1
|
Abu-Amero KK, Almadani B, Abualkhair S, Hameed S, Kondkar AA, Sollazzo A, Yu AC, Busin M, Zauli G. Mitochondrial DNA Pathogenic Variants in Ophthalmic Diseases: A Review. Genes (Basel) 2025; 16:347. [PMID: 40149498 PMCID: PMC11941924 DOI: 10.3390/genes16030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondria are vital organelles responsible for ATP production and metabolic regulation, essential for energy-intensive cells such as retinal ganglion cells. Dysfunction in mitochondrial oxidative phosphorylation or mitochondrial DNA (mtDNA) pathogenic variants can disrupt ATP synthesis, cause oxidative stress, and lead to cell death. This has profound implications for tissues such as the retina, optic nerve, and retinal pigment epithelium, which are dependent on robust mitochondrial function. In this review, we provide a comprehensive compilation of pathogenic variants in the mtDNA associated with various ophthalmic diseases, including Leber's hereditary optic neuropathy, chronic progressive external ophthalmoplegia, Leigh syndrome, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes, among others. We highlight the genetic variants implicated in these conditions, their pathogenic roles, and the phenotypic consequences of mitochondrial dysfunction in ocular tissues. In addition to well-established mutations, we also discuss the emerging evidence of the role of mtDNA's variants in complex multifactorial diseases, such as non-arteritic anterior ischemic optic neuropathy, primary open-angle glaucoma, and age-related macular degeneration. The review aims to serve as a valuable resource for clinicians and researchers, providing a detailed overview of mtDNA pathogenic variants and their clinical significance in the context of mitochondrial-related eye diseases.
Collapse
Affiliation(s)
- Khaled K. Abu-Amero
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| | - Bashaer Almadani
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| | - Shereen Abualkhair
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| | - Syed Hameed
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| | - Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia;
| | - Andrea Sollazzo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.S.); (A.C.Y.); (M.B.)
| | - Angeli Christy Yu
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.S.); (A.C.Y.); (M.B.)
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.S.); (A.C.Y.); (M.B.)
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| |
Collapse
|
2
|
Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y, Shen B. Engineered mitochondria in diseases: mechanisms, strategies, and applications. Signal Transduct Target Ther 2025; 10:71. [PMID: 40025039 PMCID: PMC11873319 DOI: 10.1038/s41392-024-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Mitochondrial diseases represent one of the most prevalent and debilitating categories of hereditary disorders, characterized by significant genetic, biological, and clinical heterogeneity, which has driven the development of the field of engineered mitochondria. With the growing recognition of the pathogenic role of damaged mitochondria in aging, oxidative disorders, inflammatory diseases, and cancer, the application of engineered mitochondria has expanded to those non-hereditary contexts (sometimes referred to as mitochondria-related diseases). Due to their unique non-eukaryotic origins and endosymbiotic relationship, mitochondria are considered highly suitable for gene editing and intercellular transplantation, and remarkable progress has been achieved in two promising therapeutic strategies-mitochondrial gene editing and artificial mitochondrial transfer (collectively referred to as engineered mitochondria in this review) over the past two decades. Here, we provide a comprehensive review of the mechanisms and recent advancements in the development of engineered mitochondria for therapeutic applications, alongside a concise summary of potential clinical implications and supporting evidence from preclinical and clinical studies. Additionally, an emerging and potentially feasible approach involves ex vivo mitochondrial editing, followed by selection and transplantation, which holds the potential to overcome limitations such as reduced in vivo operability and the introduction of allogeneic mitochondrial heterogeneity, thereby broadening the applicability of engineered mitochondria.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haibo Si
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM. Mitochondrial DNA copy number alterations: Key players in the complexity of glioblastoma (Review). Mol Med Rep 2025; 31:78. [PMID: 39886971 PMCID: PMC11795256 DOI: 10.3892/mmr.2025.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Renowned as a highly invasive and lethal tumor derived from neural stem cells in the central nervous system, glioblastoma (GBM) exhibits substantial histopathological variation and genomic complexity, which drive its rapid progression and therapeutic resistance. Alterations in mitochondrial DNA (mtDNA) copy number (CN) serve a crucial role in GBM development and progression, affecting various aspects of tumor biology, including energy production, oxidative stress regulation and cellular adaptability. Fluctuations in mtDNA levels, whether elevated or diminished, can impair mitochondrial function, potentially disrupting oxidative phosphorylation and amplifying reactive oxygen species generation, thereby fueling tumor growth and influencing treatment responses. Understanding the mechanisms of mtDNA‑CN variations, and their interplay with genetic and environmental elements in the tumor microenvironment, is essential for advancing diagnostic and therapeutic strategies. Targeting mtDNA alterations could strengthen treatment efficacy, mitigate resistance and ultimately enhance the prognosis of patients with this aggressive brain tumor. The present review summarizes the existing literature on mtDNA alterations, specifically emphasizing variations in mtDNA‑CN and their association with GBM by surveying articles published between 1996 and 2024, sourced from databases such as Scopus, PubMed and Google Scholar. In addition, the review provides a brief overview of mitochondrial genome architecture, knowledge regarding the regulation of mtDNA integrity and CN, and how mitochondria significantly impact GBM tumorigenesis. This review further presents information on therapeutic approaches for restoring mtDNA‑CN that contribute to optimized mitochondrial function and improved health outcomes.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
4
|
Mangione E. 'Recombining' biological motherhoods. Towards two 'complete' biological mothers. JOURNAL OF MEDICAL ETHICS 2025; 51:195-198. [PMID: 38697769 PMCID: PMC11877089 DOI: 10.1136/jme-2023-109610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Within feminist literature from the early 1970s to this day, assisted reproductive technologies have been largely known to divide, replace or eliminate biological motherhood. For example, while in the past biological motherhood was considered a continuous experience, in vitro fertilisation (IVF) and IVF using egg donation allowed a split between two biological mothers, one providing eggs (genetic mother) and the other one gestation (gestational mother). This split was considered irreparable: the genetic mother could not be also gestational, and vice versa. On the contrary, this paper aims to show that assisted reproductive technologies may also have a constructive potential towards biological motherhood(s). To explain how it could be possible, two existing techniques are explored: the first is maternal spindle transfer, which allows a double genetic motherhood; the second is reciprocal effortless IVF, which supposedly enables a double gestational motherhood. While in the first part, these techniques are examined singularly, in the second part a feasible combination of them is speculated. The idea is that assisted reproductive technologies could 'recombine' genetic and gestational motherhood in two figures that include both, namely in two 'complete' biological mothers, both genetic and gestational.
