1
|
Wang B, Zhao JL, Cai WY, Wang GY, Li YZ, Wang JS, Xie HT, Zhang MC. Progress in Transdifferentiation of Autologous Alternative Cell Sources into Corneal Epithelial Cells. Stem Cell Rev Rep 2025; 21:226-235. [PMID: 39480612 PMCID: PMC11762461 DOI: 10.1007/s12015-024-10808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Corneal limbal epithelial stem cells (LESCs) play a crucial role in corneal epithelium regeneration. Severe damage to these cells can result in limbal stem cell deficiency (LSCD), characterized by repeated corneal conjunctivalization, leading to corneal turbidity and scar formation. Restoring functional LESCs and their ecological location are essential for treating LSCD. The goal of this review is to provide researchers and clinicians with key insights into LESCs biology and to conclude the current cell-based therapies advancement in LSCD treatments. Therapeutic cell resources mainly include mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), skin keratinocyte stem cells (SKCs), and oral mucosal epithelial cells (OMECs).
Collapse
Affiliation(s)
- Bei Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiang-Lan Zhao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Ying Cai
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gong-Yue Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Zhi Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Song Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Li Y, Ge L, Ren B, Zhang X, Yin Z, Liu H, Yang Y, Liu Y, Xu H. De-Differentiation of Corneal Epithelial Cells Into Functional Limbal Epithelial Stem Cells After the Ablation of Innate Stem Cells. Invest Ophthalmol Vis Sci 2024; 65:32. [PMID: 39546294 DOI: 10.1167/iovs.65.13.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Purpose Regeneration after tissue injury is often associated with cell fate plasticity, which restores damaged or lost cells. Here, we examined the de-differentiation of corneal epithelial cells (CECs) into functional limbal epithelial stem cells (LESCs) after the ablation of innate stem cells. Methods The regeneration of LESCs after the ablation of innate LESCs was identified by a set of markers: ApoE+/Cx43low/CK12-. CK14-CreERT2 or Slc1a3-CreERT mice were crossed with reporter mice to trace the fate of CECs. YAP-TEAD inhibitor verteporfin (VTP) and LATS inhibitor TRULI were used to examine the role of Hippo/YAP pathway in the de-differentiation of CECs. Results LESCs-ablation cornea showed to be functionally normal, including the maintenance of corneal transparency, prevention of conjunctivalization, and wound healing rate equivalent to that of normal cornea. ApoE+/Cx43low/CK12- LESCs regenerated at the limbus at 6 days after the ablation of innate stem cells, and maintained for at least 6 months. Corneal epithelial lineage tracing showed that CECs migrated back to the limbus after the ablation of innate stem cells, and de-differentiated into active and quiescent LESCs (aLESCs and qLESCs), which participated in corneal epithelial homeostasis and wound healing, respectively, like their innate counterparts. However, when the limbus niche was destroyed by NaOH (1 M, 5 seconds), CECs that occupied the limbus could not de-differentiate into ApoE+/Cx43low/CK12- LESCs and cornea developed into conjunctivalization. In addition, the protein level and activity of YAP increased at the early stage (1-2 days) after the ablation of limbal epithelium, and decreased when the de-differentiation occurred. The YAP-TEAD inhibitor VTP promoted the de-differentiation, whereas LATS inhibitor TRULI inhibited the de-differentiation of CECs. However, the persistent activation of YAP prevented the de-differentiation of CECs after an additional NaOH burn to the limbal stroma, and VTP could not rescue the capacity of CECs to de-differentiate into LESCs. Conclusions These results reveal the de-differentiation of CECs into functional LESCs after the ablation of innate stem cells, and suggest potential role of Hippo/YAP pathway in the de-differentiation of CECs in vivo.
Collapse
Affiliation(s)
- Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Xue Zhang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Zhiyuan Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Hongling Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yuli Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| |
Collapse
|
3
|
Wang M, Liu K, Wang X, Shang Z, Liu Y, Pan N, Sun X, Xu W. Limbal stem cells carried by a four-dimensional -printed chitosan-based scaffold for corneal epithelium injury in diabetic rabbits. Front Physiol 2024; 15:1285850. [PMID: 38887317 PMCID: PMC11180886 DOI: 10.3389/fphys.2024.1285850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Methods: Herein, we obtained and characterized deltaN p63- and adenosine triphosphate-binding cassette subfamily G member 2-expressing limbal stem cells (LSCs). Chitosan and carboxymethyl chitosan (CTH) were cross-linked to be an in situ thermosensitive hydrogel (ACH), which was printed through four-dimensional (4D) printing to obtain a porous carrier with uniform pore diameter (4D-CTH). Rabbits were injected with alloxan to induce diabetes mellitus (DM). Following this, the LSC-carrying hydrogel was spread on the surface of the cornea of the diabetic rabbits to cure corneal epithelium injury. Results: Compared with the control group (LSCs only), rapid wound healing was observed in rabbits treated with LSC-carrying 4D-CTH. Furthermore, the test group also showed better corneal nerve repair ability. The results indicated the potential of LSC-carrying 4D-CTH in curing corneal epithelium injury. Conclusion: 4D-CTH holds potential as a useful tool for studying regenerative processes occurring during the treatment of various diabetic corneal epithelium pathologies with the use of stem cell-based technologies.
