1
|
Zeng F, Li C, Wang H, Wang Y, Ren T, He F, Jiang J, Xu J, Wang B, Wu Y, Yu Y, Hu Z, Tian J, Wang S, Tang X. Intraoperative Resection Guidance and Rapid Pathological Diagnosis of Osteosarcoma using B7H3 Targeted Probe under NIR-II Fluorescence Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310167. [PMID: 38502871 PMCID: PMC11434027 DOI: 10.1002/advs.202310167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Indexed: 03/21/2024]
Abstract
Complete removal of all tumor tissue with a wide surgical margin is essential for the treatment of osteosarcoma (OS). However, it's difficult, sometimes impossible, to achieve due to the invisible small satellite lesions and blurry tumor boundaries. Besides, intraoperative frozen-section analysis of resection margins of OS is often restricted by the hard tissues around OS, which makes it impossible to know whether a negative margin is achieved. Any unresected small tumor residuals will lead to local recurrence and worse prognosis. Herein, based on the high expression of B7H3 in OS, a targeted probe B7H3-IRDye800CW is synthesized by conjugating anti-B7H3 antibody and IRDye800CW. B7H3-IRDye800CW can accurately label OS areas after intravenous administration, thereby helping surgeons identify and resect residual OS lesions (<2 mm) and lung metastatic lesions. The tumor-background ratio reaches 4.42 ± 1.77 at day 3. After incubating fresh human OS specimen with B7H3-IRDye800CW, it can specifically label the OS area and even the microinvasion area (confirmed by hematoxylin-eosin [HE] staining). The probe labeled area is consistent with the tumor area shown by magnetic resonance imaging and complete HE staining of the specimen. In summary, B7H3-IRDye800CW has translational potential in intraoperative resection guidance and rapid pathological diagnosis of OS.
Collapse
Affiliation(s)
- Fanwei Zeng
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Changjian Li
- School of Engineering Medicine & Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, 100191, China
| | - Han Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yueqi Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Fangzhou He
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jie Jiang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jiuhui Xu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yifan Wu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yiyang Yu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Tian
- School of Engineering Medicine & Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shidong Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
2
|
Campwala I, Vignali PDA, Seynnaeve BK, Davit AJ, Weiss K, Malek MM. Utility of Indocyanine Green for Sentinel Lymph Node Biopsy in Pediatric Sarcoma and Melanoma. J Pediatr Surg 2024; 59:1326-1333. [PMID: 38575445 DOI: 10.1016/j.jpedsurg.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Indocyanine green (ICG) is a fluorescent dye with increasing use for adult sentinel lymph node biopsy (SLNB). The utility of ICG in pediatric oncology remains understudied. We aim to describe our experience using ICG for SLNB in pediatrics versus standard blue dye. METHODS A retrospective review of pediatric patients with melanoma or sarcoma who underwent SLNB with technetium plus ICG or blue dye from 2014 to 2023 at a large academic children's hospital was conducted. RESULTS Twenty-four patients were included; 58.3% were male with median age 13 years (range 4-21 years). The majority had a melanocytic tumor (91.7%) and 8.3% had sarcoma. All patients received technetium with concomitant blue dye (62.5%) or ICG (37.5%). ICG more reliably identified radioactive SLNs, compared to blue dye (mean 100% vs 78.3 ± 8.3%, p = 0.03). There was no significant difference in median operative time (ICG 82 min [68-203] vs blue dye 93 min [78-105], p = 0.84). Seven patients had positive SLNs (29.2%), with recurrence in 2 patients (8.3%) and 1 death (4.2%). There were no adverse events. CONCLUSION ICG-directed SLNB in children is a safe and effective alternative to blue dye. Use of ICG did not add to operative time, and more often identified sentinel nodes versus blue dye. TYPE OF STUDY Original Research Article, Retrospective Comparative Study. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Insiyah Campwala
- Department of General Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Paolo D A Vignali
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Brittani Kn Seynnaeve
- Division of Hematology-Oncology, Departments of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Alexander J Davit
- Department of Plastic Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Kurt Weiss
- Department of Orthopedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Marcus M Malek
- Division of Pediatric General and Thoracic Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