Collapse
|
5
|
Barresi M, Dal Santo G, Izzo R, Zauli A, Lamantea E, Caporali L, Ghezzi D, Legati A. Bioinformatics Tools for NGS-Based Identification of Single Nucleotide Variants and Large-Scale Rearrangements in Mitochondrial DNA. BIOTECH 2025; 14:9. [PMID: 39982276 PMCID: PMC11843820 DOI: 10.3390/biotech14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025] Open
Abstract
The unique features of mitochondrial DNA (mtDNA), including its circular and multicopy nature, the possible coexistence of wild-type and mutant molecules (i.e., heteroplasmy) and the presence of nuclear mitochondrial DNA segments (NUMTs), make the diagnosis of mtDNA diseases particularly challenging. The extensive deployment of next-generation sequencing (NGS) technologies has significantly advanced the diagnosis of mtDNA-related diseases. However, the vast amounts and diverse types of sequencing data complicate the interpretation of these variants. From sequence alignment to variant calling, NGS-based mtDNA sequencing requires specialized bioinformatics tools, adapted for the mitochondrial genome. This study presents the use of new bioinformatics approaches, optimized for short- and long-read sequencing data, to enhance the accuracy of mtDNA analysis in diagnostics. Two recent and emerging free bioinformatics tools, Mitopore and MitoSAlt, were evaluated on patients previously diagnosed with single nucleotide variants or large-scale deletions. Analyses were performed in Linux-based environments and web servers implemented in Python, Perl, Java, and R. The results indicated that each tool demonstrated high sensitivity and specific accuracy in identifying and quantifying various types of pathogenic variants. The study suggests that the integrated and parallel use of these tools offers a significant advantage over traditional methods in interpreting mtDNA genetic variants, reducing the computational demands, and provides an accurate diagnostic solution.
Collapse
Affiliation(s)
- Marco Barresi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (M.B.); (G.D.S.); (R.I.); (E.L.); (A.L.)
| | - Giulia Dal Santo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (M.B.); (G.D.S.); (R.I.); (E.L.); (A.L.)
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Rossella Izzo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (M.B.); (G.D.S.); (R.I.); (E.L.); (A.L.)
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Andrea Zauli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (M.B.); (G.D.S.); (R.I.); (E.L.); (A.L.)
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (M.B.); (G.D.S.); (R.I.); (E.L.); (A.L.)
| | - Leonardo Caporali
- Laboratory of Neurogenetics, IRCCS Institute of Neurological Sciences, 40139 Bologna, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (M.B.); (G.D.S.); (R.I.); (E.L.); (A.L.)
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (M.B.); (G.D.S.); (R.I.); (E.L.); (A.L.)
| |
Collapse
|
6
|
Hemel IMGM, Arts ICW, Moerel M, Gerards M. The Matrix of Mitochondrial Imaging: Exploring Spatial Dimensions. Biomolecules 2025; 15:229. [PMID: 40001532 PMCID: PMC11853629 DOI: 10.3390/biom15020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Mitochondria play a crucial role in human biology, affecting cellular processes at the smallest spatial scale as well as those involved in the functionality of the whole system. Imaging is the most important research tool for studying the fundamental role of mitochondria across these diverse spatial scales. A wide array of available imaging techniques have enabled us to visualize mitochondrial structure and behavior, as well as their effect on cells and tissues in a range from micrometers to centimeters. Each of the various imaging techniques that are available offers unique advantages tailored to specific research needs. Selecting an appropriate technique suitable for the scale and application of interest is therefore crucial, but can be challenging due to the large range of possibilities. The aim of this review is two-fold. First, we provide an overview of the available imaging techniques and discuss their strengths and limitations for applications across the sub-mitochondrial, cellular, tissue and organ levels for the imaging of mitochondria. Second, we identify opportunities for novel applications and advancement in the field. We emphasize the importance of integration across scales in mitochondrial imaging studies, particularly to bridge the gap between microscopic and non-invasive techniques. While integrating these diverse scales is challenging, primarily because such multi-scale approaches require expertise that spans different imaging modalities, we argue that integration has the potential to provide groundbreaking insights into mitochondrial biology. By providing a comprehensive overview of imaging techniques, this review paves the way for multi-scale imaging initiatives in mitochondrial research.
Collapse
|
7
|
Halfon M, Memon AA, Hedelius A, Pascual M, Sundquist K, Ribi C. Lower circulating mitochondrial DNA and increased mitokines suggest significant mitochondrial dysfunction in systemic lupus erythematosus with renal involvement. Lupus Sci Med 2025; 12:e001368. [PMID: 39900408 PMCID: PMC11795360 DOI: 10.1136/lupus-2024-001368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND SLE is associated with significant morbidity, especially in the case of renal involvement. Mitochondrial dysfunction plays a significant role in SLE and may be assessed by measuring mitochondrial DNA (mtDNA) and cytokines reflecting mitochondrial stress (mitokines). Circulating mtDNA is a promising biomarker in SLE and appears to be reduced in severe SLE. However, measuring circulating mtDNA is challenging and reported methods are heterogenous. Our study aimed at evaluating whole blood mtDNA to nuclear DNA (nucDNA) ratio using droplet-digital PCR and circulating mitokines, growth differentiation factor 15 (GDF-15) and fibroblast growth factor 21 in SLE with and without renal involvement. METHODS Cross-sectional study involving 195 patients with SLE and age-matched healthy volunteers (HV) as control. Biomarkers were compared in patients with and without renal involvement (defined by estimated glomerular filtration rate <60 mL/min or proteinuria >0.5 g/day) and in those with active and inactive SLE. RESULTS Compared with HV, patients with SLE displayed lower mtDNA/nucDNA ratios, especially in the case of renal involvement. Accordingly, mitokines were increased in patients with SLE with renal involvement. We found no correlation between mtDNA/nucDNA ratio and global disease activity. Mitokine levels, on the other hand, correlated with disease activity, in particular GDF-15 even after adjusting for renal involvement. CONCLUSION Our findings suggest that lower whole blood mtDNA/nucDNA ratio, a surrogate marker for mitochondrial dysfunction, reflects renal damage, while GDF-15 may also reflect disease activity in SLE. Further studies are needed to assess the clinical value of these markers as predictors for active lupus nephritis.
Collapse
Affiliation(s)
- Matthieu Halfon
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Anna Hedelius
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Manuel Pascual
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Camillo Ribi
- Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
8
|
Zhuang F, Huang S, Liu L. MALSU1-mediated regulation of mitochondrial function governs proliferation and doxorubicin resistance in triple-negative breast cancer cells. Mol Cell Biochem 2025; 480:1197-1207. [PMID: 38896203 DOI: 10.1007/s11010-024-05053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a formidable challenge in oncology due to its aggressive nature and limited treatment options. Although doxorubicin, a widely used chemotherapeutic agent, shows efficacy in TNBC treatment, acquired resistance remains a significant obstacle. Our study explores the role of MALSU1, a regulator of mitochondrial translation, in TNBC and its impact on cell proliferation and doxorubicin resistance. We observed increased MALSU1 expression in TNBC, correlating with poor patient prognosis. MALSU1 knockdown in TNBC cells significantly reduced proliferation, indicating its pivotal role in sustaining cell growth. Mechanistically, MALSU1 depletion resulted in decreased activities of mitochondrial respiratory chain complexes, cellular ATP levels, and mitochondrial respiration. Notably, exogenous addition of normal mitochondria restored proliferation and mitochondrial respiration in MALSU1-depleted TNBC cells. Importantly, MALSU1 knockdown enhanced the sensitivity of doxorubicin-resistant TNBC cells to doxorubicin treatment. Furthermore, pharmacological inhibition of mitochondrial translation using tigecycline and chloramphenicol mimicked the effects of MALSU1 knockdown, suggesting mitochondrial translation as a potential therapeutic target. Taken together, our findings not only elucidate the intricate role of MALSU1 in TNBC biology and doxorubicin resistance but also lay the groundwork for future investigations targeting MALSU1 and/or mitochondrial translation as a promising avenue for developing innovative therapeutic strategies against TNBC.
