1
|
Peng H, Yuan J, Wang Z, Mo B, Wang Y, Wang Y, Wang Q. NR4A3 prevents diabetes induced atrial cardiomyopathy by maintaining mitochondrial energy metabolism and reducing oxidative stress. EBioMedicine 2024; 106:105268. [PMID: 39098108 PMCID: PMC11334830 DOI: 10.1016/j.ebiom.2024.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Atrial cardiomyopathy (ACM) is responsible for atrial fibrillation (AF) and thromboembolic events. Diabetes mellitus (DM) is an important risk factor for ACM. However, the potential mechanism between ACM and DM remains elusive. METHODS Atrial tissue samples were obtained from patients diagnosed with AF or sinus rhythm (SR) to assess alterations in NR4A3 expression, and then two distinct animal models were generated by subjecting Nr4a3-/- mice and WT mice to a high-fat diet (HFD) and Streptozotocin (STZ), while db/db mice were administered AAV9-Nr4a3 or AAV9-ctrl. Subsequently, in vivo and in vitro experiments were conducted to assess the impact of NR4A3 on diabetes-induced atrial remodeling through electrophysiological, biological, and histological analyses. RNA sequencing (RNA-seq) and metabolomics analysis were employed to unravel the downstream mechanisms. FINDINGS The expression of NR4A3 was significantly decreased in atrial tissues of both AF patients and diabetic mice compared to their respective control groups. NR4A3 deficiency exacerbated atrial hypertrophy and atrial fibrosis, and increased susceptibility to pacing-induced AF. Conversely, overexpression of NR4A3 alleviated atrial structural remodeling and reduced AF induction rate. Mechanistically, we confirmed that NR4A3 improves mitochondrial energy metabolism and reduces oxidative stress injury by preserving the transcriptional expression of Sdha, thereby exerting a protective influence on atrial remodeling induced by diabetes. INTERPRETATION Our data confirm that NR4A3 plays a protective role in atrial remodeling caused by diabetes, so it may be a new target for treating ACM. FUNDING This study was supported by the major research program of National Natural Science Foundation of China (NSFC) No: 82370316 (to Q-S. W.), No. 81974041 (to Y-P. W.), and No. 82270447 (to Y-P. W.) and Fundation of Shanghai Hospital Development Center (No. SHDC2022CRD044 to Q-S. W.).
Collapse
Affiliation(s)
- Hong Peng
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiali Yuan
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhengshuai Wang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Binfeng Mo
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yihui Wang
- The Department of Radiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Qunshan Wang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Gagnon J, Caron V, Tremblay A. SUMOylation of nuclear receptor Nor1/NR4A3 coordinates microtubule cytoskeletal dynamics and stability in neuronal cells. Cell Biosci 2024; 14:91. [PMID: 38997783 PMCID: PMC11245793 DOI: 10.1186/s13578-024-01273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Nor1/NR4A3 is a member of the NR4A subfamily of nuclear receptors that play essential roles in regulating gene expression related to development, cell homeostasis and neurological functions. However, Nor1 is still considered an orphan receptor, as its natural ligand remains unclear for mediating transcriptional activation. Yet other activation signals may modulate Nor1 activity, although their precise role in the development and maintenance of the nervous system remains elusive. METHODS We used transcriptional reporter assays, gene expression profiling, protein turnover measurement, and cell growth assays to assess the functional relevance of Nor1 and SUMO-defective variants in neuronal cells. SUMO1 and SUMO2 conjugation to Nor1 were assessed by immunoprecipitation. Tubulin stability was determined by acetylation and polymerization assays, and live-cell fluorescent microscopy. RESULTS Here, we demonstrate that Nor1 undergoes SUMO1 conjugation at Lys-89 within a canonical ψKxE SUMOylation motif, contributing to the complex pattern of Nor1 SUMOylation, which also includes