3
|
Damron TA. CORR Insights®: What Are the Complication Rates and Factors Associated With Total Femur Replacement After Tumor Resection? Findings From the Japanese Musculoskeletal Oncology Group. Clin Orthop Relat Res 2024; 482:713-715. [PMID: 37938137 PMCID: PMC10936994 DOI: 10.1097/corr.0000000000002915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Affiliation(s)
- Timothy A Damron
- Vice-Chairman and David G. Murray Endowed Professor, Department of Orthopedic Surgery, Upstate Bone and Joint Center, East Syracuse, NY, USA
| |
Collapse
|
4
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
5
|
Huang H, He S, Wei R, Zhu X, Deng Z, Wang Y, Guo L, Lei J, Cai L, Xie Y. Near-infrared (NIR) imaging with indocyanine green (ICG) may assist in intraoperative decision making and improving surgical margin in bone and soft tissue tumor surgery. J Surg Oncol 2023; 128:612-627. [PMID: 37178368 DOI: 10.1002/jso.27306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Negative surgical margins are significant in improving patient outcomes. However, surgeons can only rely on visual and tactile information to identify tumor margins intraoperatively. We hypothesized that intraoperative fluorescence imaging with indocyanine green (ICG) could serve as an assistive technology to evaluate surgical margins and guide surgery in bone and soft tissue tumor surgery. METHODS Seventy patients with bone and soft tissue tumors were enrolled in this prospective, non-randomized, single-arm feasibility study. All patients received intravenous indocyanine green (0.5 mg/kg) before surgery. Near-infrared (NIR) imaging was performed on in situ tumors, wounds, and ex vivo specimens. RESULTS 60/70 tumors were fluorescent at NIR imaging. The final surgical margins were positive in 2/55 cases, including 1/40 of the sarcomas. Surgical decisions were changed in 19 cases by NIR imaging, and in 7/19 cases final pathology demonstrated margins were improved. Fluorescence analysis showed that the tumor-to-background ratio (TBR) of primary malignant tumors was higher than that of benign, borderline, metastatic, and tumors ≥5 cm in size had higher TBR than those <5 cm. CONCLUSIONS ICG fluorescence imaging may be a beneficial technique to assist in surgical decision making and improving surgical margins in bone and soft tissue tumor surgery.
Collapse
Affiliation(s)
- Huayi Huang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Siyuan He
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Renxiong Wei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xiaobin Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhouming Deng
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yi Wang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Liangyu Guo
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Jun Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yuanlong Xie
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
6
|
Jeremiasse B, Rijs Z, Angoelal KR, Hiemcke-Jiwa LS, de Boed EA, Kuppen PJK, Sier CFM, van Driel PBAA, van de Sande MAJ, Wijnen MHWA, Rios AC, van der Steeg AFW. Evaluation of Potential Targets for Fluorescence-Guided Surgery in Pediatric Ewing Sarcoma: A Preclinical Proof-of-Concept Study. Cancers (Basel) 2023; 15:3896. [PMID: 37568714 PMCID: PMC10417270 DOI: 10.3390/cancers15153896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Fluorescence-guided surgery (FGS), based on fluorescent tracers binding to tumor-specific biomarkers, could assist surgeons to achieve complete tumor resections. This study evaluated potential biomarkers for FGS in pediatric Ewing sarcoma (ES). Immunohistochemistry (IHC) was performed to assess CD99, CXCR4, CD117, NPY-R-Y1, and IGF-1R expression in ES biopsies and resection specimens. LINGO-1 and GD2 evaluation did not work on the acquired tissue. Based on the immunoreactive scores, anti-CD99 and anti-CD117 were evaluated for binding specificity using flow cytometry and immunofluorescence microscopy. Anti-GD2, a tracer in the developmental phase, was also tested. These three tracers were topically applied to a freshly resected ES tumor and adjacent healthy tissue. IHC demonstrated moderate/strong CD99 and CD117 expression in ES tumor samples, while adjacent healthy tissue had limited expression. Flow cytometry and immunofluorescence microscopy confirmed high CD99 expression, along with low/moderate CD117 and low GD2 expression, in ES cell lines. Topical anti-CD99 and anti-GD2 application on ES tumor showed fluorescence, while anti-CD117 did not show fluorescence for this patient. In conclusion, CD99-targeting tracers hold promise for FGS of ES. CD117 and GD2 tracers could be potential alternatives. The next step towards development of ES-specific FGS tracers could be ex vivo topical application experiments on a large cohort of ES patients.