Collapse
Affiliation(s)
- Feifei Zhuang
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Shaoyan Huang
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Lei Liu
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China.
| |
Collapse
|
9
|
Murillo Carrasco AG, Chammas R, Furuya TK. Mitochondrial DNA alterations in precision oncology: Emerging roles in diagnostics and therapeutics. Clinics (Sao Paulo) 2025; 80:100570. [PMID: 39884256 PMCID: PMC11830334 DOI: 10.1016/j.clinsp.2024.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 02/01/2025] Open
Abstract
Mitochondria are dynamic organelles essential for vital cellular functions, including ATP production, apoptosis regulation, and calcium homeostasis. Increasing research has highlighted the significance of mitochondrial DNA (mtDNA) content and alterations in the development and progression of various diseases, including cancer. The high mutation rate and vulnerability of mtDNA to damage make these alterations valuable biomarkers for cancer diagnosis, monitoring disease progression, detecting metastasis, and predicting treatment resistance across different tumor types. This review explores the emerging roles of mtDNA alterations in precision oncology, emphasizing their potential in theranostics. The authors explore the mechanisms by which mtDNA mutations contribute to tumorigenesis and therapy resistance, the impact of heteroplasmy in cancer biology, and the integration of mtDNA-based diagnostics with current therapeutic strategies. Additionally, the authors highlight the experimental tools and models currently used to investigate mtDNA alterations in cancer, including advanced sequencing technologies and animal models.
Collapse
Affiliation(s)
- Alexis Germán Murillo Carrasco
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil.
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil.
| | - Tatiane Katsue Furuya
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Chen X, Sun T, Qi Y, Zhu B, Li L, Yu J, Ding Z, Zhou F. Paeoniflorin ameliorates reperfusion injury in H9C2 cells through SIRT1-PINK1/parkin-mediated mitochondrial autophagy. Mol Immunol 2025; 177:32-43. [PMID: 39693775 DOI: 10.1016/j.molimm.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) injury is a serious health problem, which can seriously affect the recovery of patients with myocardial infarction and even lead to death. Paeoniflorin (PF) is a potential therapeutic drug to prevent reperfusion injury. However, the mechanism of PF in MIRI is not clear. Compared with other cells, cardiomyocytes have the largest number of mitochondria. Therefore, this study researched the protective mechanism of paeoniflorin pretreatment on myocardial ischemia-reperfusion injury (AMI) from the perspective of mitochondrial autophagy. Paeoniflorin was given or not given to H9C2 cells 12 h before reperfusion. Pretreatment of paeoniflorin can significantly increase the viability of H9C2 cells and inhibit the increase of ROS secretion induced by OGD/R. The increase of MDC autophagy fluorescence and mitochondrial membrane potential (MMP) suggested that the myocardial protective effect of paeoniflorin may also be related to mitochondrial autophagy. Next, we detected the related signals in the classical mitochondrial autophagy pathway of PINK1/parkin by Q-PCR and Western blots. The results showed that the pretreatment of paeoniflorin could promote the levels of SIRT1, Beclin1, PINK1, parkin and LC3, inhibit the level of P62. In order to further clarify whether paeoniflorin-induced SIRT1 activation is necessary for autophagy and its potential mechanism, we detected the autophagy level of H9C2 cells with SIRT1 inhibitor (EX527). The results showed that after pretreatment of EX527, the protective effect of paeoniflorin on oxidative damage and autophagy pathway was significantly decreased. The mechanism may relate to SIRT1-PINK1/parkin mitochondrial autophagy pathway. In summary, these results suggested that paeoniflorin may protect H9C2 cells from OGD/R damage by activating SIRT1-PINK1/parkin pathway. This provides new experimental basis for paeoniflorin in the treatment of MIRI.
Collapse
Affiliation(s)
- Xingcan Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Tong Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yuxiang Qi
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Lan Li
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jie Yu
- Puer Kunhong Biotechnology Company, Group C of Chamagu Town A, Simao District, Puer, Yunnan 665000, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
11
|
Mance Kristan R, Jurgec S, Potočnik U, Marhl M, Gašperšič R. The Association Between Periodontal Inflamed Surface Area (PISA), Inflammatory Biomarkers, and Mitochondrial DNA Copy Number. J Clin Med 2024; 14:24. [PMID: 39797107 PMCID: PMC11721330 DOI: 10.3390/jcm14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Periodontitis is an inflammatory disease induced by bacteria in dental plaque that can activate the host's immune-inflammatory response and invade the bloodstream. We hypothesized that a higher periodontal inflamed surface area (PISA) is associated with higher levels of inflammatory biomarkers, lower levels of antioxidants, and mitochondrial DNA copy number (mtDNAcn). Methods: Using periodontal parameters, we calculated the PISA score, measured the levels of inflammatory biomarkers and antioxidants in the serum, and took buccal swabs for mtDNA and nuclear DNA (nDNA) extraction. Results: Higher PISA was associated with higher CRP levels, higher leukocyte, neutrophil, and erythrocyte counts, and lower magnesium-to-calcium ratio, but not with mtDNAcn. A higher number of deep pockets was associated with higher leukocytes and neutrophil counts and higher uric acid levels. Conclusions: The PISA score might be an appropriate parameter to assess the inflammatory burden of periodontitis, but not to assess mitochondrial dysfunction after mtDNA isolation from buccal swabs.
