1
|
Su J, Wei J, Zhang B, Wang X, Tang L, Yuan Y, Sun X, Qi S, Yang J, Xue Y, Liu Y, Liu Y, Sun X, Hao L. A calmodulin-derived peptide TI-16 inhibits Alzheimer's disease progression by decreasing -Aβ burden and restoring calcium dyshomeostasis. Bioorg Chem 2025; 160:108502. [PMID: 40280012 DOI: 10.1016/j.bioorg.2025.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/06/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairments. Despite extensive research into the pathogenesis of AD, there is still a lack of effective clinical treatments drugs. In this study, we identified calmodulin (CaM) as a key molecule in the pathological process of AD through bioinformatics analysis and innovatively designed a peptide, TI-16, based on the binding specificity between CaM and amyloid-β (Aβ). We evaluated the improvement effect of TI-16 on the activity and apoptosis of Aβ25-35-induced SHSY5Y cells damage by Cell Counting Kit 8 (CCK-8) and Flow cytometry. MOE molecular docking and GST pull-down experiments demonstrated that TI-16 possesses binding affinity for Aβ, and Immunofluorescence staining and Ca2+ concentration determination experiments showed that TI-16 reduced the co-localization of Aβ and CaM, and could inhibit intracellular calcium overload. Subsequently, Morris water maze tests were conducted to assess the impact of TI-16 on learning and memory abilities in AD model mice. Furthermore, HE staining, ThS staining, and Western blot analysis were utilized to investigate the improvement effect of TI-16 on the pathological damage of AD. The results indicate that TI-16 can target Aβ to increase the intracellular free concentration of CaM, and effectively regulate intracellular Ca2+ homeostasis. Notably, TI-16 significantly enhanced cognitive function in AD model mice, reduced Aβ deposition, alleviated neuronal damage, inhibited neuronal apoptosis, and thereby improved AD progression. As a potentially effective peptide therapeutic drug for AD, TI-16 offers a novel target and introduces a fresh perspective for future clinical applications.
Collapse
Affiliation(s)
- Jingyang Su
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jun Wei
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Bowen Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xianghui Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Luhong Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Yuan
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuanxuan Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shuang Qi
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jiaoyan Yang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yingchun Xue
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yalin Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yifang Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuefei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Gómez-Guerrero E, Debray-García Y, Aztatzi-Aguilar OG, Colchero-Amateco FA, Amador-Muñoz O, Poblano-Bata J, Poblete-Naredo I, Albores A. A549 cells exposed to a marijuana smoke extract affect mono-layer integrity related to oxidative stress state. Toxicol In Vitro 2025; 107:106072. [PMID: 40250736 DOI: 10.1016/j.tiv.2025.106072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 03/14/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
Marijuana smoke contains several toxic compounds that may induce dysregulation of oxidative mechanisms and barrier system in airway alveolar cells. This study aimed to assess whether marijuana smoke extract (MSE) modifies mono-layer integrity and antioxidant effects on the alveolar epithelial cells. A549 cells were exposed to MSE (0.1 to 5 μg/mL) or cannabinoid (+)-WIN 55,212-2 (WIN; 0.01 to 1 μM) for 24 h. Epithelial integrity and protein expression of claudin (Cl)-2, Cl-5, and occludin (Ocl) were evaluated by transepithelial electrical resistance (TEER), permeability assay, Western blot, immunofluorescence, and qPCR. TEER decreased after MSE or WIN exposure, whereas the monolayer permeability increased. Protein expression and localization of Cl-2 and Ocl were reduced after MSE treatment. However, WIN increased Cl-2 protein and decreased Cl-5 and Ocl. Differential gene expressions were observed between treatments. Malondialdehyde (MDA) production and advanced oxidation protein products (AOPP) determination showed that MSE increased AOPP, whereas WIN augmented the MDA production and decreased AOPP levels. The activity of antioxidant enzymes shows an increase in catalase, glutathione-S-transferase, γ-glutamyl transferase and arginase after MSE treatment and a decrease with WIN. Data indicates that MSE exposure alters epithelial integrity and the alveolar cells antioxidant response that, finally, may lead to lung damage.
