1
|
Tsuchigauchi S, Matsushige T, Hashimoto Y, Hosogai M, Takahashi H, Kobayashi S, Shishido T, Hara N, Kaneyoshi K, Uchida S, Maki R, Yamashita H. Potential of low apolipoprotein A-I as a surrogate marker of vulnerable carotid artery plaques. J Stroke Cerebrovasc Dis 2025; 34:108231. [PMID: 39837394 DOI: 10.1016/j.jstrokecerebrovasdis.2025.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVE Recent studies suggested that the medical control of atherogenic lipoproteins is not sufficient for stroke prevention. A low apolipoprotein A-I (apoA-I) level may play a crucial role in the anti-atherogenic effects of high-density lipoprotein (HDL-C) and may also be associated with symptomatic vulnerable plaques in carotid artery stenosis. Therefore, the present study investigated the relationship between apoA-I levels and the status of carotid artery stenosis. METHODS Ninety-one patients with carotid artery stenosis were examined. The status of carotid artery plaques was divided into symptomatic (n = 47) and asymptomatic (n = 44). We examined patient profiles, including comorbidities, and laboratory lipid data, and plaque features visualized by ultrasonography, MRI, and digital subtraction angiography. The relationships between plaque instability and risk factors for carotid artery stenosis were investigated. RESULTS No significant differences were observed in the profiles of symptomatic and asymptomatic patients. Regarding plaque features, ulceration, low echo luminance, and a high signal intensity in plaques on T1-weighted images correlated with symptomatic plaques. ApoA-I, total cholesterol, and non-HDL-C levels were significantly lower in symptomatic patients than in asymptomatic patients. A multivariate logistic regression analysis identified low ApoA-I levels, ulceration, and low echo luminance as predictive factors for symptomatic carotid artery stenosis. Diagnostic accuracy for predicting symptomatic carotid stenosis was 0.84 when the following four factors were combined: ulceration, low echo luminance, a high signal intensity on T1-weighted images, and the level of apoA-I. CONCLUSIONS A low apoA-I level was associated with symptomatic carotid artery stenosis. Therefore, ApoA-I levels have potential as a surrogate marker to detect unstable carotid artery plaques.
Collapse
Affiliation(s)
- Saya Tsuchigauchi
- Department of Neurology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | - Toshinori Matsushige
- Department of Neurosurgery and Interventional Neuroradiology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan.
| | - Yukishige Hashimoto
- Department of Neurosurgery and Interventional Neuroradiology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan; Department of Neurosurgery, JA Onomichi general hospital, Hiroshima, Japan
| | - Masahiro Hosogai
- Department of Neurosurgery and Interventional Neuroradiology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | - Hiroki Takahashi
- Department of Neurosurgery and Interventional Neuroradiology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | - Shohei Kobayashi
- Department of Neurosurgery and Interventional Neuroradiology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | - Takeo Shishido
- Department of Neurology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | - Naoyuki Hara
- Department of Neurology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | - Kenta Kaneyoshi
- Department of Neurology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan; Department of Internal medicine, Aki Ota Hospital, Hiroshima, Japan
| | - Shota Uchida
- Department of Neurology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | - Ryuga Maki
- Department of Neurology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | - Hiroshi Yamashita
- Department of Neurology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| |
Collapse
|
2
|
Puig N, Camps-Renom P, Hermansson M, Aguilera-Simón A, Marín R, Bautista O, Rotllan N, Blanco-Sanroman N, Domine MC, Öörni K, Sánchez-Quesada JL, Benitez S. Alterations in LDL and HDL after an ischemic stroke associated with carotid atherosclerosis are reversed after 1 year. J Lipid Res 2025; 66:100739. [PMID: 39746448 PMCID: PMC11815653 DOI: 10.1016/j.jlr.2024.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Approximately, 20% of ischemic strokes are attributed to the presence of atherosclerosis. Lipoproteins play a crucial role in the development of atherosclerosis, with LDL promoting atherogenesis and HDL inhibiting it. Therefore, both their concentrations and their biological properties are decisive factors in atherosclerotic processes. In this study, we examined the qualitative properties of lipoproteins in ischemic stroke patients with carotid atherosclerosis. Lipoproteins were isolated from the blood of healthy controls (n = 27) and patients with carotid atherosclerosis (n = 64) at 7 days and 1 year postischemic stroke. Compared to controls, patients' LDL 7 days poststroke showed increased levels of apoC-III, triacylglycerol, and ceramide, along with decreased cholesterol and phospholipid content. LDL from patients induced more inflammation in macrophages than did LDL from controls. HDL isolated from patients 7 days after stroke showed alterations in the apolipoprotein cargo, with reduced levels of apoA-I and increased levels of apoA-II, and apoC-III compared to controls. Patients' HDL also showed a higher electronegative charge than that of controls and partially lost its ability to counteract the modification of LDL and the inflammatory effects of modified LDL. One year after stroke onset, the composition of patients' LDL and HDL resembled those of the controls. In parallel, LDL and HDL gained positive charge, LDL became less prone to oxidation and aggregation, and HDL regained protective properties. In conclusion, LDL and HDL in ischemic stroke patients with carotid atherosclerosis exhibited alterations in composition and function, which were partially reversed 1 year after stroke.