Collapse
Affiliation(s)
- Romana Mance Kristan
- Community Health Centre dr. Adolf Drolc Maribor, Ulica talcev 9, 2000 Maribor, Slovenia
- Department of Periodontology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Staša Jurgec
- Centre for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology & Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Centre for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology & Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Marko Marhl
- Department of Biophysics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Faculty of Education, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Rok Gašperšič
- Department of Oral Medicine and Periodontology, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Boumajdi N, Bendani H, Belyamani L, Ibrahimi A. TreeWave: command line tool for alignment-free phylogeny reconstruction based on graphical representation of DNA sequences and genomic signal processing. BMC Bioinformatics 2024; 25:367. [PMID: 39604838 PMCID: PMC11600722 DOI: 10.1186/s12859-024-05992-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Genomic sequence similarity comparison is a crucial research area in bioinformatics. Multiple Sequence Alignment (MSA) is the basic technique used to identify regions of similarity between sequences, although MSA tools are widely used and highly accurate, they are often limited by computational complexity, and inaccuracies when handling highly divergent sequences, which leads to the development of alignment-free (AF) algorithms. RESULTS This paper presents TreeWave, a novel AF approach based on frequency chaos game representation and discrete wavelet transform of sequences for phylogeny inference. We validate our method on various genomic datasets such as complete virus genome sequences, bacteria genome sequences, human mitochondrial genome sequences, and rRNA gene sequences. Compared to classical methods, our tool demonstrates a significant reduction in running time, especially when analyzing large datasets. The resulting phylogenetic trees show that TreeWave has similar classification accuracy to the classical MSA methods based on the normalized Robinson-Foulds distances and Baker's Gamma coefficients. CONCLUSIONS TreeWave is an open source and user-friendly command line tool for phylogeny reconstruction. It is a faster and more scalable tool that prioritizes computational efficiency while maintaining accuracy. TreeWave is freely available at https://github.com/nasmaB/TreeWave .
Collapse
Affiliation(s)
- Nasma Boumajdi
- Laboratory of Biotechnology (MedBiotech), Rabat Medical & Pharmacy School, Bioinova Research Center, Mohammed V University in Rabat, Rabat, Morocco
| | - Houda Bendani
- Laboratory of Biotechnology (MedBiotech), Rabat Medical & Pharmacy School, Bioinova Research Center, Mohammed V University in Rabat, Rabat, Morocco
| | - Lahcen Belyamani
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
- Emergency Department, Military Hospital Mohammed V, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Laboratory of Biotechnology (MedBiotech), Rabat Medical & Pharmacy School, Bioinova Research Center, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
13
|
Kumar A, Choudhary A, Munshi A. Epigenetic reprogramming of mtDNA and its etiology in mitochondrial diseases. J Physiol Biochem 2024; 80:727-741. [PMID: 38865050 DOI: 10.1007/s13105-024-01032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mitochondrial functionality and its regulation are tightly controlled through a balanced crosstalk between the nuclear and mitochondrial DNA interactions. Epigenetic signatures like methylation, hydroxymethylation and miRNAs have been reported in mitochondria. In addition, epigenetic signatures encoded by nuclear DNA are also imported to mitochondria and regulate the gene expression dynamics of the mitochondrial genome. Alteration in the interplay of these epigenetic modifications results in the pathogenesis of various disorders like neurodegenerative, cardiovascular, metabolic disorders, cancer, aging and senescence. These modifications result in higher ROS production, increased mitochondrial copy number and disruption in the replication process. In addition, various miRNAs are associated with regulating and expressing important mitochondrial gene families like COX, OXPHOS, ND and DNMT. Epigenetic changes are reversible and therefore therapeutic interventions like changing the target modifications can be utilized to repair or prevent mitochondrial insufficiency by reversing the changed gene expression. Identifying these mitochondrial-specific epigenetic signatures has the potential for early diagnosis and treatment responses for many diseases caused by mitochondrial dysfunction. In the present review, different mitoepigenetic modifications have been discussed in association with the development of various diseases by focusing on alteration in gene expression and dysregulation of specific signaling pathways. However, this area is still in its infancy and future research is warranted to draw better conclusions.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
14
|
Alfei S, Giannoni P, Signorello MG, Torazza C, Zuccari G, Athanassopoulos CM, Domenicotti C, Marengo B. The Remarkable and Selective In Vitro Cytotoxicity of Synthesized Bola-Amphiphilic Nanovesicles on Etoposide-Sensitive and -Resistant Neuroblastoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1505. [PMID: 39330662 PMCID: PMC11434613 DOI: 10.3390/nano14181505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Neuroblastoma (NB) is a solid tumor occurring in infancy and childhood. Its high-risk form has currently a survival rate <50%, despite aggressive treatments. This worrying scenario is worsened by drug-induced secondary tumorigenesis and the emergency of drug resistance, calling for the urgent development of new extra-genomic treatments. Triphenyl phosphonium salts (TPPs) are mitochondria-targeting compounds that exert anticancer effects, impair mitochondria functions, and damage DNA at the same time. Despite several biochemical applications, TPP-based bola-amphiphiles self-assembling nanoparticles (NPs) in water have never been tested as antitumor agents. Here, with the aim of developing new antitumor devices to also counteract resistant forms of HR-NB, the anticancer effects of a TPP-based bola-amphiphile molecule have been investigated in vitro for the first time. To this end, we considered the previously synthesized and characterized sterically hindered quaternary phosphonium salt (BPPB). It embodies both the characteristics of mitochondria-targeting compounds and those of bola-amphiphiles. The anticancer effects of BPPB were assessed against HTLA-230 human stage-IV NB cells and their counterpart, which is resistant to etoposide (ETO), doxorubicin (DOX), and many other therapeutics (HTLA-ER). Very low IC50 values of 0.2 µM on HTLA-230 and 1.1 µM on HTLA-ER (538-fold lower than that of ETO) were already determined after 24 h of treatment. The very low cell viability observed after 24 h did not significantly differ from that observed for the longest exposure timing. The putative future inclusion of BPPB in a chemotherapeutic cocktail for HR-NB was assessed by investigating in vitro its cytotoxic effects against mammalian cell lines. These included monkey kidney cells (Cos-7, IC50 = 4.9 µM), human hepatic cells (HepG2, IC50 = 9.6 µM), a lung-derived fibroblast cell line (MRC-5, IC50 = 2.8 µM), and red blood cells (RBCs, IC50 = 14.9 µM). Appreciable to very high selectivity indexes (SIs) have been determined after 24 h treatments (SIs = 2.5-74.6), which provided evidence that both NB cell populations were already fully exterminated. These in vitro results pave the way for future investigations of BPPB on animal models and upon confirmation for the possible development of BPPB as a novel therapeutic to treat MDR HR-NB cells.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (G.Z.)
| | - Paolo Giannoni
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (P.G.); (C.D.)
| | - Maria Grazia Signorello
- Biochemistry Laboratory, Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy;
| | - Carola Torazza
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (G.Z.)
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (G.Z.)