Collapse
Affiliation(s)
- Elvira Gómez-Guerrero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, Mexico
| | - Yazmín Debray-García
- Departamento de Investigación de Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, Mexico
| | - Fanny Azuzena Colchero-Amateco
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, Mexico
| | - Omar Amador-Muñoz
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Josefina Poblano-Bata
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Irais Poblete-Naredo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, Mexico
| | - Arnulfo Albores
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, Mexico.
| |
Collapse
|
3
|
Khan H, Javaid S, Ashraf W, Siddique F, Bibi M, Ahmad T, Gill MSA, Abrar A, Alqahtani F, Imran I. Erqember Mitigates Neurotoxic Effects of Aluminum Chloride in Mice: Phytochemical Insights With Neurobehavioral and In Silico Approaches. J Toxicol 2025; 2025:3997995. [PMID: 40207183 PMCID: PMC11981706 DOI: 10.1155/jt/3997995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
The increasing popularity of herbal preparations has prompted people around the world to incorporate herbal products into their balanced diet, aiming to improve brain health and protect against neurological disorders. Erqember(Erq-Em) possesses a blend of various neuroprotective phytocompounds. The present study aimed to phytochemically analyze this polyherbal product and scientifically validate its neurological benefits. After chemical characterization through UHPLC-MS, in vivo studies involved the supplementation of mice with 10 and 20 mL/kg doses of Erq-Em in an AlCl3-induced amnesic mice model followed by behavioral assessment for anxiety and cognition in a battery of behavioral tests. Subsequently, whole brains were dissected for biochemical and histopathological analysis. Further, the study also included in silico studies to understand the interaction of detected phytocompounds with acetylcholinesterase protein. The outcomes revealed that mice treated with Eqr-Em were protected from anxiety-like behavior as they dose-dependently prefer innately frightening central, lightened, and elevated zones in OFT, L/D, and EPM tests. Moreover, the Erq-Em supplementation caused improved spontaneous learning in Y-maze and NOR tests, while their memory in passive avoidance and water maze tests was evident from longer step-through and shorter escape latencies, respectively. The biochemical analysis of brain homogenates showed a reduction in AchE and MDA while elevation in SOD and GPx levels in mice receiving Erq-Em. Moreover, the healthy and intact neuronal counts were markedly high in CA1 and DG regions of Nissl's-stained hippocampi of Erq-Em-treated mice. The compounds detected by UPLC-MS showed favorable BBB permeability and interacted well with acetylcholinesterase protein through in silico studies. Overall, the neurological benefits of Erqember might result from enhanced cholinergic neurotransmission and antioxidative activity of its phytocompounds, which together function as multimodal strategies against AlCl3-induced neurotoxicity.
Collapse
Affiliation(s)
- Habiba Khan
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mehvish Bibi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tanveer Ahmad
- Institut pour l'Avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, Grenoble, France
| | - Muhammad Shoaib Ali Gill
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore 75270, Pakistan
| | - Asad Abrar
- Drug Testing Laboratory, Bahawalpur, Punjab, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
4
|
Santiago-Quintana JM, Soriano-Ursúa MA, Trujillo-Ferrara JG, Correa-Basurto J, Espinosa-Raya J, López-Castro Y, García-Baez EV, Padilla-Martínez II. Anticonvulsant effects of new coumarin-2,3-dimethylbutadiene Diels-Alder cycloadducts in the pentylenetetrazole-induced clonic seizures in mice. Bioorg Med Chem Lett 2025; 118:130089. [DOI: 10.1016/j.bmcl.2024.130089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
5
|
Möller JEL, Schmitt FW, Günther D, Stöver A, Bouter Y. The synthetic cannabinoid WIN 55,212-2 attenuates cognitive and motor deficits and reduces amyloid load in 5XFAD Alzheimer mice. Pharmacol Biochem Behav 2025; 247:173944. [PMID: 39675388 DOI: 10.1016/j.pbb.2024.173944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/05/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cognitive decline, with pathological features including amyloid β (Aβ) plaques and inflammation. Despite recent approvals of anti-amyloid antibodies, there remains a need for disease-modifying and easily accessible therapies. The endocannabinoid system presents a promising target for AD treatment, as it regulates various processes implicated in AD pathogenesis. AIMS This study assesses the effects of the synthetic cannabinoid WIN 55,212-2 on AD pathology and behavior deficits in aged 5XFAD mice, a well-established AD model. METHODS Male 9-month-old 5XFAD mice received either 0.2 mg/kg WIN 55,212-2 or a vehicle solution for 42 days. Memory, anxiety, and motor tests were conducted at 10 months to identify potential changes in behavior and cognition following WIN 55,212-2 treatment. Additionally, the effects of prolonged WIN 55,212-2 treatment on Aβ pathology and neuroinflammation in the brain were quantified immunohistochemically. RESULTS Therapeutic WIN 55,212-2 treatment improved the motor performance of 5XFAD mice on the rotarod and rescued memory deficits in the water maze. However, WIN 55,212-2 treatment did not significantly affect anxiety-like behavior in 5XFAD mice. Additionally, prolonged treatment with WIN 55,212-2 reduced Aβ plaque pathology and astrogliosis in the cortex and hippocampus. CONCLUSIONS This study highlights the therapeutic potential of WIN 55,212-2 in AD by ameliorating cognitive and motor deficits and reducing neuropathology. These findings support a cannabinoid-based therapy as a promising strategy for AD treatment, with WIN 55,212-2 emerging as a potential candidate.