Collapse
Affiliation(s)
- Bernadette Jeremiasse
- Department of Surgery, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (B.J.); (K.R.A.); (M.A.J.v.d.S.); (M.H.W.A.W.); (A.F.W.v.d.S.)
| | - Zeger Rijs
- Department of Orthopedic Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Karieshma R. Angoelal
- Department of Surgery, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (B.J.); (K.R.A.); (M.A.J.v.d.S.); (M.H.W.A.W.); (A.F.W.v.d.S.)
| | - Laura S. Hiemcke-Jiwa
- Department of Pathology, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (L.S.H.-J.); (E.A.d.B.)
- Department of Pathology, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Ella A. de Boed
- Department of Pathology, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (L.S.H.-J.); (E.A.d.B.)
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (P.J.K.K.); (C.F.M.S.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (P.J.K.K.); (C.F.M.S.)
| | | | - Michiel A. J. van de Sande
- Department of Surgery, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (B.J.); (K.R.A.); (M.A.J.v.d.S.); (M.H.W.A.W.); (A.F.W.v.d.S.)
- Department of Orthopedic Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marc H. W. A. Wijnen
- Department of Surgery, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (B.J.); (K.R.A.); (M.A.J.v.d.S.); (M.H.W.A.W.); (A.F.W.v.d.S.)
| | - Anne C. Rios
- Research Department, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, The Netherlands
| | - Alida F. W. van der Steeg
- Department of Surgery, Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (B.J.); (K.R.A.); (M.A.J.v.d.S.); (M.H.W.A.W.); (A.F.W.v.d.S.)
| |
Collapse
|
7
|
He S, Zhong A, Lei J, Deng Z, Zhu X, Wei R, Huang H, Chen Z, Cai L, Xie Y. Application of Indocyanine Green Fluorescence Imaging in Assisting Biopsy of Musculoskeletal Tumors. Cancers (Basel) 2023; 15:cancers15082402. [PMID: 37190330 DOI: 10.3390/cancers15082402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
(1) Background: Biopsies are the gold standard for the diagnosis of musculoskeletal tumors. In this study, we aimed to explore whether indocyanine green near-infrared fluorescence imaging can assist in the biopsy of bone and soft tissue tumors and improve the success rate of biopsy. (2) Method: We recruited patients with clinically considered bone and soft tissue tumors and planned biopsies. In the test group, indocyanine green (0.3 mg/kg) was injected. After identifying the lesion, a near-infrared fluorescence camera system was used to verify the ex vivo specimens of the biopsy in real time. If the biopsy specimens were not developed, we assumed that we failed to acquire lesions, so the needle track and needle position were adjusted for the supplementary biopsy, and then real-time imaging was performed again. Finally, we conducted a pathological examination. In the control group, normal biopsy was performed. (3) Results: The total diagnosis rate of musculoskeletal tumors in the test group was 94.92% (56/59) and that in the control group was 82.36% (42/51). In the test group, 14 cases were not developed, as seen from real-time fluorescence in the core biopsy, and then underwent the supplementary biopsy after changing the puncture direction and the location of the needle channel immediately, of which 7 cases showed new fluorescence. (4) Conclusions: Using the near-infrared fluorescence real-time development technique to assist the biopsy of musculoskeletal tumors may improve the accuracy of core biopsy and help to avoid missed diagnoses, especially for some selected tumors.
