1
|
Lin X, Jiao R, Cui H, Yan X, Zhang K. Physiochemically and Genetically Engineered Bacteria: Instructive Design Principles and Diverse Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403156. [PMID: 38864372 PMCID: PMC11321697 DOI: 10.1002/advs.202403156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Indexed: 06/13/2024]
Abstract
With the comprehensive understanding of microorganisms and the rapid advances of physiochemical engineering and bioengineering technologies, scientists are advancing rationally-engineered bacteria as emerging drugs for treating various diseases in clinical disease management. Engineered bacteria specifically refer to advanced physiochemical or genetic technologies in combination with cutting edge nanotechnology or physical technologies, which have been validated to play significant roles in lysing tumors, regulating immunity, influencing the metabolic pathways, etc. However, there has no specific reviews that concurrently cover physiochemically- and genetically-engineered bacteria and their derivatives yet, let alone their distinctive design principles and various functions and applications. Herein, the applications of physiochemically and genetically-engineered bacteria, and classify and discuss significant breakthroughs with an emphasis on their specific design principles and engineering methods objective to different specific uses and diseases beyond cancer is described. The combined strategies for developing in vivo biotherapeutic agents based on these physiochemically- and genetically-engineered bacteria or bacterial derivatives, and elucidated how they repress cancer and other diseases is also underlined. Additionally, the challenges faced by clinical translation and the future development directions are discussed. This review is expected to provide an overall impression on physiochemically- and genetically-engineered bacteria and enlighten more researchers.
Collapse
Affiliation(s)
- Xia Lin
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Rong Jiao
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Haowen Cui
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Xuebing Yan
- Department of OncologyAffiliated Hospital of Yangzhou University. No.368Hanjiang Road, Hanjiang DistrictYangzhouJiangsu Province225012China
| | - Kun Zhang
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| |
Collapse
|
2
|
Negrut N, Menegas G, Kampioti S, Bourelou M, Kopanyi F, Hassan FD, Asowed A, Taleouine FZ, Ferician A, Marian P. The Multisystem Impact of Long COVID: A Comprehensive Review. Diagnostics (Basel) 2024; 14:244. [PMID: 38337760 PMCID: PMC10855167 DOI: 10.3390/diagnostics14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: COVID-19 was responsible for the latest pandemic, shaking and reshaping healthcare systems worldwide. Its late clinical manifestations make it linger in medical memory as a debilitating illness over extended periods. (2) Methods: the recent literature was systematically analyzed to categorize and examine the symptomatology and pathophysiology of Long COVID across various bodily systems, including pulmonary, cardiovascular, gastrointestinal, neuropsychiatric, dermatological, renal, hematological, and endocrinological aspects. (3) Results: The review outlines the diverse clinical manifestations of Long COVID across multiple systems, emphasizing its complexity and challenges in diagnosis and treatment. Factors such as pre-existing conditions, initial COVID-19 severity, vaccination status, gender, and age were identified as influential in the manifestation and persistence of Long COVID symptoms. This condition is highlighted as a debilitating disease capable of enduring over an extended period and presenting new symptoms over time. (4) Conclusions: Long COVID emerges as a condition with intricate multi-systemic involvement, complicating its diagnosis and treatment. The findings underscore the necessity for a nuanced understanding of its diverse manifestations to effectively manage and address the evolving nature of this condition over time.
Collapse
Affiliation(s)
- Nicoleta Negrut
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Georgios Menegas
- Department of Orthopaedics, Achillopouleio General Hospital of Volos, Polymeri 134, 38222 Volos, Greece;
| | - Sofia Kampioti
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania (M.B.); (F.D.H.)
| | - Maria Bourelou
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania (M.B.); (F.D.H.)
| | - Francesca Kopanyi
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania (M.B.); (F.D.H.)
| | - Faiso Dahir Hassan
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania (M.B.); (F.D.H.)
| | - Anamaria Asowed
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania (M.B.); (F.D.H.)
| | - Fatima Zohra Taleouine
- University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK;
| | - Anca Ferician
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.F.)
| | - Paula Marian
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.F.)
| |
Collapse
|
3
|
Ramli S, Wu YS, Batumalaie K, Guad RM, Choy KW, Kumar A, Gopinath SCB, Rahman Sarker MM, Subramaniyan V, Sekar M, Fuloria NK, Fuloria S, Chinni SV, Ramachawolran G. Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery. Microorganisms 2023; 11:1000. [PMID: 37110423 PMCID: PMC10142625 DOI: 10.3390/microorganisms11041000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Coronavirus disease (COVID-19) has killed millions of people since first reported in Wuhan, China, in December 2019. Intriguingly, Withania somnifera (WS) has shown promising antiviral effects against numerous viral infections, including SARS-CoV and SARS-CoV-2, which are contributed by its phytochemicals. This review focused on the updated testing of therapeutic efficacy and associated molecular mechanisms of WS extracts and their phytochemicals against SARS-CoV-2 infection in preclinical and clinical studies with the aim to develop a long-term solution against COVID-19. It also deciphered the current use of the in silico molecular docking approach in developing potential inhibitors from WS targeting SARS-CoV-2 and host cell receptors that may aid the development of targeted therapy against SARS-CoV-2 ranging from prior to viral entry until acute respiratory distress syndrome (ARDS). This review also discussed nanoformulations or nanocarriers in achieving effective WS delivery to enhance its bioavailability and therapeutic efficacy, consequently preventing the emergence of drug resistance, and eventually therapeutic failure.