Collapse
Affiliation(s)
- Johanna E L Möller
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Franziska W Schmitt
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Daniel Günther
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Alicia Stöver
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany; Department of Nuclear Medicine, University Medical Center Göttingen, Goettingen, Germany.
| |
Collapse
|
6
|
Ott FW, Sichler ME, Bouter C, Enayati M, Wiltfang J, Bayer TA, Beindorff N, Löw MJ, Bouter Y. Chronic exposure to a synthetic cannabinoid improves cognition and increases locomotor activity in Tg4-42 Alzheimer's disease mice. J Alzheimers Dis Rep 2025; 9:25424823241306770. [PMID: 40034517 PMCID: PMC11869267 DOI: 10.1177/25424823241306770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/17/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and behavior impairments. Despite recent approvals of anti-amyloid antibodies, there remains a need for disease modifying and easily accessible therapies. Emerging evidence suggests that targeting the endocannabinoid system may hold promise for AD therapy as it plays a crucial role in different physiological processes, including learning, memory and anxiety, as well as inflammatory and immune responses. Objective In this study, we investigated the therapeutic potential of the synthetic cannabinoid WIN 55,212-2 on memory deficits in Tg4-42 transgenic mice. Methods Tg4-42 mice were assigned to two treatment groups to investigate the preventive effects of WIN 55,212-2 after a prolonged washout period, as well as the therapeutic effects of WIN 55,212-2 on behavior. Furthermore, the effects of WIN 55,212-2 treatment on AD pathology, including inflammation, amyloid-β load, neurogenesis, and brain glucose metabolism, were evaluated. Results Therapeutic WIN 55,212-2 treatment rescued recognition memory and spatial reference deficits in Tg4-42 mice. Furthermore, therapeutic WIN 55,212-2 administration improved motor performance. In addition, preventative WIN 55,212-2 treatment rescued spatial learning and reference memory deficits. Importantly, WIN 55,212-2 treatment did not affect anxiety-like behavior. However, therapeutic and preventative WIN 55,212-2 treatment resulted in an increase locomotor activity and swimming speed in Tg4-42 mice. WIN-treatment reduced microgliosis in the hippocampus of preventively treated mice and rescued brain glucose metabolism in therapeutically treated Tg4-42 mice. Conclusions Our findings emphasize the therapeutic promise of the synthetic cannabinoid WIN 55,212-2 in alleviating behavioral and cognitive deficits linked to AD.