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| | | | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (P.G.); (C.D.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (P.G.); (C.D.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
15
|
Zhao T, Li A, Reese B, Cong Q, Corwin EJ, Taylor SN, Matson A, Chen MH, Alder NN, Cong X. Association between mitochondrial DNA copy number and neurodevelopmental outcomes among black and white preterm infants up to two years of age. INTERDISCIPLINARY NURSING RESEARCH 2024; 3:149-156. [PMID: 39554223 PMCID: PMC11567671 DOI: 10.1097/nr9.0000000000000071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 11/19/2024]
Abstract
Objectives Mitochondrial DNA copy number (mtDNAcn) is associated with mitochondrial function, with abnormal copy numbers having been linked to various disease states. Our study aims to understand the association between infant mtDNAcn and infant neurodevelopment, as well as the association with racial disparities. Methods A longitudinal study was conducted with 55 preterm infants from whom a single blood sample was collected during their Neonatal intensive care unit (NICU) stay and used to analyze mtDNAcn. In addition, the NICU Network Neurobehavioral Scale at 36-38 postmenstrual age (PMA) and the Bayley Scale of Infant and Toddler Development (Bayley) Edition III at 1 and 2 years of corrected age were both conducted. Linear regression models were performed to investigate the relationship between infant clinical characteristics, infant neurobehavioral outcomes, and mtDNAcn. Results The majority of infants studied were white (72.73%), non-Hispanic (70.91%), males (54.55%), delivered through C-section (72.73%), and without preterm premature rupture of membrane (76.36%). Increased mtDNAcn was associated with younger birth gestational age (<30.57 wk, P < 0.001). In addition, the opposite associations between mtDNAcn and neurodevelopmental outcomes were observed between white and black infants up to 1 year of gestational age. Conclusions Increased mtDNAcn in white infants, and decreased mtDNAcn in black infants may be considered significant predictors of poor early-life neurodevelopmental outcomes in infants. A better understanding of the underlying mechanisms contributing to infant disparity in mtDNAcn and how low or high copy number impacts infant outcomes is essential.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Nursing, Yale University, Orange, CT, USA
- School of Nursing, Columbia University, New York, NY, USA
| | - Aolan Li
- Department of Statistics, University of Connecticut, Storrs, CT, USA
| | - Bo Reese
- Center for Genome Innovation, University of Connecticut, Storrs, CT, USA
| | - Qianzi Cong
- School of Engineering, University of Southern California, Los Angeles, CA, USA
| | | | - Sarah N. Taylor
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Adam Matson
- Division of Neonatology, Connecticut Children’s Medical Center, Hartford, CT, USA
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, CT, USA
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Xiaomei Cong
- School of Nursing, Yale University, Orange, CT, USA
| |
Collapse
|
16
|
Chu S, Ren X, Cao L, Ma C, Wang K. HOXC11-mediated regulation of mitochondrial function modulates chemoresistance in colorectal cancer. BMC Cancer 2024; 24:921. [PMID: 39080613 PMCID: PMC11290094 DOI: 10.1186/s12885-024-12698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Chemoresistance remains a significant challenge in colorectal cancer (CRC) treatment, necessitating a deeper understanding of its underlying mechanisms. HOXC11 has emerged as a potential regulator in various cancers, but its role in CRC chemoresistance remains unclear. METHODS Sulforhodamine B assay was employed to assess the cell viability of CRC cells following treatment with chemotherapeutic drugs. Immunofluorescence staining was performed to examine the subcellular localization of HOXC11 in normal and chemoresistant CRC cells. The Seahorse mito stress test was conducted to evaluate the mitochondrial respiratory function of CRC cells. Real-time PCR was utilized to measure the expression level and copy number of mitochondrial DNA (mtDNA). RESULTS Our findings revealed that HOXC11 was overexpressed in CRC cells compared to normal colorectal cells and correlated with poorer prognosis in CRC patients. Knockout of HOXC11 reversed acquired chemoresistance in CRC cells. Furthermore, we observed a functional subset of HOXC11 localized to the mitochondria in chemoresistant CRC cells, which regulated mitochondrial function by modulating mtDNA transcription, thereby affecting chemoresistance. CONCLUSIONS In summary, our study reveals that HOXC11 regulates mitochondrial function through the modulation of mtDNA transcription, impacting chemoresistance in colorectal cancer cells. These findings underscore the significance of understanding the molecular mechanisms underlying chemoresistance and highlight the potential therapeutic implications of targeting mitochondrial function in CRC treatment.
Collapse
Affiliation(s)
- Shicheng Chu
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiang Ren
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lianmeng Cao
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chong Ma
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Kai Wang
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
17
|
Choi EH, Kim MH, Park SJ. Targeting Mitochondrial Dysfunction and Reactive Oxygen Species for Neurodegenerative Disease Treatment. Int J Mol Sci 2024; 25:7952. [PMID: 39063194 PMCID: PMC11277296 DOI: 10.3390/ijms25147952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases, and they affect millions of people worldwide, particularly older individuals. Therefore, there is a clear need to develop novel drug targets for the treatment of age-related neurodegenerative diseases. Emerging evidence suggests that mitochondrial dysfunction and reactive oxygen species (ROS) generation play central roles in the onset and progression of neurodegenerative diseases. Mitochondria are key regulators of respiratory function, cellular energy adenosine triphosphate production, and the maintenance of cellular redox homeostasis, which are essential for cell survival. Mitochondrial morphology and function are tightly regulated by maintaining a balance among mitochondrial fission, fusion, biogenesis, and mitophagy. In this review, we provide an overview of the main functions of mitochondria, with a focus on recent progress highlighting the critical role of ROS-induced oxidative stress, dysregulated mitochondrial dynamics, mitochondrial apoptosis, mitochondria-associated inflammation, and impaired mitochondrial function in the pathogenesis of age-related neurodegenerative diseases, such as AD and PD. We also discuss the potential of mitochondrial fusion and biogenesis enhancers, mitochondrial fission inhibitors, and mitochondria-targeted antioxidants as novel drugs for the treatment of these diseases.
Collapse
Affiliation(s)
| | | | - Sun-Ji Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea; (E.-H.C.); (M.-H.K.)
| |
Collapse
|
18
|
Laird M, Ku JC, Raiten J, Sriram S, Moore M, Li Y. Mitochondrial metabolism regulation and epigenetics in hypoxia. Front Physiol 2024; 15:1393232. [PMID: 38915781 PMCID: PMC11194441 DOI: 10.3389/fphys.2024.1393232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
The complex and dynamic interaction between cellular energy control and gene expression modulation is shown by the intersection between mitochondrial metabolism and epigenetics in hypoxic environments. Poor oxygen delivery to tissues, or hypoxia, is a basic physiological stressor that sets off a series of reactions in cells to adapt and endure oxygen-starved environments. Often called the "powerhouse of the cell," mitochondria are essential to cellular metabolism, especially regarding producing energy through oxidative phosphorylation. The cellular response to hypoxia entails a change in mitochondrial metabolism to improve survival, including epigenetic modifications that control gene expression without altering the underlying genome. By altering the expression of genes involved in angiogenesis, cell survival, and metabolism, these epigenetic modifications help cells adapt to hypoxia. The sophisticated interplay between mitochondrial metabolism and epigenetics in hypoxia is highlighted by several important points, which have been summarized in the current article. Deciphering the relationship between mitochondrial metabolism and epigenetics during hypoxia is essential to understanding the molecular processes that regulate cellular adaptation to reduced oxygen concentrations.