Collapse
Affiliation(s)
- Suaidah Ramli
- Department of Pharmacy, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Malaysia;
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, Johor Bahru 81750, Malaysia;
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia;
| | - Ashok Kumar
- Department of Internal Medicine, Division of Pulmonary, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA;
| | - Subash C. B. Gopinath
- Centre of Excellence (CoE), Faculty of Chemical Engineering & Technology & Micro System Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia;
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
- Health Med Science Research Network, 3/1, Block F, Lalmatia, Dhaka 1207, Bangladesh
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia;
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Subang Jaya 42610, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia;
| | - Neeraj Kumar Fuloria
- Centre of Excellence for Biomaterials Engineering & Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia;
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Malaysia;
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Malaysia;
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai 600077, India
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, No 4, Jalan Sepoy Lines, Georgetown 10450, Malaysia
| |
Collapse
|
4
|
Lu LW, Gao Y, Quek SY, Foster M, Eason CT, Liu M, Wang M, Chen JH, Chen F. The landscape of potential health benefits of carotenoids as natural supportive therapeutics in protecting against Coronavirus infection. Biomed Pharmacother 2022; 154:113625. [PMID: 36058151 PMCID: PMC9428603 DOI: 10.1016/j.biopha.2022.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease-2019 (COVID-19) pandemic urges researching possibilities for prevention and management of the effects of the virus. Carotenoids are natural phytochemicals of anti-oxidant, anti-inflammatory and immunomodulatory properties and may exert potential in aiding in combatting the pandemic. This review presents the direct and indirect evidence of the health benefits of carotenoids and derivatives based on in vitro and in vivo studies, human clinical trials and epidemiological studies and proposes possible mechanisms of action via which carotenoids may have the capacity to protect against COVID-19 effects. The current evidence provides a rationale for considering carotenoids as natural supportive nutrients via antioxidant activities, including scavenging lipid-soluble radicals, reducing hypoxia-associated superoxide by activating antioxidant enzymes, or suppressing enzymes that produce reactive oxygen species (ROS). Carotenoids may regulate COVID-19 induced over-production of pro-inflammatory cytokines, chemokines, pro-inflammatory enzymes and adhesion molecules by nuclear factor kappa B (NF-κB), renin-angiotensin-aldosterone system (RAS) and interleukins-6- Janus kinase-signal transducer and activator of transcription (IL-6-JAK/STAT) pathways and suppress the polarization of pro-inflammatory M1 macrophage. Moreover, carotenoids may modulate the peroxisome proliferator-activated receptors γ by acting as agonists to alleviate COVID-19 symptoms. They also may potentially block the cellular receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human angiotensin-converting enzyme 2 (ACE2). These activities may reduce the severity of COVID-19 and flu-like diseases. Thus, carotenoid supplementation may aid in combatting the pandemic, as well as seasonal flu. However, further in vitro, in vivo and in particular long-term clinical trials in COVID-19 patients are needed to evaluate this hypothesis.
Collapse
|
5
|
Islam MR, Rahman MM, Ahasan MT, Sarkar N, Akash S, Islam M, Islam F, Aktar MN, Saeed M, Harun-Or-Rashid M, Hosain MK, Rahaman MS, Afroz S, Bibi S, Rahman MH, Sweilam SH. The impact of mucormycosis (black fungus) on SARS-CoV-2-infected patients: at a glance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69341-69366. [PMID: 35986111 PMCID: PMC9391068 DOI: 10.1007/s11356-022-22204-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 05/28/2023]
Abstract
The emergence of various diseases during the COVID-19 pandemic made health workers more attentive, and one of the new pathogens is the black fungus (mucormycosis). As a result, millions of lives have already been lost. As a result of the mutation, the virus is constantly changing its traits, including the rate of disease transmission, virulence, pathogenesis, and clinical signs. A recent analysis revealed that some COVID-19 patients were also coinfected with a fungal disease called mucormycosis (black fungus). India has already categorized the COVID-19 patient black fungus outbreak as an epidemic. Only a few reports are observed in other countries. The immune system is weakened by COVID-19 medication, rendering it more prone to illnesses like black fungus (mucormycosis). COVID-19, which is caused by a B.1.617 strain of the SARS-CoV-2 virus, has been circulating in India since April 2021. Mucormycosis is a rare fungal infection induced by exposure to a fungus called mucormycete. The most typically implicated genera are Mucor rhyzuprhizopusdia and Cunninghamella. Mucormycosis is also known as zygomycosis. The main causes of infection are soil, dumping sites, ancient building walls, and other sources of infection (reservoir words "mucormycosis" and "zygomycosis" are occasionally interchanged). Zygomycota, on the other hand, has been identified as polyphyletic and is not currently included in fungal classification systems; also, zygomycosis includes Entomophthorales, but mucormycosis does not. This current review will be focused on the etiology and virulence factors of COVID-19/mucormycosis coinfections in COVID-19-associated mucormycosis patients, as well as their prevalence, diagnosis, and treatment.