Collapse
Affiliation(s)
- Núria Puig
- Cardiovascular Biochemistry Group, Institut de Recerca Sant Pau, (IR Sant Pau), Barcelona, Spain
| | - Pol Camps-Renom
- Stroke Unit, Department of Neurology, Hospital de La Santa Creu I Sant Pau, IR Sant Pau, Barcelona, Spain
| | - Martin Hermansson
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Ana Aguilera-Simón
- Stroke Unit, Department of Neurology, Hospital de La Santa Creu I Sant Pau, IR Sant Pau, Barcelona, Spain
| | - Rebeca Marín
- Stroke Unit, Department of Neurology, Hospital de La Santa Creu I Sant Pau, IR Sant Pau, Barcelona, Spain
| | - Olga Bautista
- Cardiovascular Biochemistry Group, Institut de Recerca Sant Pau, (IR Sant Pau), Barcelona, Spain
| | - Noemi Rotllan
- Pathophysiology of Lipid-Related Diseases, Research Institute Sant Pau (Institut de Recerca Sant Pau, IR Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | | | | | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Institut de Recerca Sant Pau, (IR Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Institut de Recerca Sant Pau, (IR Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.
| |
Collapse
|
3
|
Kalló G, Zaman K, Potor L, Hendrik Z, Méhes G, Tóth C, Gergely P, Tőzsér J, Balla G, Balla J, Prokai L, Csősz É. Identification of Protein Networks and Biological Pathways Driving the Progression of Atherosclerosis in Human Carotid Arteries Through Mass Spectrometry-Based Proteomics. Int J Mol Sci 2024; 25:13665. [PMID: 39769427 PMCID: PMC11728284 DOI: 10.3390/ijms252413665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Vulnerable atherosclerotic plaques, especially hemorrhaged lesions, are the major cause of mortalities related to vascular pathologies. The early identification of vulnerable plaques helps to stratify patients at risk of developing acute vascular events. In this study, proteomics analyses of human carotid artery samples collected from patients with atheromatous plaques and complicated lesions, respectively, as well as from healthy controls were performed. The proteins isolated from the carotid artery samples were analyzed by a bottom-up shotgun approach that relied on nanoflow liquid chromatography-tandem mass spectrometry analyses (LC-MS/MS) using both data-dependent (DDA) and data-independent (DIA) acquisitions. The data obtained by high-resolution DIA analyses displayed a stronger distinction among groups compared to DDA analyses. Differentially expressed proteins were further examined using Ingenuity Pathway Analysis® with focus on pathological and molecular processes driving atherosclerosis. From the more than 150 significantly regulated canonical pathways, atherosclerosis signaling and neutrophil extracellular trap signaling were verified by protein-targeted data extraction. The results of our study are expected to facilitate a better understanding of the disease progression's molecular drivers and provide inspiration for further multiomics and hypothesis-driven studies.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - László Potor
- HUN-REN-DE Vascular Pathophysiology Research Group 11003, University of Debrecen, 4032 Debrecen, Hungary; (L.P.); (J.B.)
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.H.); (P.G.)