Collapse
Affiliation(s)
- Frederik W Ott
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Marius E Sichler
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen, Goettingen, Germany
| | - Marzieh Enayati
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
- Clincal Science Group, German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Thomas A Bayer
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian J Löw
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Goettingen, Germany
- Department of Nuclear Medicine, University Medical Center Göttingen, Goettingen, Germany
| |
Collapse
|
7
|
Rizk MZ, Ibrahim Fouad G, Aly HF, El-Rigal NS, Ahmed KA, Mohammed FF, Khalil WKB, Abd El-Karim SS. Therapeutic impact of a benzofuran derivative on Aluminium chloride-induced Alzheimer's disease-like neurotoxicity in rats via modulating apoptotic and Insulin 1 genes. Biochem Biophys Res Commun 2024; 739:150971. [PMID: 39531906 DOI: 10.1016/j.bbrc.2024.150971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) are age-related and are fatal in advanced cases. There is a limited efficacy of drugs used for the management of these diseases. Herein, the neurotherapeutic efficacy of a benzofuran-derivative-7 (BF-7) was investigated. Aluminum chloride (AlCl3) was employed to induce AD-like brain toxicity in rats. The rats were divided into four groups: Negative control, AlCl3-induced AD rats (100 mg/kg body weight, orally), AlCl3-AD induced rats treated with BF-7 (10 mg/kg body weight, orally), AlCl3-AD-induced rats treated with the standard drug "Donepezil" (10 mg/kg body weight, orally). The behavioral performance was tested using a beam-balance test. Brain and serum acetylcholinesterase (AChE) activities and the brain levels of norepinephrine, dopamine (DA), and serotonin (5-HT) were measured. The genetic expression of Bcl-2, Bax, caspase-3, and insulin 1 were assayed. The histopathological imaging and the immunohistochemical evaluation of Glial Fibrillary Acidic Protein (GFAP) were investigated in the cerebral cortex. Treatment of AD-rats with BF-7 mitigated AlCl3-induced neurotoxicity by improving motor functions, counteracting apoptosis, and exerting cholinergic functions. In addition, the genetic expression of Insulin 1 was upregulated significantly in AD-induced rats treated with BF-7. This compound could be used as a promising candidate for neurotherapeutic drug discovery against AD or any other toxic brain disorders.
Collapse
Affiliation(s)
- Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt
| | - Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt.
| | - Hanan F Aly
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt
| | - Nagy S El-Rigal
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Faten F Mohammed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Wagdy K B Khalil
- Cell Biology Department, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt
| |
Collapse
|
8
|
Tyrakis P, Agridi C, Kourti M. A Comprehensive Exploration of the Multifaceted Neuroprotective Role of Cannabinoids in Alzheimer's Disease across a Decade of Research. Int J Mol Sci 2024; 25:8630. [PMID: 39201317 PMCID: PMC11354546 DOI: 10.3390/ijms25168630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, manifests through dysregulation of brain function and subsequent loss of bodily control, attributed to β-amyloid plaque deposition and TAU protein hyperphosphorylation and aggregation, leading to neuronal death. Concurrently, similar cannabinoids to the ones derived from Cannabis sativa are present in the endocannabinoid system, acting through receptors CB1R and CB2R and other related receptors such as Trpv-1 and GPR-55, and are being extensively investigated for AD therapy. Given the limited efficacy and adverse effects of current available treatments, alternative approaches are crucial. Therefore, this review aims to identify effective natural and synthetic cannabinoids and elucidate their beneficial actions for AD treatment. PubMed and Scopus databases were queried (2014-2024) using keywords such as "Alzheimer's disease" and "cannabinoids". The majority of natural (Δ9-THC, CBD, AEA, etc.) and synthetic (JWH-133, WIN55,212-2, CP55-940, etc.) cannabinoids included showed promise in improving memory, cognition, and behavioral symptoms, potentially via pathways involving antioxidant effects of selective CB1R agonists (such as the BDNF/TrkB/Akt pathway) and immunomodulatory effects of selective CB2R agonists (TLR4/NF-κB p65 pathway). Combining anticholinesterase properties with a cannabinoid moiety may enhance therapeutic responses, addressing cholinergic deficits of AD brains. Thus, the positive outcomes of the vast majority of studies discussed support further advancing cannabinoids in clinical trials for AD treatment.
Collapse
Affiliation(s)
| | | | - Malamati Kourti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus; (P.T.); (C.A.)