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Tanjimul Ahasan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Most. Nazmin Aktar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Kawsar Hosain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Sadia Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-E-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 China
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213 Bangladesh
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426 Korea
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942 Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829 Egypt
| |
Collapse
|
6
|
Jalal K, Khan K, Basharat Z, Abbas MN, Uddin R, Ali F, Khan SA, Hassan SSU. Reverse vaccinology approach for multi-epitope centered vaccine design against delta variant of the SARS-CoV-2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60035-60053. [PMID: 35414157 PMCID: PMC9005162 DOI: 10.1007/s11356-022-19979-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/25/2022] [Indexed: 06/01/2023]
Abstract
The ongoing COVID-19 outbreak, initially identified in Wuhan, China, has impacted people all over the globe and new variants of concern continue to threaten hundreds of thousands of people. The delta variant (first reported in India) is currently classified as one of the most contagious variants of SARS-CoV-2. It is estimated that the transmission rate of delta variant is 225% times faster than the alpha variant, and it is causing havoc worldwide (especially in the USA, UK, and South Asia). The mutations found in the spike protein of delta variant make it more infective than other variants in addition to ruining the global efficacy of available vaccines. In the current study, an in silico reverse vaccinology approach was applied for multi-epitope vaccine construction against the spike protein of delta variant, which could induce an immune response against COVID-19 infection. Non-toxic, highly conserved, non-allergenic and highly antigenic B-cell, HTL, and CTL epitopes were identified to minimize adverse effects and maximize the efficacy of chimeric vaccines that could be developed from these epitopes. Finally, V1 vaccine construct model was shortlisted and 3D modeling was performed by refinement, docking against HLAs and TLR4 protein, simulation and in silico expression. In silico evaluation showed that the designed chimeric vaccine could elicit an immune response (i.e., cell-mediated and humoral) identified through immune simulation. This study could add to the efforts of overcoming global burden of COVID-19 particularly the variants of concern.
Collapse
Affiliation(s)
- Khurshid Jalal
- International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS University of Karachi, Karachi, Pakistan
| | | | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Fawad Ali
- Department of Pharmacy, KUST, Khyber Pakhtunkhwa, Kohat, 26000, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, KUST, Khyber Pakhtunkhwa, Kohat, 26000, Pakistan
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
7
|
Imam B, Rahmatinia M, Shahsavani A, Khodagholi F, Hopke PK, Bazazzpour S, Hadei M, Yarahmadi M, Abdollahifar MA, Torkmahalleh MA, Kermani M, Ilkhani S, MirBehbahani SH. Autism-like symptoms by exposure to air pollution and valproic acid-induced in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59263-59286. [PMID: 35384534 DOI: 10.1007/s11356-022-19865-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Exposure to air pollution during prenatal or neonatal periods is associated with autism spectrum disorder (ASD) according to epidemiology studies. Furthermore, prenatal exposure to valproic acid (VPA) has also been found to be associated with an increased prevalence of ASD. To assess the association between simultaneous exposure to VPA and air pollutants, seven exposure groups of rats were included in current study (PM2.5 and gaseous pollutants exposed - high dose of VPA (PGE-high); PM2.5 and gaseous pollutants exposed - low dose of VPA (PGE-low); gaseous pollutants only exposed - high dose of VPA (GE-high); gaseous pollutants only exposed - low dose of VPA (GE-low); clean air exposed - high dose of VPA (CAE-high); clean air exposed - low dose of VPA (CAE-low) and clean air exposed (CAE)). The pollution-exposed rats were exposed to air pollutants from embryonic day (E0) to postnatal day 42 (PND42). In all the induced groups, decreased oxidative stress biomarkers, decreased oxytocin receptor (OXTR) levels, and increased the expression of interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor alpha (TNF-α) were found. The volumes of the cerebellum, hippocampus, striatum, and prefrontal decreased in all induced groups in comparison to CAE. Additionally, increased numerical density of glial cells and decreased of numerical density of neurons were found in all induced groups. Results show that simultaneous exposure to air pollution and VPA can cause ASD-related behavioral deficits and air pollution reinforced the mechanism of inducing ASD ̉s in VPA-induced rat model of autism.