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Csaba Tóth
- Division of Vascular Surgery, Department of Surgery, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Péter Gergely
- Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.H.); (P.G.)
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
| | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Balla
- HUN-REN-DE Vascular Pathophysiology Research Group 11003, University of Debrecen, 4032 Debrecen, Hungary; (L.P.); (J.B.)
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Laszlo Prokai
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
| |
Collapse
|
4
|
Benitez S, Puig N, Camps-Renom P, Sánchez-Quesada JL. Atherogenic circulating lipoproteins in ischemic stroke. Front Cardiovasc Med 2024; 11:1470364. [PMID: 39713216 PMCID: PMC11659270 DOI: 10.3389/fcvm.2024.1470364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
The fundamental role of qualitative alterations of lipoproteins in the early development of atherosclerosis has been widely demonstrated. Modified low-density lipoproteins (LDL), such as oxidized LDL (oxLDL), small dense LDL (sdLDL), and electronegative LDL [LDL(-)], are capable of triggering the atherogenic process, favoring the subendothelial accumulation of cholesterol and promoting inflammatory, proliferative, and apoptotic processes characteristic of atherosclerotic lesions. In contrast, high-density lipoprotein (HDL) prevents and/or reverses these atherogenic effects. However, LDL's atherogenic and HDL's anti-atherogenic actions may result altered in certain pathological conditions. The molecular mechanisms underlying the impaired effects of altered lipoproteins have been studied in numerous in vitro and in vivo studies, and have been extensively analyzed in coronary atherosclerosis, especially in the context of pathologies such as dyslipidemia, diabetes, obesity, and metabolic syndrome. However, the corresponding studies are scarcer in the field of ischemic stroke, despite carotid arteriosclerosis progression underlies at least 20% of ischemic strokes. The present review relates qualitative alterations of LDL and HDL with the development of carotid arteriosclerosis and the occurrence of ischemic stroke.
Collapse
Affiliation(s)
- Sonia Benitez
- Cardiovascular Biochemistry Group, Institut de Recerca Hospital de Sant Pau (IR Sant Pau), Barcelona, Spain
- CIBER-Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Núria Puig
- Cardiovascular Biochemistry Group, Institut de Recerca Hospital de Sant Pau (IR Sant Pau), Barcelona, Spain
| | - Pol Camps-Renom
- Stroke Unit, Department of Neurology, Hospital de La Santa Creu I Sant Pau, IR Sant Pau, Barcelona, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Institut de Recerca Hospital de Sant Pau (IR Sant Pau), Barcelona, Spain
- CIBER-Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| |
Collapse
|
5
|
Wańczura P, Aebisher D, Iwański MA, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D. The Essence of Lipoproteins in Cardiovascular Health and Diseases Treated by Photodynamic Therapy. Biomedicines 2024; 12:961. [PMID: 38790923 PMCID: PMC11117957 DOI: 10.3390/biomedicines12050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Lipids, together with lipoprotein particles, are the cause of atherosclerosis, which is a pathology of the cardiovascular system. In addition, it affects inflammatory processes and affects the vessels and heart. In pharmaceutical answer to this, statins are considered a first-stage treatment method to block cholesterol synthesis. Many times, additional drugs are also used with this method to lower lipid concentrations in order to achieve certain values of low-density lipoprotein (LDL) cholesterol. Recent advances in photodynamic therapy (PDT) as a new cancer treatment have gained the therapy much attention as a minimally invasive and highly selective method. Photodynamic therapy has been proven more effective than chemotherapy, radiotherapy, and immunotherapy alone in numerous studies. Consequently, photodynamic therapy research has expanded in many fields of medicine due to its increased therapeutic effects and reduced side effects. Currently, PDT is the most commonly used therapy for treating age-related macular degeneration, as well as inflammatory diseases, and skin infections. The effectiveness of photodynamic therapy against a number of pathogens has also been demonstrated in various studies. Also, PDT has been used in the treatment of cardiovascular diseases, such as atherosclerosis and hyperplasia of the arterial intima. This review evaluates the effectiveness and usefulness of photodynamic therapy in cardiovascular diseases. According to the analysis, photodynamic therapy is a promising approach for treating cardiovascular diseases and may lead to new clinical trials and management standards. Our review addresses the used therapeutic strategies and also describes new therapeutic strategies to reduce the cardiovascular burden that is induced by lipids.