| |
Collapse
|
9
|
He Z, Liu Y, Li Z, Sun T, Li Z, Liu C, Xiang H. Gut Microbiota-Mediated Alterations of Hippocampal CB1R Regulating the Diurnal Variation of Cognitive Impairment Induced by Hepatic Ischemia-Reperfusion Injury in Mice. Neurochem Res 2024; 49:2165-2178. [PMID: 38824460 DOI: 10.1007/s11064-024-04182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Patients suffering from hepatic ischemia-reperfusion injury (HIRI) frequently exhibit postoperative cognitive deficits. Our previous observations have emphasized the diurnal variation in hepatic ischemia-reperfusion injury-induced cognitive impairment, in which gut microbiota-associated hippocampal lipid metabolism plays an important role. Herein, we further investigated the molecular mechanisms involved in the process. Hepatic ischemia-reperfusion surgery was performed under morning (ZT0, 08:00) and evening (ZT12, 20:00). Fecal microbiota transplantation was used to associate HIRI model with pseudo-germ-free mice. The novel object recognition test and Y-maze test were used to assess cognitive function. 16S rRNA gene sequencing and analysis were used for microbial analysis. Western blotting was used for hippocampal protein analysis. Compared with the ZT0-HIRI group, ZT12-HIRI mice showed learning and short term memory impairment, accompanied by down-regulated expression of hippocampal CB1R, but not CB2R. Both gut microbiota composition and microbiota metabolites were significantly different in ZT12-HIRI mice compared with ZT0-HIRI. Fecal microbiota transplantation from the ZT12-HIRI was demonstrated to induce cognitive impairment behavior and down-regulated hippocampal CB1R and β-arrestin1. Intraperitoneal administration of CB1R inhibitor AM251 (1 mg/kg) down-regulated hippocampal CB1R and caused cognitive impairment in ZT0-HIRI mice. And intraperitoneal administration of CB1R agonist WIN 55,212-2 (1 mg/kg) up-regulated hippocampal CB1R and improved cognitive impairment in ZT12-HIRI mice. In summary, the results suggest that gut microbiota may regulate the diurnal variation of HIRI-induced cognitive function by interfering with hippocampal CB1R.
Collapse
Affiliation(s)
- Zhigang He
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanbo Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianning Sun
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry Education, Wuhan, China.
| |
Collapse
|
10
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
11
|
Beltagy DM, Nawar NF, Mohamed TM, Tousson E, El-Keey MM. The synergistic effect of nanocurcumin and donepezil on Alzheimer's via PI3K/AKT/GSK-3β pathway modulating. Prostaglandins Other Lipid Mediat 2024; 170:106791. [PMID: 37918555 DOI: 10.1016/j.prostaglandins.2023.106791] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) hallmarks include amyloid-βeta (Aβ) and tau proteins aggregates, neurite degeneration, microglial activation with cognitive impairment. Phosphatidylinositol-3-kinase/protein kinase B/Glycogen synthase kinase-3-beta (PI3K/AKT/GSK-3) pathway is essential for neuroprotection, cell survival and proliferation by blocking apoptosis. This study aimed to assess protective role of nanocurcumin (NCMN) as strong antioxidant and anti-inflammatory agent with elucidating its synergistic effects with Donepezil as acetylcholinesterase inhibitor on AD in rats via modulating PI3K/AKT/GSK-3β pathway. The experiment was performed on 70 male Wistar albino rats divided into seven groups (control, NCMN, Donepezil, AD-model, Donepezil co-treatment, NCMN only co-treatment, and NCMN+Donepezil combined treatment). Behavioral and biochemical investigations as cholinesterase activity, oxidative stress (malondialdehyde, reduced glutathione, nitric oxide, superoxidedismutase, and catalase), tumor necrosis factor-alpha, Tau, β-site amyloid precursor protein cleaving enzyme-1 (BACE-1), Phosphatase and tensin homolog (Pten), mitogen-activated protein kinase-1 (MAPK-1), Glycogen synthase kinase-3-beta (GSK-3β) and toll-like receptor-4 were evaluated. Treatment with NCMN improved memory, locomotion, neuronal differentiation by activating PI3K/AKT/GSK-3β pathway. These results were confirmed by histological studies in hippocampus.
Collapse
Affiliation(s)
- Doha M Beltagy
- Biochemistry Department, Faculty of Science, Damanhour University, Egypt.