Collapse
Affiliation(s)
- Bahran Imam
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rahmatinia
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA
| | - Shahriyar Bazazzpour
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yarahmadi
- Environmental and Occupational Health Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Amouei Torkmahalleh
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Abbas G, Yu J, Li G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front Vet Sci 2022; 9:933274. [PMID: 35937298 PMCID: PMC9353128 DOI: 10.3389/fvets.2022.933274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The growth of poultry farming has enabled higher spread of infectious diseases and their pathogens among different kinds of birds, such as avian infectious bronchitis virus (IBV) and avian influenza virus (AIV). IBV and AIV are a potential source of poultry mortality and economic losses. Furthermore, some pathogens have the ability to cause zoonotic diseases and impart human health problems. Antiviral treatments that are used often lead to virus resistance along with the problems of side effects, recurrence, and latency of viruses. Though target hosts are being vaccinated, the constant emergence and re-emergence of strains of these viruses cause disease outbreaks. The pharmaceutical industry is gradually focusing on plant extracts to develop novel herbal drugs to have proper antiviral capabilities. Natural therapeutic agents developed from herbs, essential oils (EO), and distillation processes deliver a rich source of amalgams to discover and produce new antiviral drugs. The mechanisms involved have elaborated how these natural therapeutics agents play a major role during virus entry and replication in the host and cause inhibition of viral pathogenesis. Nanotechnology is one of the advanced techniques that can be very useful in diagnosing and controlling infectious diseases in poultry. In general, this review covers the issue of the poultry industry situation, current infectious diseases, mainly IB and AI control measures and, in addition, the setup of novel therapeutics using plant extracts and the use of nanotechnology information that may help to control these diseases.
Collapse
|
9
|
Karthika C, Najda A, Klepacka J, Zehravi M, Akter R, Akhtar MF, Saleem A, Al-Shaeri M, Mondal B, Ashraf GM, Tagde P, Ramproshad S, Ahmad Z, Khan FS, Rahman MH. Involvement of Resveratrol against Brain Cancer: A Combination Strategy with a Pharmaceutical Approach. Molecules 2022; 27:4663. [PMID: 35889532 PMCID: PMC9320031 DOI: 10.3390/molecules27144663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
A brain tumor (BT) is a condition in which there is growth or uncontrolled development of the brain cells, which usually goes unrecognized or is diagnosed at the later stages. Since the mechanism behind BT is not clear, and the various physiological conditions are difficult to diagnose, the success rate of BT is not very high. This is the central issue faced during drug development and clinical trials with almost all types of neurodegenerative disorders. In the first part of this review, we focus on the concept of brain tumors, their barriers, and the types of delivery possible to target the brain cells. Although various treatment methods are available, they all have side effects or toxic effects. Hence, in the second part, a correlation was made between the use of resveratrol, a potent antioxidant, and its advantages for brain diseases. The relationship between brain disease and the blood-brain barrier, multi-drug resistance, and the use of nanomedicine for treating brain disorders is also mentioned. In short, a hypothetical concept is given with a background investigation into the use of combination therapy with resveratrol as an active ingredient, the possible drug delivery, and its formulation-based approach.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20280 Lublin, Poland
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10719 Olsztyn, Poland;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Riphah International University, Lahore 54950, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| |
Collapse
|
10
|
Impact on the Nutritional Status and Inflammation of Patients with Cancer Hospitalized after the SARS-CoV-2 Lockdown. Nutrients 2022; 14:nu14132754. [PMID: 35807934 PMCID: PMC9268830 DOI: 10.3390/nu14132754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Many studies have demonstrated that malnutrition has a negative impact on quality of life and mortality in patients with cancer. During the SARS-CoV-2 lockdown, dietary intake changes were detected in the Spanish population, reflecting an increase in the consumption of fruit, bread, flours, and eggs. The present study analyzed the nutritional status of 728 patients with cancer admitted once the SARS-CoV-2 lockdown finished, comparing it with the previous year as well as with mortality rates. The Malnutrition Universal Screening Tool (MUST) was applied in the first 24 h after admission. Age, gender, days of stay, circulating concentrations of albumin, cholesterol, C-reactive protein (CRP), lymphocytes, prealbumin, and mortality data were analyzed. Patients with cancer admitted between June and December of 2020 exhibited no statistical differences in BMI, age, or gender as compared to patients admitted in 2019. Statistically significant differences in nutritional status (p < 0.05), albumin (p < 0.001), and CRP (p = 0.005) levels regarding lockdown were observed in relation with a small non-significant reduction in mortality. In conclusion, following the SARS-CoV-2 lockdown, an improved nutritional status in cancer patients at admission was observed with a decrease in the percentage of weight loss and CRP levels together with an increase in albumin levels compared to oncological patients admitted the previous year.