Collapse
Affiliation(s)
- Piotr Wańczura
- Department of Cardiology, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Mateusz A Iwański
- English Division Science Club, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
6
|
Nieddu G, Formato M, Lepedda AJ. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int J Mol Sci 2023; 24:15175. [PMID: 37894856 PMCID: PMC10607641 DOI: 10.3390/ijms242015175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Plaque rupture and thrombosis are the most important clinical complications in the pathogenesis of stroke, coronary arteries, and peripheral vascular diseases. The identification of early biomarkers of plaque presence and susceptibility to ulceration could be of primary importance in preventing such life-threatening events. With the improvement of proteomic tools, large-scale technologies have been proven valuable in attempting to unravel pathways of atherosclerotic degeneration and identifying new circulating markers to be utilized either as early diagnostic traits or as targets for new drug therapies. To address these issues, different matrices of human origin, such as vascular cells, arterial tissues, plasma, and urine, have been investigated. Besides, proteomics was also applied to experimental atherosclerosis in order to unveil significant insights into the mechanisms influencing atherogenesis. This narrative review provides an overview of the last twenty years of omics applications to the study of atherogenesis and lesion vulnerability, with particular emphasis on lipoproteomics and vascular tissue proteomics. Major issues of tissue analyses, such as plaque complexity, sampling, availability, choice of proper controls, and lipoproteins purification, will be raised, and future directions will be addressed.
Collapse
Affiliation(s)
| | | | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.N.); (M.F.); Antonio Junior Lepedda (A.J.L.)
| |
Collapse
|
7
|
Molecular Characterization of Plasma HDL, LDL, and VLDL Lipids Cargos from Atherosclerotic Patients with Advanced Carotid Lesions: A Preliminary Report. Int J Mol Sci 2022; 23:ijms232012449. [PMID: 36293312 PMCID: PMC9604033 DOI: 10.3390/ijms232012449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022] Open
Abstract
Carotid atherosclerosis represents a relevant healthcare problem, since unstable plaques are responsible for approximately 15% of neurologic events, namely transient ischemic attack and stroke. Although statins treatment has proven effective in reducing LDL-cholesterol and the onset of acute clinical events, a residual risk may persist suggesting the need for the detection of reliable molecular markers useful for the identification of patients at higher risk regardless of optimal medical therapy. In this regard, several lines of evidence show a relationship among specific biologically active plasma lipids, atherosclerosis, and acute clinical events. We performed a Selected Reaction Monitoring-based High Performance Liquid Chromatography-tandem Mass Spectrometry (SRM-based HPLC-MS/MS) analysis on plasma HDL, LDL, and VLDL fractions purified, by isopycnic salt gradient ultracentrifugation, from twenty-eight patients undergoing carotid endarterectomy, having either a “hard” or a “soft” plaque, with the aim of characterizing the specific lipidomic patterns associated with features of carotid plaque instability. One hundred and thirty lipid species encompassing different lipid (sub)classes were monitored. Supervised multivariate analysis showed that lipids belonging to phosphatidylethanolamine (PE), sphingomyelin (SM), and diacylglycerol (DG) classes mostly contribute to discrimination within each lipoprotein fraction according to the plaque typology. Differential analysis evidenced a significant dysregulation of LDL PE (38:6), SM (32:1), and SM (32:2) between the two groups of patients (adj. p-value threshold = 0.05 and log2FC ≥ |0.58|). Using this approach, some LDL-associated markers of plaque vulnerability have been identified, in line with the current knowledge of the key roles of these phospholipids in lipoprotein metabolism and cardiovascular disease. This proof-of-concept study reports promising results, showing that lipoprotein lipidomics may present a valuable approach for identifying new biomarkers of potential clinical relevance.
Collapse
|
8
|
High-Density Lipoproteins and Cardiovascular Disease: The Good, the Bad, and the Future II. Biomedicines 2022; 10:biomedicines10030620. [PMID: 35327422 PMCID: PMC8945336 DOI: 10.3390/biomedicines10030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
|