| | - Nagat F Nawar
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Egypt
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Egypt
| | - Mai M El-Keey
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Egypt
| |
Collapse
|
12
|
Zhang R, He X, Cheng J, Zhang X, Han C, Liu Y, Chen P, Wang Y. (m) RVD-hemopressin (α) Ameliorated Oxidative Stress, Apoptosis and Damage to the BDNF/TrkB/Akt Pathway Induced by Scopolamine in HT22 Cells. Neurotox Res 2023; 41:627-637. [PMID: 37971633 DOI: 10.1007/s12640-023-00677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Dysfunction in the cholinergic system and oxidative stress are closely related and play roles in Alzheimer's disease (AD). Scopolamine (Scop), which is commonly used to induce cholinergic system damage in cells and animals, also evokes oxidative stress. Our previous study indicated that the peptide (m) RVD-hemopressin (RVD) reversed the memory-impairing effect of Scop in mice by activating cannabinoid receptor 1 (CBR1), but the mechanism was unclear. In this study, we found that RVD inhibited the oxidative stress, apoptosis, decreased cell viability and downregulation of synapse-associated proteins induced by Scop in HT22 cells. The effect was associated with the BDNF/TrkB/Akt pathway, and the effects of RVD outlined above could be blocked by an antagonist of CBR1. These results suggest that RVD may be a potential drug candidate for disorders associated with damage to the cholinergic system and oxidative stress, such as AD.
Collapse
Affiliation(s)
- Ruisan Zhang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, China
| | - Xinliang He
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Jianghong Cheng
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, China
| | - Xiaofan Zhang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Chen Han
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Yifan Liu
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Peng Chen
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, China.
| | - Yang Wang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
13
|
Ali H, Usman H, Ashraf W, Alqahtani F, Javaid S, Siddique F, Rasool MF, Imran I, Ahmad T, Abdel Rahman AM, AlMalki RH. Demaghi, a polyherbal formulation, mitigates aluminum chloride-induced neurological impairment in mice: Insights from phytochemical analysis and behavioral assessment. Heliyon 2023; 9:e21234. [PMID: 38027790 PMCID: PMC10643107 DOI: 10.1016/j.heliyon.2023.e21234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Herbal products have been very popular in Pakistan for their curative significance against various disorders. Demaghi (DEMG) is a widely used herbal product claimed to own natural substances having neuroprotective potential. The current study aims to scientifically validate the chemical composition as well as its neuroprotective claims of this widely used herbal tonic. The commercially available Demaghi product was chemically characterized for its phytocomposition. The mice were treated with two doses of Demaghi (DEMG 50 mg and 100 mg/kg/day), and the effects of its prolonged exposure on animal anxiety, memory, and depression were noted through a series of behavioral tests in the AlCl3-induced memory deficient mice model. Besides that, dissected brains were biochemically analyzed for oxidative stress markers and acetylcholinesterase activity, as well as histopathological changes. The study outcomes showed that DEMG (100 mg/kg/day) has prominent anti-anxiety effects, memory-enhancing properties, and anti-depressants effects observed in the AlCl3-induced memory-deficient mice model. Biochemical assays also showed a greater decrease in oxidative stress of tested animals treated with 100 mg/kg/day of DEMG. The histopathological analysis also revealed that administration of DEMG reduced the AlCl3-induced toxicity. UPLC-MS results revealed the presence of many phytoconstituents, which showed to support cholinergic signaling in in-silico studies. The current research validates the neurological benefits of Demaghi for memory-boosting properties. The phytocompounds present in Demaghi exert neuroprotective effects, possibly by enhancing the cholinergic neurotransmission and combating the neurotoxin-induced oxidative stress.