Lys-137. Disruption of Lys-89, thereby preventing SUMO1 conjugation, led to reduced Nor1 transcriptional competence and protein stability, as well as the downregulation of genes involved in cell growth and metabolism, such as ENO3, EN1, and CFLAR, and in microtubule cytoskeleton dynamics, including MAP2 and MAPT, which resulted in reduced survival of neuronal cells. Interestingly, Lys-89 SUMOylation was potentiated in response to nocodazole, a microtubule depolymerizing drug, although this was insufficient to rescue cells from microtubule disruption despite enhanced Nor1 gene expression. Instead, Lys-89 deSUMOylation reduced the expression of microtubule-severing genes like KATNA1, SPAST, and FIGN, and enhanced α-tubulin cellular levels, acetylation, and microfilament organization, promoting microtubule stability and resistance to nocodazole. These effects contrasted with Lys-137 SUMOylation, suggesting distinct regulatory mechanisms based on specific Nor1 input SUMOylation signals. CONCLUSIONS Our study provides novel insights into Nor1 transcriptional signaling competence and identifies a hierarchical mechanism whereby selective Nor1 SUMOylation may govern neuronal cytoskeleton network dynamics and resistance against microtubule disturbances, a condition strongly associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan Gagnon
- Research Center, CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Québec, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Véronique Caron
- Research Center, CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Québec, H3T 1C5, Canada
| | - André Tremblay
- Research Center, CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Québec, H3T 1C5, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montréal, Québec, H3T 1J4, Canada.
- Centre de Recherche en Reproduction et Fertilité, University of Montreal, Saint-Hyacinthe, Québec, J2S 7C6, Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Montreal, Montréal, Québec, H3T 1J4, Canada.
| |
Collapse
|
3
|
Hong H, Su J, Huang C, Lu X, Cui Z. Comprehensive insights into the function and molecular and pharmacological regulation of neuron-derived orphan receptor 1, an orphan receptor. Front Pharmacol 2022; 13:981490. [PMID: 36110555 PMCID: PMC9468329 DOI: 10.3389/fphar.2022.981490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Neuron-derived orphan receptor 1 (NOR1), also called nuclear receptor subfamily 4 group A member 3 (NR4A3), is a nuclear receptor belonging to the NR4A family. Since no endogenous ligand has been identified to date, NOR1 is also referred to as an orphan receptor. NOR1 is expressed in a variety of cells and tissues, including neurons, vascular smooth muscle cells, T lymphocytes, dendritic cells, tumor cells, heart, liver, and pancreas. Because NOR1 was first identified in apoptotic neurons, it is functionally associated with the regulation of cell migration and the growth of neuronal synapses. In-depth studies have shown that NOR1 can be edited by the immediate early gene and functions as a transcription factor. NOR1 has been shown to be rapidly induced by a number of stimulants including growth factors, fatty acids, and neurotransmitters. Elevated NOR1 levels may be involved in a number of pathophysiological processes. These include regulation of cellular apoptosis and regeneration, neuron formation, contextual fearing memory, inflammation, vascular smooth muscle proliferation, insulin secretion, and tumor development, whereby NOR1 mediates the pathogenesis of numerous diseases such as cerebral ischemia, depression, post-traumatic stress disorder, atherosclerosis, abdominal aortic aneurysm, cardiac hypertrophy, diabetes, osteoarthritis, rheumatoid arthritis, and cancer. However, to date, comprehensive insights into the function of NOR1 are not available in sources published online. In this review, we provide a brief overview of the function and molecular and pharmacological regulation of NOR1 in various pathological or physiological conditions to advance the development of NOR1 as a novel target for disease treatment.