Collapse
|
11
|
Mollik M, Rahman MH, Al-Shaeri M, Ashraf GM, Alexiou A, Gafur MA. Isolation, characterization and in vitro antioxidant activity screening of pure compound from black pepper (Piper nigrum). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52220-52232. [PMID: 35260981 DOI: 10.1007/s11356-022-19403-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The present study's aims of isolation, characterization and in vitro antioxidant activity screening of pure compound from Black pepper (Piper nigrum) were investigated. Nowadays, scientific exploration of medicinal plants from natural sources has become the prime concern globally. All the crude drugs that have been isolated from natural plant origin (herbs, root, stem, bark, fruit and flower) have great significance in drug discovery as well as a lead compound to demonstrate great synergistic effect on pharmacology. For this research work, methanol was selected as a mother solvent, and the crude methanolic extract of black pepper was partitioned in between the solvent chloroform and di-ethyl-ether. A crystal fraction has been eradicated from the chloroform extract of black pepper (Piper nigrum). The crystal compound (C1) was isolated and purified by using thin layer chromatography (TLC) and recrystallization technique. The purified crystal compound (C1) isolated from black pepper possesses a strong in vitro antioxidant activity. The IC50 value of crystal compound (C1) was 4.1 µg/ml where the standard one had 3.2 µg/ml. Physical, phytochemical and chromatographical characterization of pure crystal compound (C1) has been explored, and from the analysis of all characteristics, it was found that, crystal compound (C1) might have resembling features of the standard Piperine of black pepper. The overall research work was really remarkable and introduced a convenient way of isolating pure compound from the natural source which will be a great referential resource in isolating crude drugs for future analysis.
Collapse
Affiliation(s)
- Murshida Mollik
- Department of Pharmacy, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Department of Pharmacy, Southeast University, Banani Street, Dhaka, 1213, Bangladesh.
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, NSW, Hebersham, Australia
- AFNP Med Austria, Haidingergasse 29, 1030, Wien, Austria
| | - Md Abdul Gafur
- Department of Pharmacy, Rajshahi University, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
12
|
Maniruzzaman M, Islam MM, Ali MH, Mukerjee N, Maitra S, Kamal MA, Ghosh A, Castrosanto MA, Alexiou A, Ashraf GM, Tagde P, Rahman MH. COVID-19 diagnostic methods in developing countries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51384-51397. [PMID: 35619009 PMCID: PMC9135468 DOI: 10.1007/s11356-022-21041-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
Abstract
COVID-19 has become one of the few leading causes of death and has evolved into a pandemic that disrupts everyone's routine, and balanced way of life worldwide, and will continue to do so. To bring an end to this pandemic, scientists had put their all effort into discovering the vaccine for SARS-CoV-2 infection. For their dedication, now, we have a handful of COVID-19 vaccines. Worldwide, millions of people are at risk due to the current pandemic of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Despite the lack of clinically authorized antiviral medications and vaccines for COVID-19, clinical trials of many recognized antiviral agents, their combination, and vaccine development in patients with confirmed COVID-19 are still ongoing. This discovery gave us a chance to get immune to this disease worldwide and end the pandemic. However, the unexpected capacity of mutation of the SARS-CoV-2 virus makes it difficult, like the recent SAS-CoV-2 Omicron variant. Therefore, there is a great necessity to spread the vaccination programs and prevent the spread of this dreadful epidemic by identifying and isolating afflicted patients. Furthermore, several COVID-19 tests are thought to be expensive, time-consuming, and require the use of adequately qualified persons to be carried out efficiently. In addition, we also conversed about how the various COVID-19 testing methods can be implemented for the first time in a developing country and their cost-effectiveness, accuracy, human resources requirements, and laboratory facilities.
Collapse
Affiliation(s)
- Md Maniruzzaman
- Department of Pharmacy, Faculty of Science & Engineering, Varendra University, Rajshahi, 6204, Bangladesh
| | | | - Md Hazrat Ali
- Department of Pharmacy, Faculty of Science & Engineering, International Islamic University Chittagong, Sitakundu, Chittagong, 4318, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal, Kolkata, 700118, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Swastika Maitra
- Department of Microbiology, Adamas University, Kolkata, India
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, 781014, Assam, India
| | - Melvin A Castrosanto
- Institute of Chemistry, University of the Philippines, 4030, Los Banos, Philippines
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- AFNP Med, Vienna, Austria
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju, 26426, Korea.