Collapse
Affiliation(s)
- Hassan Ali
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Hafiz Usman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
- Department of Pharmacy, The Women University, Multan, 60000, Pakistan
| | - Farhan Siddique
- Departmenmt of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Tanveer Ahmad
- Institut pour l’Avancée des Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS 5309, Université Grenoble Alpes, France
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, 11211, Saudi Arabia
| | - Reem H. AlMalki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
14
|
Awad HH, Desouky MA, Zidan A, Bassem M, Qasem A, Farouk M, AlDeab H, Fouad M, Hany C, Basem N, Nader R, Alkalleny A, Reda V, George MY. Neuromodulatory effect of vardenafil on aluminium chloride/D-galactose induced Alzheimer's disease in rats: emphasis on amyloid-beta, p-tau, PI3K/Akt/p53 pathway, endoplasmic reticulum stress, and cellular senescence. Inflammopharmacology 2023; 31:2653-2673. [PMID: 37460908 PMCID: PMC10518298 DOI: 10.1007/s10787-023-01287-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 09/26/2023]
Abstract
Dysregulation of protein homeostasis, proteostasis, is a distinctive hallmark of many neurodegenerative disorders and aging. Deleteriously, the accumulation of aberrant proteins in Alzheimer's disease (AD) is accompanied with a marked collapse in proteostasis network. The current study explored the potential therapeutic effect of vardenafil (VAR), a phosphodiesterase-5 inhibitor, in AlCl3/D-galactose (D-gal)-induced AD in rats and its possible underlying mechanisms. The impact of VAR treatment on neurobehavioral function, hippocampal tissue architecture, and the activity of the cholinergic system main enzymes were assessed utilizing VAR at doses of 0.3 mg/kg and 1 mg/kg. Additionally, the expression level of amyloid-beta and phosphorylated tau proteins in the hippocampus were figured out. Accordingly, VAR higher dose was selected to contemplate the possible underlying mechanisms. Intriguingly, VAR elevated the cyclic guanosine monophosphate level in the hippocampus and averted the repressed proteasome activity by AlCl3/D-gal; hence, VAR might alleviate the burden of toxic protein aggregates in AD. In addition, a substantial reduction in the activating transcription factor 6-mediated endoplasmic reticulum stress was demonstrated with VAR treatment. Notably, VAR counteracted the AlCl3/D-gal-induced depletion of nuclear factor erythroid 2-related factor 2 level. Moreover, the anti-senescence activity of VAR was demonstrated via its ability to restore the balance of the redox circuit. The modulation of phosphatidylinositol-3-kinase/protein kinase B/p53 pathway and the reduction of nuclear factor kappa B level, the key regulator of senescence-associated secretory phenotype mediators release, with VAR treatment were also elucidated. Altogether, these findings insinuate the possible therapeutic benefits of VAR in AD management.
Collapse
Affiliation(s)
- Heba H Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo, Egypt
| | - Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Alaa Zidan
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariam Bassem
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amaal Qasem
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona Farouk
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy AlDeab
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Miral Fouad
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cherry Hany
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nada Basem
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rita Nader
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ashrakat Alkalleny
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Verina Reda
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
15
|
Kamaruzzaman MA, Romli MH, Abas R, Vidyadaran S, Hidayat Baharuldin MT, Nasaruddin ML, Thirupathirao V, Sura S, Warsito K, Mohd Nor NH, Azwaruddin MA, Alshawsh MA, Mohd Moklas MA. Regulatory role of the endocannabinoid system on glial cells toward cognitive function in Alzheimer's disease: A systematic review and meta-analysis of animal studies. Front Pharmacol 2023; 14:1053680. [PMID: 36959856 PMCID: PMC10028478 DOI: 10.3389/fphar.2023.1053680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Objective: Over the last decade, researchers have sought to develop novel medications against dementia. One potential agent under investigation is cannabinoids. This review systematically appraised and meta-analyzed published pre-clinical research on the mechanism of endocannabinoid system modulation in glial cells and their effects on cognitive function in animal models of Alzheimer's disease (AD). Methods: A systematic review complying with PRISMA guidelines was conducted. Six databases were searched: EBSCOHost, Scopus, PubMed, CINAHL, Cochrane, and Web of Science, using the keywords AD, cannabinoid, glial cells, and cognition. The methodological quality of each selected pre-clinical study was evaluated using the SYRCLE risk of bias tool. A random-effects model was applied to analyze the data and calculate the effect size, while I2 and p-values were used to assess heterogeneity. Results: The analysis included 26 original articles describing (1050 rodents) with AD-like symptoms. Rodents treated with cannabinoid agonists showed significant reductions in escape latency (standard mean difference [SMD] = -1.26; 95% confidence interval [CI]: -1.77 to -0.76, p < 0.00001) and ability to discriminate novel objects (SMD = 1.40; 95% CI: 1.04 to 1.76, p < 0.00001) compared to the control group. Furthermore, a significant decrease in Aβ plaques (SMD = -0.91; 95% CI: -1.55 to -0.27, p = 0.006) was observed in the endocannabinoid-treated group compared to the control group. Trends were observed toward neuroprotection, as represented by decreased levels of glial cell markers including glial fibrillary acid protein (SMD = -1.47; 95% CI: -2.56 to -0.38, p = 0.008) and Iba1 (SMD = -1.67; 95% CI: -2.56 to -0.79, p = 0.0002). Studies on the wild-type mice demonstrated significantly decreased levels of pro-inflammatory markers TNF-α, IL-1, and IL-6 (SMD = -2.28; 95% CI: -3.15 to -1.41, p = 0.00001). Despite the non-significant decrease in pro-inflammatory marker levels in transgenic mice (SMD = -0.47; 95% CI: -1.03 to 0.08, p = 0.09), the result favored the endocannabinoid-treated group over the control group. Conclusion: The revised data suggested that endocannabinoid stimulation promotes cognitive function via modulation of glial cells by decreasing pro-inflammatory markers in AD-like rodent models. Thus, cannabinoid agents may be required to modulate the downstream chain of effect to enhance cognitive stability against concurrent neuroinflammation in AD. Population-based studies and well-designed clinical trials are required to characterize the acceptability and real-world effectiveness of cannabinoid agents. Systematic Review Registration: [https://inplasy.com/inplasy-2022-8-0094/], identifier [Inplasy Protocol 3770].