Collapse
Affiliation(s)
- Hongxiang Hong
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jianbin Su
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhiming Cui,
| |
Collapse
|
4
|
Ashraf S, Taegtmeyer H, Harmancey R. Prolonged cardiac NR4A2 activation causes dilated cardiomyopathy in mice. Basic Res Cardiol 2022; 117:33. [PMID: 35776225 PMCID: PMC9249728 DOI: 10.1007/s00395-022-00942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
Transcription factors play a fundamental role in cardiovascular adaptation to stress. Nuclear receptor subfamily 4 group A member 2 (NR4A2; NURR1) is an immediate-early gene and transcription factor with a versatile role throughout many organs. In the adult mammalian heart, and particularly in cardiac myocytes, NR4A2 is strongly up-regulated in response to beta-adrenergic stimulation. The physiologic implications of this increase remain unknown. In this study, we aimed to interrogate the consequences of cardiac NR4A2 up-regulation under normal conditions and in response to pressure overload. In mice, tamoxifen-dependent, cardiomyocyte-restricted overexpression of NR4A2 led to cardiomyocyte hypertrophy, left ventricular dilation, heart failure, and death within 40 days. Chronic NR4A2 induction also precipitated cardiac decompensation during transverse aortic constriction (TAC)-induced pressure overload. Mechanistically, NR4A2 caused adult cardiac myocytes to return to a fetal-like phenotype, with a switch to glycolytic metabolism and disassembly of sarcomeric structures. NR4A2 also re-activated cell cycle progression and stimulated DNA replication and karyokinesis but failed to induce cytokinesis, thereby promoting multinucleation of cardiac myocytes. Activation of cell cycle checkpoints led to induction of an apoptotic response which ultimately resulted in excessive loss of cardiac myocytes and impaired left ventricular contractile function. In summary, myocyte-specific overexpression of NR4A2 in the postnatal mammalian heart results in increased cell cycle re-entry and DNA replication but does not result in cardiac myocyte division. Our findings expose a novel function for the nuclear receptor as a critical regulator in the self-renewal of the cardiac myocyte and heart regeneration.
Collapse
Affiliation(s)
- Sadia Ashraf
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Romain Harmancey
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Martínez-González J, Cañes L, Alonso J, Ballester-Servera C, Rodríguez-Sinovas A, Corrales I, Rodríguez C. NR4A3: A Key Nuclear Receptor in Vascular Biology, Cardiovascular Remodeling, and Beyond. Int J Mol Sci 2021; 22:ijms222111371. [PMID: 34768801 PMCID: PMC8583700 DOI: 10.3390/ijms222111371] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
The mechanisms committed in the activation and response of vascular and inflammatory immune cells play a major role in tissue remodeling in cardiovascular diseases (CVDs) such as atherosclerosis, pulmonary arterial hypertension, and abdominal aortic aneurysm. Cardiovascular remodeling entails interrelated cellular processes (proliferation, survival/apoptosis, inflammation, extracellular matrix (ECM) synthesis/degradation, redox homeostasis, etc.) coordinately regulated by a reduced number of transcription factors. Nuclear receptors of the subfamily 4 group A (NR4A) have recently emerged as key master genes in multiple cellular processes and vital functions of different organs, and have been involved in a variety of high-incidence human pathologies including atherosclerosis and other CVDs. This paper reviews the major findings involving NR4A3 (Neuron-derived Orphan Receptor 1, NOR-1) in the cardiovascular remodeling operating in these diseases.
Collapse
Affiliation(s)
- José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
- Correspondence: (J.M.-G.); (C.R.); Tel.: +34-93-5565896 (J.M.-G.); +34-93-5565897 (C.R.)
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Antonio Rodríguez-Sinovas
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Irene Corrales
- Laboratorio de Coagulopatías Congénitas, Banc de Sang i Teixits (BST), 08005 Barcelona, Spain;
- Medicina Transfusional, Vall d’Hebron Institut de Recerca-Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
- Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), 08041 Barcelona, Spain
- Correspondence: (J.M.-G.); (C.R.); Tel.: +34-93-5565896 (J.M.-G.); +34-93-5565897 (C.R.)
| |
Collapse
|