl cinnamaldehydes inhibited hyphal growth and cell aggregation. Scanning electron microscopy was employed to determine the surface architecture of C. albicans biofilm and cuticle of C. elegans, and confocal laser scanning microscopy was used to determine biofilm characteristics. The perturbation in gene expression of C. albicans was investigated using qRT-PCR analysis and α-methyl and trans-4-methyl cinnamaldehydes exhibited down-regulation of ECE1, IFD6, RBT5, UCF1, and UME6 and up-regulation of CHT4 and YWP1. Additionally, molecular interaction of these two molecules with UCF1 and YWP1 were revealed by molecular docking simulation. Our observations collectively suggest α-methyl and trans-4-methyl cinnamaldehydes are potent biofilm inhibitors and that 4-bromo and 4-chloro cinnamaldehydes are anthelmintic agents. Efforts are required to determine the range of potential therapeutic applications of cinnamaldehyde analogs.
Collapse
Affiliation(s)
- Sagar Kiran Khadke
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
15
|
Law SKK, Tan HS. The Role of Quorum Sensing, Biofilm Formation, and Iron Acquisition as Key Virulence Mechanisms in Acinetobacter baumannii and the Corresponding Anti-virulence Strategies. Microbiol Res 2022; 260:127032. [DOI: 10.1016/j.micres.2022.127032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
|