Collapse
Affiliation(s)
- Mengyuan Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Kaibin Liu
- Department of Thoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaomin Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Zhen Shang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Yiming Liu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Nailong Pan
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Xueqing Sun
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Sprogyte L, Park M, Di Girolamo N. Pathogenesis of Alkali Injury-Induced Limbal Stem Cell Deficiency: A Literature Survey of Animal Models. Cells 2023; 12:cells12091294. [PMID: 37174694 PMCID: PMC10177508 DOI: 10.3390/cells12091294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Limbal stem cell deficiency (LSCD) is a debilitating ocular surface disease that eventuates from a depleted or dysfunctional limbal epithelial stem cell (LESC) pool, resulting in corneal epithelial failure and blindness. The leading cause of LSCD is a chemical burn, with alkali substances being the most common inciting agents. Characteristic features of alkali-induced LSCD include corneal conjunctivalization, inflammation, neovascularization and fibrosis. Over the past decades, animal models of corneal alkali burn and alkali-induced LSCD have been instrumental in improving our understanding of the pathophysiological mechanisms responsible for disease development. Through these paradigms, important insights have been gained with regards to signaling pathways that drive inflammation, neovascularization and fibrosis, including NF-κB, ERK, p38 MAPK, JNK, STAT3, PI3K/AKT, mTOR and WNT/β-catenin cascades. Nonetheless, the molecular and cellular events that underpin re-epithelialization and those that govern long-term epithelial behavior are poorly understood. This review provides an overview of the current mechanistic insights into the pathophysiology of alkali-induced LSCD. Moreover, we highlight limitations regarding existing animal models and knowledge gaps which, if addressed, would facilitate development of more efficacious therapeutic strategies for patients with alkali-induced LSCD.
Collapse
Affiliation(s)
- Lina Sprogyte
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mijeong Park
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Corneal Reconstruction with EGFP-Labelled Limbal Mesenchymal Stem Cells in a Rabbit Model of Limbal Stem Cell Deficiency. Int J Mol Sci 2023; 24:ijms24065431. [PMID: 36982507 PMCID: PMC10051408 DOI: 10.3390/ijms24065431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Ocular surface reconstruction is essential for treating corneal epithelial defects and vision recovery. Stem cell-based therapy demonstrates promising results but requires further research to elucidate stem cell survival, growth, and differentiation after transplantation in vivo. This study examined the corneal reconstruction promoted by EGFP-labeled limbal mesenchymal stem cells (L-MSCs-EGFP) and their fate after transplantation. EGFP labeling allowed us to evaluate the migration and survival rates of the transferred cells. L-MSCs-EGFP seeded onto decellularized human amniotic membrane (dHAM) were transplanted into rabbits with a modeled limbal stem cell deficiency. The localization and viability of the transplanted cells in animal tissue were analyzed using histology, immunohistochemistry, and confocal microscopy up to 3 months after transplantation. EGFP-labeled cells remained viable for the first 14 days after transplantation. By the 90th day, epithelialization of the rabbit corneas reached 90%, but the presence of viable labeled cells was not observed within the newly formed epithelium. Although labeled cells demonstrated low survivability in host tissue, the squamous corneal-like epithelium was partially restored by the 30th day after transplantation of the tissue-engineered graft. Overall, this study paves the way for further optimization of transplantation conditions and studying the mechanisms of corneal tissue restoration.
Collapse
|
6
|
Zhurenkov KE, Alexander-Sinkler EI, Gavrilyik IO, Yartseva NM, Aleksandrova SA, Mashel TV, Khorolskaya JI, Blinova MI, Kulikov AN, Churashov SV, Chernysh VF, Mikhailova NA. Labial Mucosa Stem Cells: Isolation, Characterization, and Their Potential for Corneal Epithelial Reconstruction. Invest Ophthalmol Vis Sci 2022; 63:16. [PMID: 35848889 PMCID: PMC9308017 DOI: 10.1167/iovs.63.8.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose The purpose of this study was to characterize labial mucosa stem cells (LMSCs) and to investigate their potential for corneal epithelial reconstruction in a rabbit model of total limbal stem cell deficiency (LSCD). Methods Rabbit LMSCs (rLMSCs) and human (hLMSCs) LMSCs were derived from labial mucosa and characterized in terms of their proliferation activity by the evaluation of proliferation index (PI) and colony forming efficiency (CFE), cell senescence, and differentiation abilities. The expression of various limbus-specific, stem cell-specific, and epithelial markers was assessed via immunocytochemistry. Flow cytometry was used to evaluate mesenchymal and hematopoietic cell surface markers expression. Chromosomal stability of the derived cells was examined using the conventional GTG-banding technique. To assess the impact of LMSCs on corneal epithelial reconstruction, rLMSCs were seeded onto a decellularized human amniotic membrane (dHAM), thereafter their regeneration potential was examined in the rabbit model of total LSCD. Results Both rLMSCs and hLMSCs showed high proliferation and differentiation abilities, entered senescence at later passages, and expressed different stem cell-specific (ABCB5, ALDH3A1, ABCG2, and p63α), mesenchymal (vimentin), and epithelial (CK3/12, CK15) markers. Cell surface antigen expression was similar to other described mesenchymal stem cells. No clonal structural chromosome abnormalities (CSCAs) and the low percentage of non-clonal structural chromosome abnormalities (NSCAs) were observed. Transplantation of rLMSCs promoted corneal epithelial reconstruction and enhanced corneal transparency. Conclusions LMSCs have significant proliferation and differentiation abilities, display no detrimental chromosome aberrations, and demonstrate considerable potential for corneal repair.
Collapse
Affiliation(s)
- Kirill E Zhurenkov
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia.,Department of Cytology and Histology, St. Petersburg State University, St. Petersburg, Russia
| | | | | | - Natalia M Yartseva
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | | | - Tatiana V Mashel
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | | | - Miralda I Blinova
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|