| |
Collapse
|
13
|
Rahman MM, Islam MR, Shohag S, Hossain ME, Shah M, Shuvo SK, Khan H, Chowdhury MAR, Bulbul IJ, Hossain MS, Sultana S, Ahmed M, Akhtar MF, Saleem A, Rahman MH. Multifaceted role of natural sources for COVID-19 pandemic as marine drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46527-46550. [PMID: 35507224 PMCID: PMC9065247 DOI: 10.1007/s11356-022-20328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/14/2022] [Indexed: 05/05/2023]
Abstract
COVID-19, which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread over the world, posing a global health concern. The ongoing epidemic has necessitated the development of novel drugs and potential therapies for patients infected with SARS-CoV-2. Advances in vaccination and medication development, no preventative vaccinations, or viable therapeutics against SARS-CoV-2 infection have been developed to date. As a result, additional research is needed in order to find a long-term solution to this devastating condition. Clinical studies are being conducted to determine the efficacy of bioactive compounds retrieved or synthesized from marine species starting material. The present study focuses on the anti-SARS-CoV-2 potential of marine-derived phytochemicals, which has been investigated utilizing in in silico, in vitro, and in vivo models to determine their effectiveness. Marine-derived biologically active substances, such as flavonoids, tannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, and lipids, can affect SARS-CoV-2 during the viral particle's penetration and entry into the cell, replication of the viral nucleic acid, and virion release from the cell; they can also act on the host's cellular targets. COVID-19 has been proven to be resistant to several contaminants produced from marine resources. This paper gives an overview and summary of the various marine resources as marine drugs and their potential for treating SARS-CoV-2. We discussed at numerous natural compounds as marine drugs generated from natural sources for treating COVID-19 and controlling the current pandemic scenario.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Gopalganj, Bangladesh
| | - Md Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Hosneara Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | | | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea.
| |
Collapse
|
14
|
Shah M, Murad W, Mubin S, Ullah O, Rehman NU, Rahman MH. Multiple health benefits of curcumin and its therapeutic potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43732-43744. [PMID: 35441996 DOI: 10.1007/s11356-022-20137-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Turmeric, or Curcuma longa as it is formally named, is a multifunctional plant with numerous names. It was dubbed "the golden spice" and "Indian saffron" not only for its magnificent yellow color, but also for its culinary use. Turmeric has been utilized in traditional medicine since the dawn of mankind. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which are all curcuminoids, make up turmeric. Although there have been significant advancements in cancer treatment, cancer death and incidence rates remain high. As a result, there is an increasing interest in discovering more effective and less hazardous cancer treatments. Curcumin is being researched for its anti-inflammatory, anti-cancer, anti-metabolic syndrome, neuroprotective, and antibacterial properties. Turmeric has long been used as a home remedy for coughs, sore throats, and other respiratory problems. As a result, turmeric and its compounds have the potential to be used in modern medicine to cure a variety of diseases. In this current review, we highlighted therapeutic potential of curcumin and its multiple health benefits on various diseases.
Collapse
Affiliation(s)
- Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Oman
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra, 21310, Pakistan
| | - Obaid Ullah
- Department of Chemistry, University of Malakand, Chakdara, 18800, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Oman.
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea
| |
Collapse
|
15
|
Piazza M, Di Cicco M, Pecoraro L, Ghezzi M, Peroni D, Comberiati P. Long COVID-19 in Children: From the Pathogenesis to the Biologically Plausible Roots of the Syndrome. Biomolecules 2022; 12:556. [PMID: 35454144 PMCID: PMC9024951 DOI: 10.3390/biom12040556] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Long Coronavirus disease-19 (COVID-19) refers to the persistence of symptoms related to the infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). This condition is described as persistent and can manifest in various combinations of signs and symptoms, such as fatigue, headache, dyspnea, depression, cognitive impairment, and altered perception of smells and tastes. Long COVID-19 may be due to long-term damage to different organs-such as lung, brain, kidney, and heart-caused by persisting viral-induced inflammation, immune dysregulation, autoimmunity, diffuse endothelial damage, and micro thrombosis. In this review, we discuss the potential and biologically plausible role of some vitamins, essential elements, and functional foods based on the hypothesis that an individual's dietary status may play an important adjunctive role in protective immunity against COVID-19 and possibly against its long-term consequences.
Collapse
Affiliation(s)
- Michele Piazza
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37126 Verona, Italy; (M.P.); (L.P.)
| | - Maria Di Cicco
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (P.C.)
| | - Luca Pecoraro
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37126 Verona, Italy; (M.P.); (L.P.)
| | - Michele Ghezzi
- Allergology and Pneumology Unit, V. Buzzi Children’s Hospital, 20154 Milan, Italy;
| | - Diego Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (P.C.)
| | - Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (P.C.)