Collapse
Affiliation(s)
- Madison Laird
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jacob Raiten
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Sashwat Sriram
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Megan Moore
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Department of Orthopaedic Surgery, Biomedical Engineering, Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
19
|
Halfon M, Tankeu AT, Ribi C. Mitochondrial Dysfunction in Systemic Lupus Erythematosus with a Focus on Lupus Nephritis. Int J Mol Sci 2024; 25:6162. [PMID: 38892349 PMCID: PMC11173067 DOI: 10.3390/ijms25116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease affecting mostly women of child-bearing age. Immune dysfunction in SLE results from disrupted apoptosis which lead to an unregulated interferon (IFN) stimulation and the production of autoantibodies, leading to immune complex formation, complement activation, and organ damage. Lupus nephritis (LN) is a common and severe complication of SLE, impacting approximately 30% to 40% of SLE patients. Recent studies have demonstrated an alteration in mitochondrial homeostasis in SLE patients. Mitochondrial dysfunction contributes significantly to SLE pathogenesis by enhancing type 1 IFN production through various pathways involving neutrophils, platelets, and T cells. Defective mitophagy, the process of clearing damaged mitochondria, exacerbates this cycle, leading to increased immune dysregulation. In this review, we aim to detail the physiopathological link between mitochondrial dysfunction and disease activity in SLE. Additionally, we will explore the potential role of mitochondria as biomarkers and therapeutic targets in SLE, with a specific focus on LN. In LN, mitochondrial abnormalities are observed in renal cells, correlating with disease progression and renal fibrosis. Studies exploring cell-free mitochondrial DNA as a biomarker in SLE and LN have shown promising but preliminary results, necessitating further validation and standardization. Therapeutically targeting mitochondrial dysfunction in SLE, using drugs like metformin or mTOR inhibitors, shows potential in modulating immune responses and improving clinical outcomes. The interplay between mitochondria, immune dysregulation, and renal involvement in SLE and LN underscores the need for comprehensive research and innovative therapeutic strategies. Understanding mitochondrial dynamics and their impact on immune responses offers promising avenues for developing personalized treatments and non-invasive biomarkers, ultimately improving outcomes for LN patients.
Collapse
Affiliation(s)
- Matthieu Halfon
- Transplantation Center, Lausanne University Hospital, Rue du Bugnon 44, CH-1010 Lausanne, Switzerland;
| | - Aurel T. Tankeu
- Transplantation Center, Lausanne University Hospital, Rue du Bugnon 44, CH-1010 Lausanne, Switzerland;
| | - Camillo Ribi
- Division of Immunology and Allergy, Lausanne University Hospital, CH-1010 Lausanne, Switzerland;
| |
Collapse
|
20
|
Zhuang F, Huang S, Liu L. PYCR3 modulates mtDNA copy number to drive proliferation and doxorubicin resistance in triple-negative breast cancer. Int J Biochem Cell Biol 2024; 171:106581. [PMID: 38642827 DOI: 10.1016/j.biocel.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Triple-negative breast cancer (TNBC) poses significant challenges in treatment due to its aggressive nature and limited therapeutic targets. Understanding the underlying molecular mechanisms driving TNBC progression and chemotherapy resistance is imperative for developing effective therapeutic strategies. Thus, in this study, we aimed to elucidate the role of pyrroline-5-carboxylate reductase 3 (PYCR3) in TNBC pathogenesis and therapeutic response. We observed that PYCR3 is significantly upregulated in TNBC specimens compared to normal breast tissues, correlating with a poorer prognosis in TNBC patients. Knockdown of PYCR3 not only suppresses TNBC cell proliferation but also reverses acquired resistance of TNBC cells to doxorubicin, a commonly used chemotherapeutic agent. Mechanistically, we identified the mitochondrial localization of PYCR3 in TNBC cells and demonstrated its impact on TNBC cell proliferation and sensitivity to doxorubicin through the regulation of mtDNA copy number and mitochondrial respiration. Importantly, Selective reduction of mtDNA copy number using the mtDNA replication inhibitor 2', 3'-dideoxycytidine effectively recapitulates the phenotypic effects observed in PYCR3 knockout, resulting in decreased TNBC cell proliferation and the reversal of doxorubicin resistance through apoptosis induction. Thus, our study underscores the clinical relevance of PYCR3 and highlight its potential as a therapeutic target in TNBC management. By elucidating the functional significance of PYCR3 in TNBC, our findings contribute to a deeper understanding of TNBC biology and provide a foundation for developing novel therapeutic strategies aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Feifei Zhuang
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong, China
| | - Shaoyan Huang
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong, China
| | - Lei Liu
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong, China.
| |
Collapse
|
21
|
Ferreira T, Rodriguez S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes (Basel) 2024; 15:617. [PMID: 38790246 PMCID: PMC11121663 DOI: 10.3390/genes15050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA's high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease.
Collapse
Affiliation(s)
- Tomas Ferreira
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK
| | - Santiago Rodriguez
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| |
Collapse
|
22
|
Alique M, Mas-Bargues C. Mitochondria: A new member involved in stem cell senescence. An extended commentary on "Mitochondria pleiotropism in stem cell senescence: Mechanisms and therapeutic approaches by Mas-Bargues C. [Free Radic. Biol. Med. (2023) Nov 1;208:657-671. doi:10.1016/j.freeradbiomed.2023.09.019]. Free Radic Biol Med 2024; 213:426-429. [PMID: 38301973 DOI: 10.1016/j.freeradbiomed.2024.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Affiliation(s)
- Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871, Madrid, Spain; Spain/Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010, Valencia, Spain
| |
Collapse
|
23
|
Selheim F, Aasebø E, Bruserud Ø, Hernandez-Valladares M. High Mitochondrial Protein Expression as a Potential Predictor of Relapse Risk in Acute Myeloid Leukemia Patients with the Monocytic FAB Subtypes M4 and M5. Cancers (Basel) 2023; 16:8. [PMID: 38201437 PMCID: PMC10778527 DOI: 10.3390/cancers16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
AML is a highly aggressive and heterogeneous form of hematological cancer. Proteomics-based stratification of patients into more refined subgroups may contribute to a more precise characterization of the patient-derived AML cells. Here, we reanalyzed liquid chromatography-tandem mass spectrometry (LC-MS/MS) generated proteomic and phosphoproteomic data from 26 FAB-M4/M5 patients. The patients achieved complete hematological remission after induction therapy. Twelve of them later developed chemoresistant relapse (RELAPSE), and 14 patients were relapse-free (REL_FREE) long-term survivors. We considered not only the RELAPSE and REL_FREE characteristics but also integrated the French-American-British (FAB) classification, along with considering the presence of nucleophosmin 1 (NPM1) mutation and cytogenetically normal AML. We found a significant number of differentially enriched proteins (911) and phosphoproteins (257) between the various FAB subtypes in RELAPSE patients. Patients with the myeloblastic M1/M2 subtype showed higher levels of RNA processing-related routes and lower levels of signaling related to terms like translation and degranulation when compared with the M4/M5 subtype. Moreover, we found that a high abundance of proteins associated with mitochondrial translation and oxidative phosphorylation, particularly observed in the RELAPSE M4/M5 NPM1 mutated subgroup, distinguishes relapsing from non-relapsing AML patient cells with the FAB subtype M4/M5. Thus, the discovery of subtype-specific biomarkers through proteomic profiling may complement the existing classification system for AML and potentially aid in selecting personalized treatment strategies for individual patients.