Collapse
Affiliation(s)
- Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Hibatullah Romli
- Department of Nursing and Rehabilitation, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | | | | | | | - Sreenivasulu Sura
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Kampar, Malaysia
| | - Kabul Warsito
- Department of Agrotechnology, Faculty of Science and Technology, University of Pembangunan Panca Budi, Medan, Indonesia
| | - Nurul Huda Mohd Nor
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Amsyar Azwaruddin
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Paediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Science, Monash University, Clayton, VIC, Australia
- *Correspondence: Mohamad Aris Mohd Moklas, ; Mohammed Abdullah Alshawsh,
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Mohamad Aris Mohd Moklas, ; Mohammed Abdullah Alshawsh,
| |
Collapse
|
16
|
Wang Y, Wu X, Yang K, Liu Q, Jiang B, Yang R, Xiao P, He C. Integrating network pharmacology analysis and pharmacodynamic evaluation for exploring the active components and molecular mechanism of moutan seed coat extract to improve cognitive impairment. Front Pharmacol 2022; 13:952876. [PMID: 36034803 PMCID: PMC9411852 DOI: 10.3389/fphar.2022.952876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Paeonia suffruticosa (Moutan) is a traditional medicinal plant in China. Its seed coat is rich in resveratrol oligomer, especially suffruticosol B (SB). Previous studies had shown that the seed coat extracts of Paeonia suffruticosa (PSCE) had good cholinesterase inhibitory activity and neuroprotective effect, but the effective dose range was unknown, and the pharmacodynamic components and molecular mechanism of PSCE had not been discussed. The current study aimed to screen the pharmacodynamic components in PSCE and investigate the improvement effect of PSCE and the selected SB on scopolamine-induced cognitive dysfunction in mice and its mechanism. The results of high-throughput sequencing and bioinformatics analysis showed that suffruticosol B (SB) and trans-gnetin H (GH) might be the main active components of PSCE; PSCE might improve cognitive dysfunction through p53, HIF-1, MAPK, and PI3K-Akt signaling pathways, while SB and GH might improve cognitive dysfunction through HIF-1 signaling pathway. SB and GH had good molecular docking activity with the target of HIF-1 signaling pathway. The pharmacodynamic activities of PSCE and SB were further verified by behavioral experiments. PSCE and SB could improve the recognition ability of familiar and new objects and shorten the escape latency in the Morris Water Maze test (PSCE 120 mg∙kg-1, p < 0.05; SB 60 mg∙kg-1, p < 0.01); PSCE and SB could increase Ach and GSH levels, enhance the activities of ChAT, SOD and CAT, decrease the levels of IL-1β, IL-6, and TNF-α, and decrease the activity of AChE. In conclusion, the results indicated that PSCE might exert pharmacodynamic activity through multiple components, targets, and pathways, and SB and GH might be the main active components of PSCE. PSCE and SB might improve cognitive dysfunction by regulating cholinergic, antioxidant, and anti-inflammatory effects. These results indicated that PSCE and SB might be potential anti-AD drug candidates, providing a scientific basis for the development and utilization of Moutan bark.
Collapse
|
17
|
Wang M, Wu W, Xiao J, Li C, Chen B, Shen Y. Recent Development in Antioxidant Peptides of Woody Oil Plant By-Products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2073367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Min Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, Hubei, China
| | - Wenrui Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|