| |
Collapse
|
16
|
Boiko DI, Skrypnikov AM, Shkodina AD, Hasan MM, Ashraf GM, Rahman MH. Circadian rhythm disorder and anxiety as mental health complications in post-COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28062-28069. [PMID: 34988815 PMCID: PMC8730477 DOI: 10.1007/s11356-021-18384-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 04/12/2023]
Abstract
In 2020, the world gained dramatic experience of the development of the 2019 coronavirus disease pandemic (COVID-19) caused by severe acute respiratory syndrome 2 (SARS-CoV-2). Recent researches notice an increasing prevalence of anxiety and circadian rhythm disorders during COVID-19 pandemic. The aim of the study was describing clinical features of circadian rhythm disorders and the level of anxiety in persons who have had COVID-19. We have conducted a cohort retrospective study that included 278 patients who were divided into 2 study groups according to medical history: group 1 includes patients with a history of COVID-19; group 2 consists of patients who did not have clinically confirmed COVID-19 and are therefore considered not to have had this disease. To objectify circadian rhythm disorders, they were verified in accordance with the criteria of the International Classification of Sleep Disorders-3. The level of anxiety was assessed by the State-Trait Anxiety Inventory. The most common circadian rhythm disorders were sleep phase shifts. We found that COVID-19 in the anamnesis caused a greater predisposition of patients to the development of circadian rhythm disorders, in particular delayed sleep phase disorder. In addition, it was found that after COVID-19 patients have increased levels of both trait and state anxiety. In our study, it was the first time that relationships between post-COVID-19 anxiety and circadian rhythm disorders had been indicated. Circadian rhythm disorders are associated with increased trait and state anxiety, which may indicate additional ways to correct post-COVID mental disorders and their comorbidity with sleep disorders.
Collapse
Affiliation(s)
- Dmytro I. Boiko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Andrii M. Skrypnikov
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Anastasiia D. Shkodina
- Department of Neurological Diseases With Neurosurgery and Medical Genetics, Poltava State Medical University, Poltava, Ukraine
- Neurological Department, Municipal Enterprise, “City Clinical Hospital of Poltava City Council”, Poltava, Ukraine
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, MawlanaBhashani Science and Technology University, Tangail, Bangladesh
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213 Bangladesh
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426 Gangwon-do Korea
| |
Collapse
|
17
|
Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. Int J Mol Sci 2022; 23:ijms23052856. [PMID: 35269998 PMCID: PMC8911433 DOI: 10.3390/ijms23052856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most common types of cancer among women globally. It is caused by mutations in the estrogen/progesterone receptors and conventional treatment methods are commonly utilized. About 70–80 percent of individuals with the early-stage non-metastatic disease may be cured. Conventional treatment is far less than the optimal ratio, as demonstrated through the high mortality rate of women with this cancer. However, conventional treatment methods like surgery, radiotherapy, and chemotherapy are not as effective as expected and lead to concerns about low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. A nanomedicine-based approach is a promising alternative for breast cancer treatment. The present era is witnessing rapid advancements in nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. This paper focuses on nanomedicine-based therapeutic interventions that are becoming more widely accepted for improving treatment effectiveness and reducing undesired side effects in breast cancer patients. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.
Collapse
|
18
|
Negru PA, Radu AF, Vesa CM, Behl T, Abdel-Daim MM, Nechifor AC, Endres L, Stoicescu M, Pasca B, Tit DM, Bungau SG. Therapeutic dilemmas in addressing SARS-CoV-2 infection: Favipiravir versus Remdesivir. Biomed Pharmacother 2022; 147:112700. [PMID: 35131656 PMCID: PMC8813547 DOI: 10.1016/j.biopha.2022.112700] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents an unmet clinical need, due to a high mortality rate, rapid mutation rate in the virus, increased chances of reinfection, lack of effectiveness of repurposed drugs and economic damage. COVID-19 pandemic has created an urgent need for effective molecules. Clinically proven efficacy and safety profiles have made favipiravir (FVP) and remdesivir (RDV) promising therapeutic options for use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Even though both are prodrug molecules with an antiviral role based on a similar mechanism of action, differences in pharmacological, pharmacokinetic and pharmacotoxicological mechanisms have been identified. The present study aims to provide a comprehensive comparative assessment of FVP and RDV against SARS-CoV-2 infections, by centralizing medical data provided by significant literature and authorized clinical trials, focusing on the importance of a better understanding of the interactions between drug molecules and infectious agents in order to improve the global management of COVID-19 patients and to reduce the risk of antiviral resistance.
Collapse
Affiliation(s)
- Paul Andrei Negru
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jedah 21442, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania.
| | - Laura Endres
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Bianca Pasca
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
19
|
Gjorgieva A, Maksimova V, Smilkov K. Plant bioactive compounds affecting biomarkers and final outcome of COVID-19. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-36150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Herbal medicinal products are known for their widespread use toward various viral infections and ease of disease symptoms. Therefore, the sudden appearance of the Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2) and COVID-19 disease was no exception. Bioactive compounds from natural plant origin could act on several disease levels: through essential immunological pathways, affecting COVID-19 biomarkers, or by halting or modulating SARS-CoV-2. In this paper, we review the recently published data regarding the use of plant bioactive compounds in the prevention/treatment of COVID-19. The mode of actions responsible for these effects is discussed, including the inhibition of attachment, penetration and release of the virus, actions affecting RNA, protein synthesis and viral proteases, as well as other mechanisms. The reviewed information suggests that plant bioactive compounds can be used alone or in combinations, but upcoming, extensive and global studies on several factors involved are needed to recognize indicative characteristics and various patterns of bioactive compounds use, related with an array of biomarkers connected to different elements of inflammatory and immune-related processes of COVID-19 disease.