Collapse
Affiliation(s)
- Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (Ø.B.)
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (Ø.B.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Physical Chemistry, Institute of Biotechnology, Excellence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
24
|
Zeber-Lubecka N, Ciebiera M, Hennig EE. Polycystic Ovary Syndrome and Oxidative Stress-From Bench to Bedside. Int J Mol Sci 2023; 24:14126. [PMID: 37762427 PMCID: PMC10531631 DOI: 10.3390/ijms241814126] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress (OS) is a condition that occurs as a result of an imbalance between the production of reactive oxygen species (ROS) and the body's ability to detoxify and neutralize them. It can play a role in a variety of reproductive system conditions, including polycystic ovary syndrome (PCOS), endometriosis, preeclampsia, and infertility. In this review, we briefly discuss the links between oxidative stress and PCOS. Mitochondrial mutations may lead to impaired oxidative phosphorylation (OXPHOS), decreased adenosine triphosphate (ATP) production, and an increased production of ROS. These functional consequences may contribute to the metabolic and hormonal dysregulation observed in PCOS. Studies have shown that OS negatively affects ovarian follicles and disrupts normal follicular development and maturation. Excessive ROS may damage oocytes and granulosa cells within the follicles, impairing their quality and compromising fertility. Impaired OXPHOS and mitochondrial dysfunction may contribute to insulin resistance (IR) by disrupting insulin signaling pathways and impairing glucose metabolism. Due to dysfunctional OXPHOS, reduced ATP production, may hinder insulin-stimulated glucose uptake, leading to IR. Hyperandrogenism promotes inflammation and IR, both of which can increase the production of ROS and lead to OS. A detrimental feedback loop ensues as IR escalates, causing elevated insulin levels that exacerbate OS. Exploring the relations between OS and PCOS is crucial to fully understand the role of OS in the pathophysiology of PCOS and to develop effective treatment strategies to improve the quality of life of women affected by this condition. The role of antioxidants as potential therapies is also discussed.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
25
|
Bellamri M, Brandt K, Cammerrer K, Syeda T, Turesky RJ, Cannon JR. Nuclear DNA and Mitochondrial Damage of the Cooked Meat Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5- b]pyridine in Human Neuroblastoma Cells. Chem Res Toxicol 2023; 36:1361-1373. [PMID: 37421305 PMCID: PMC10626466 DOI: 10.1021/acs.chemrestox.3c00109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Animal fat and iron-rich diets are risk factors for Parkinson's disease (PD). The heterocyclic aromatic amines (HAAs) harman and norharman are neurotoxicants formed in many foods and beverages, including cooked meats, suggesting a role for red meat in PD. The structurally related carcinogenic HAAs 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) also form in cooked meats. We investigated the cytotoxicity, DNA-damaging potential, and mitochondrial damage of HAAs and their genotoxic HONH-HAA metabolites in galactose-dependent SH-SY5Y cells, a human neuroblastoma cell line relevant for PD-related neurotoxicity. All HAAs and HONH-HAAs induced weak toxicity except HONH-PhIP, which was 1000-fold more potent than the other chemicals. HONH-PhIP DNA adduct formation occurred at 300-fold higher levels than adducts formed with HONH-MeIQx and HONH-AαC, assuming similar cellular uptake rates. PhIP-DNA adduct levels occurred at concentrations as low as 1 nM and were threefold or higher and more persistent in mitochondrial DNA than nuclear DNA. N-Acetyltransferases (NATs), sulfotransferases, and kinases catalyzed PhIP-DNA binding and converted HONH-PhIP to highly reactive ester intermediates. DNA binding assays with cytosolic, mitochondrial, and nuclear fractions of SH-SY5Y fortified with cofactors revealed that cytosolic AcCoA-dependent enzymes, including NAT1, mainly carried out HONH-PhIP bioactivation to form N-acetoxy-PhIP, which binds to DNA. Furthermore, HONH-PHIP and N-acetoxy-PhIP inhibited mitochondrial complex-I, -II, and -III activities in isolated SH-SY5Y mitochondria. Mitochondrial respiratory chain complex dysfunction and DNA damage are major mechanisms in PD pathogenesis. Our data support the possible role of PhIP in PD etiology.
Collapse
Affiliation(s)
- Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Kyle Brandt
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Kari Cammerrer
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Tauqeerunnisa Syeda
- School of Health Sciences, Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Kapoor S, Young ND, Yang YT, Batterham P, Gasser RB, Bowles VM, Anstead CA, Perry T. Mitochondrial genomic investigation reveals a clear association between species and genotypes of Lucilia and geographic origin in Australia. Parasit Vectors 2023; 16:279. [PMID: 37573420 PMCID: PMC10423422 DOI: 10.1186/s13071-023-05902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Lucilia cuprina and L. sericata (family Calliphoridae) are globally significant ectoparasites of sheep. Current literature suggests that only one of these blowfly subspecies, L. cuprina dorsalis, is a primary parasite causing myiasis (flystrike) in sheep in Australia. These species and subspecies are difficult to distinguish using morphological features. Hence, being able to accurately identify blowflies is critical for diagnosis and for understanding their relationships with their hosts and environment. METHODS In this study, adult blowflies (5 pools of 17 flies; n = 85) were collected from five locations in different states [New South Wales (NSW), Queensland (QLD), Tasmania (TAS), Victoria (VIC) and Western Australia (WA)] of Australia and their mitochondrial (mt) genomes were assembled. RESULTS Each mt genome assembled was ~ 15 kb in size and encoded 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs and a control region. The Lucilia species mt genomes were conserved in structure, and the genes retained the same order and direction. The overall nucleotide composition was heavily biased towards As and Ts-77.7% of the whole genomes. Pairwise nucleotide diversity suggested divergence between Lucilia cuprina cuprina, L. c. dorsalis and L. sericata. Comparative analyses of these mt genomes with published data demonstrated that the blowflies collected from sheep farm in TAS clustered within a clade with L. sericata. The flies collected from an urban location in QLD were more closely related to L. sericata and represented the subspecies L. c. cuprina, whereas the flies collected from sheep farms in NSW, VIC and WA represented the subspecies L. c. dorsalis. CONCLUSIONS Phylogenetic analyses of the mt genomes representing Lucilia from the five geographic locations in Australia supported the previously demonstrated paraphyly of L. cuprina with respect to L. sericata and revealed that L. c. cuprina is distinct from L. c. dorsalis and that L. c. cuprina is more closely related to L. sericata than L. c. dorsalis. The mt genomes reported here provide an important molecular resource to develop tools for species- and subspecies-level identification of Lucilia from different geographical regions across Australia.
Collapse
Affiliation(s)
- Shilpa Kapoor
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Ying Ting Yang
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Philip Batterham
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Vernon M. Bowles
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Clare A. Anstead
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Trent Perry
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
27
|
Headley CA, Tsao PS. Building the case for mitochondrial transplantation as an anti-aging cardiovascular therapy. Front Cardiovasc Med 2023; 10:1141124. [PMID: 37229220 PMCID: PMC10203246 DOI: 10.3389/fcvm.2023.1141124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Mitochondrial dysfunction is a common denominator in both biological aging and cardiovascular disease (CVD) pathology. Understanding the protagonist role of mitochondria in the respective and independent progressions of CVD and biological aging will unravel the synergistic relationship between biological aging and CVD. Moreover, the successful development and implementation of therapies that can simultaneously benefit mitochondria of multiple cell types, will be transformational in curtailing pathologies and mortality in the elderly, including CVD. Several works have compared the status of mitochondria in vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) in CVD dependent context. However, fewer studies have cataloged the aging-associated changes in vascular mitochondria, independent of CVD. This mini review will focus on the present evidence related to mitochondrial dysfunction in vascular aging independent of CVD. Additionally, we discuss the feasibility of restoring mitochondrial function in the aged cardiovascular system through mitochondrial transfer.
Collapse
|
28
|
Li H, Kim H, Zhang C, Zeng S, Chen Q, Jia L, Wang J, Peng X, Yoon J. Mitochondria-targeted smart AIEgens: Imaging and therapeutics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Heidari MM, Khatami M, Kamalipour A, Kalantari M, Movahed M, Emmamy MH, Hadadzadeh M, Bragança J, Namnabat M, Mazrouei B. Mitochondrial mutations in protein coding genes of respiratory chain including complexes IV, V, and mt-tRNA genes are associated risk factors for congenital heart disease. EXCLI JOURNAL 2022; 21:1306-1330. [PMID: 36483916 PMCID: PMC9727243 DOI: 10.17179/excli2022-5298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/31/2022] [Indexed: 01/25/2023]
Abstract
Most studies aiming at unraveling the molecular events associated with cardiac congenital heart disease (CHD) have focused on the effect of mutations occurring in the nuclear genome. In recent years, a significant role has been attributed to mitochondria for correct heart development and maturation of cardiomyocytes. Moreover, numerous heart defects have been associated with nucleotide variations occurring in the mitochondrial genome, affecting mitochondrial functions and cardiac energy metabolism, including genes encoding for subunits of respiratory chain complexes. Therefore, mutations in the mitochondrial genome may be a major cause of heart disease, including CHD, and their identification and characterization can shed light on pathological mechanisms occurring during heart development. Here, we have analyzed mitochondrial genetic variants in previously reported mutational genome hotspots and the flanking regions of mt-ND1, mt-ND2, mt-COXI, mt-COXII, mt-ATPase8, mt-ATPase6, mt-COXIII, and mt-tRNAs (Ile, Gln, Met, Trp, Ala, Asn, Cys, Tyr, Ser, Asp, and Lys) encoding genes by polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) in 200 patients with CHD, undergoing cardiac surgery. A total of 23 mitochondrial variations (5 missense mutations, 8 synonymous variations, and 10 nucleotide changes in tRNA encoding genes) were identified and included 16 novel variants. Additionally, we showed that intracellular ATP was significantly reduced (P=0.002) in CHD patients compared with healthy controls, suggesting that the mutations have an impact on mitochondrial energy production. Functional and structural alterations caused by the mitochondrial nucleotide variations in the gene products were studied in-silico and predicted to convey a predisposing risk factor for CHD. Further studies are necessary to better understand the mechanisms by which the alterations identified in the present study contribute to the development of CHD in patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mehdi Hadadzadeh
- Department of Cardiac Surgery, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - José Bragança
- Faculty of Medicine and Biomedical Sciences, Algarve Biomedical Center Research Institute, University of Algarve, Faro, Portugal
| | | | | |
Collapse
|
30
|
Sbaoui Y, Ezaouine A, Toumi M, Farkas R, Kbaich MA, Habbane M, El Mouttaqui S, Kadiri FZ, El Messal M, Tóth E, Bennis F, Chegdani F. Effect of Climate on Bacterial and Archaeal Diversity of Moroccan Marine Microbiota. Microorganisms 2022; 10:microorganisms10081622. [PMID: 36014042 PMCID: PMC9414901 DOI: 10.3390/microorganisms10081622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
The Moroccan coast is characterized by a diversity of climate, reflecting a great richness and diversity of fauna and flora. By this, marine microbiota plays a fundamental role in many biogeochemical processes, environmental modifications, and responses to temperature changes. To date, no exploration by high-throughput techniques has been carried out on the characterization of the Moroccan marine microbiota. The objective of this work is to study the diversity and metabolic functions of MMM from the Moroccan coast (Atlantic and Mediterranean) according to the water source (WS) and the type of climate (CT) using the approach high-throughput sequencing of the 16SrRNA gene. Four water samples of twelve sampling sites from the four major climates along the Moroccan coastline were collected, and prokaryotic DNA was extracted. V4 region of 16S rRNA gene was amplified, and the product PCR was sequenced by Illumina Miseq. The β-diversity and α-diversity indices were determined to assess the species richness and evenness. The obtained results were analyzed by Mothur and R software. A total of twenty-eight Bacterial phyla and twelve Archaea were identified from the samples. Proteobacteria, Bacteroidetes, and Cyanobacteria are the three key bacterial phyla, and the Archaeal phyla identified are: Euryarchaeota, Nanoarchaeaeota, Crenarchaeota, Hydrothermarchaeota, Asgardaeota, Diapherotrites, and Thaumarchaeota in the Moroccan coastline and the four climates studied. The whole phylum are involved in marine biogeochemical cycles, and through their functions they participate in the homeostasis of the ocean in the presence of pollutants or stressful biotic and abiotic factors. In conclusion, the obtained results reported sufficient deepness of sequencing to cover the majority of Archaeal and Bacterial genera in each site. We noticed a strong difference in microbiota diversity, abundance, and taxonomy inter- and intra-climates and water source without significant differences in function. To better explore this diversity, other omic approaches can be applied such as the metagenomic shotgun, and transcriptomic approaches allowing a better characterization of the Moroccan marine microbiota and to understand the mechanisms of its adaptation and its impacts in/on the ecosystem.
Collapse
Affiliation(s)
- Yousra Sbaoui
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
- Correspondence: ; Tel.: +212-6634-40077
| | - Abdelkarim Ezaouine
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Marwene Toumi
- Department of Microbiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Rózsa Farkas
- Department of Microbiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Mouad Ait Kbaich
- Departement of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mouna Habbane
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain
- Laboratoire Biologie et Santé, Faculté des Sciences Ben M’Sick, Hassan II University of Casablanca, Sidi Othman, Casablanca 20670, Morocco
| | - Sara El Mouttaqui
- Department of Biology, Immunophysiopathology, Biochemistry and Biotechnology Laboratory, Faculty of Science Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Fatem Zahra Kadiri
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Mariame El Messal
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Erika Tóth
- Department of Microbiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Faiza Bennis
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Fatima Chegdani
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca 20000, Morocco
| |
Collapse
|