Collapse
|
20
|
Mieres-Castro D, Ahmar S, Shabbir R, Mora-Poblete F. Antiviral Activities of Eucalyptus Essential Oils: Their Effectiveness as Therapeutic Targets against Human Viruses. Pharmaceuticals (Basel) 2021; 14:ph14121210. [PMID: 34959612 PMCID: PMC8706319 DOI: 10.3390/ph14121210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022] Open
Abstract
Given the limited therapeutic management of infectious diseases caused by viruses, such as influenza and SARS-CoV-2, the medicinal use of essential oils obtained from Eucalyptus trees has emerged as an antiviral alternative, either as a complement to the treatment of symptoms caused by infection or to exert effects on possible pharmacological targets of viruses. This review gathers and discusses the main findings on the emerging role and effectiveness of Eucalyptus essential oil as an antiviral agent. Studies have shown that Eucalyptus essential oil and its major monoterpenes have enormous potential for preventing and treating infectious diseases caused by viruses. The main molecular mechanisms involved in the antiviral activity are direct inactivation, that is, by the direct binding of monoterpenes with free viruses, particularly with viral proteins involved in the entry and penetration of the host cell, thus avoiding viral infection. Furthermore, this review addresses the coadministration of essential oil and available vaccines to increase protection against different viruses, in addition to the use of essential oil as a complementary treatment of symptoms caused by viruses, where Eucalyptus essential oil exerts anti-inflammatory, mucolytic, and spasmolytic effects in the attenuation of inflammatory responses caused by viruses, in particular respiratory diseases.
Collapse
Affiliation(s)
- Daniel Mieres-Castro
- The National Fund for Scientific and Technological Development, Av. del Agua 3895, Talca 3460000, Chile; (D.M.-C.); (S.A.)
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile
| | - Sunny Ahmar
- The National Fund for Scientific and Technological Development, Av. del Agua 3895, Talca 3460000, Chile; (D.M.-C.); (S.A.)
| | - Rubab Shabbir
- Seed Science and Technology, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile
- Correspondence:
| |
Collapse
|
21
|
Kim M, Cho H, Ahn DG, Jung HG, Seo HY, Kim JS, Lee YJ, Choi JY, Park IH, Shin JS, Kim SJ, Oh JW. In Vitro Replication Inhibitory Activity of Xanthorrhizol against Severe Acute Respiratory Syndrome Coronavirus 2. Biomedicines 2021; 9:1725. [PMID: 34829954 PMCID: PMC8615586 DOI: 10.3390/biomedicines9111725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the large number of repositioned drugs and direct-acting antivirals in clinical trials for the management of the ongoing COVID-19 pandemic, there are few cost-effective therapeutic options for severe acute respiratory syndrome (SARS) coronavirus 2 (SCoV2) infection. In this paper, we show that xanthorrhizol (XNT), a bisabolane-type sesquiterpenoid compound isolated from the Curcuma xanthorrhizza Roxb., a ginger-line plant of the family Zingiberaceae, displays a potent antiviral efficacy in vitro against SCoV2 and other related coronaviruses, including SARS-CoV-1 (SCoV1) and a common cold-causing human coronavirus. XNT reduced infectious SCoV2 titer by ~3-log10 at 20 μM and interfered with the replication of the SCoV1 subgenomic replicon, while it had no significant antiviral effects against hepatitis C virus and noroviruses. Further, XNT exerted similar antiviral functions against SCoV2 variants, such as a GH clade strain and a delta strain currently predominant worldwide. Neither SCoV2 entry into cells nor the enzymatic activity of viral RNA polymerase (Nsp12), RNA helicase (Nsp13), or the 3CL main protease (Nsp5) was inhibited by XNT. While its CoV replication inhibitory mechanism remains elusive, our results demonstrate that the traditional folk medicine XNT could be a promising antiviral candidate that inhibits a broad range of SCoV2 variants of concern and other related CoVs.
Collapse
Affiliation(s)
- Minwoo Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
| | - Hee Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
| | - Dae-Gyun Ahn
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
| | - Hae-Gwang Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
| | - Han Young Seo
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
| | - Ji-Su Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
| | - Youn-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (Y.-J.L.); (J.Y.C.)
| | - Jun Yong Choi
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (Y.-J.L.); (J.Y.C.)
| | - In Ho Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (I.H.P.); (J.-S.S.)
| | - Jeon-Soo Shin
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (I.H.P.); (J.-S.S.)
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (M.K.); (H.C.); (D.-G.A.); (H.-G.J.); (H.Y.S.); (J.-S.K.)
| |
Collapse
|