Collapse
Affiliation(s)
- Siyuan He
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ang Zhong
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jun Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhouming Deng
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaobin Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Renxiong Wei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huayi Huang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhenyi Chen
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuanlong Xie
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
8
|
Fluorescence-guided surgery: National trends in adoption and application in pediatric surgery. J Pediatr Surg 2023; 58:689-694. [PMID: 36670001 DOI: 10.1016/j.jpedsurg.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fluorescence-guided surgery (FGS) with indocyanine green (ICG) is a rapidly diffusing surgical innovation, but its utilization in pediatrics remains unknown. We present a cross-sectional descriptive analysis of trends from a national database. METHODS The Pediatric Health Information System (PHIS) database was queried for patient encounters between January 2016 and July 2021 with an associated ICG administration within 3 days prior to surgery. All procedure codes from each encounter were reviewed by two surgeons to determine the most likely associated FGS procedure and assign an operative category. RESULTS 1270 encounters were identified from 38 participating hospitals. The mean patient age (SD) was 8.3 (6.4) years, 54.5% were male, 63.8% were white, and 30.1% were Hispanic. The most common categories for ICG use were neurosurgery (21.3%), biliary (18.3%), perfusion (14.8%), urology (12.5%), gastrointestinal (10.8%), ophthalmology (8.8%), and thoracic (5.6%). Utilization over time increased for some categories (thoracic, visceral perfusion, and neurological procedures) or remained stable for other categories. Overall ICG utilization has increased in 2020 (n = 314) compared to 2016 (N = 83). The number of centers utilizing ICG has also increased from 14 hospitals in 2016 to 29 hospitals in 2020 though adoption remains unevenly distributed, with 5 high-utilization hospitals accounting for 56.8% of all ICG FGS cases. CONCLUSION ICG is being used across a wide variety of pediatric surgical disciplines. Trends over time show increasingly frequent adoption across the country, with a few high-volume centers driving the innovation. Fluorescence-guided surgery is commercially available and is becoming more commonplace for pediatric surgeons. Dedicated efforts will now be needed to assess outcomes using this promising technology. LEVEL OF EVIDENCE Level IV. STUDY TYPE Retrospective study.
Collapse
|
9
|
Streeter SS, Hebert KA, Bateman LM, Ray GS, Dean RE, Geffken KT, Resnick CT, Austin DC, Bell JE, Sparks MB, Gibbs SL, Samkoe KS, Gitajn IL, Elliott JT, Henderson ER. Current and Future Applications of Fluorescence Guidance in Orthopaedic Surgery. Mol Imaging Biol 2023; 25:46-57. [PMID: 36447084 PMCID: PMC10106269 DOI: 10.1007/s11307-022-01789-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Fluorescence-guided surgery (FGS) is an evolving field that seeks to identify important anatomic structures or physiologic phenomena with helpful relevance to the execution of surgical procedures. Fluorescence labeling occurs generally via the administration of fluorescent reporters that may be molecularly targeted, enzyme-activated, or untargeted, vascular probes. Fluorescence guidance has substantially changed care strategies in numerous surgical fields; however, investigation and adoption in orthopaedic surgery have lagged. FGS shows the potential for improving patient care in orthopaedics via several applications including disease diagnosis, perfusion-based tissue healing capacity assessment, infection/tumor eradication, and anatomic structure identification. This review highlights current and future applications of fluorescence guidance in orthopaedics and identifies key challenges to translation and potential solutions.
Collapse
Affiliation(s)
- Samuel S Streeter
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| | - Kendra A Hebert
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Logan M Bateman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.,Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA
| | - Gabrielle S Ray
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ryan E Dean
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Kurt T Geffken
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Corey T Resnick
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Daniel C Austin
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - John-Erik Bell
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Michael B Sparks
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Summer L Gibbs
- Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - I Leah Gitajn
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Jonathan Thomas Elliott
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.,Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.,Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03756, USA
| | - Eric R Henderson
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.,Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.,Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03756, USA
| |
Collapse
|
10
|
Developments in the Surgical Approach to Staging and Resection of Rhabdomyosarcoma. Cancers (Basel) 2023; 15:cancers15020449. [PMID: 36672397 PMCID: PMC9857078 DOI: 10.3390/cancers15020449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Although survival after rhabdosarcoma treatment has improved over the years, one third of patients still develop locoregional relapse. This review aims to highlight developments pertaining to staging and local treatment of specific RMS tumor sites, including head and neck, chest/trunk, bladder-prostate, female genito-urinary, perianal, and extremity sites.
Collapse
|
11
|
Richard C, White S, Williams R, Zaghloul T, Helmig S, Sheyn A, Abramson Z, Abdelhafeez H. Indocyanine green near infrared-guided surgery in children, adolescents, and young adults with otolaryngologic malignancies. Auris Nasus Larynx 2022:S0385-8146(22)00226-7. [DOI: 10.1016/j.anl.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
|
12
|
Chen Z, Huang H, He S, Wang Y, Cai L, Xie Y. Progresses in Fluorescence Imaging Guidance for Bone and Soft Tissue Sarcoma Surgery. Front Oncol 2022; 12:879697. [PMID: 35860548 PMCID: PMC9289289 DOI: 10.3389/fonc.2022.879697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
R0 surgical resection is the preferred treatment for bone and soft tissue sarcoma. However, there is still a lack of precise technology that can visualize bone and soft tissue sarcoma during surgery to assist the surgeon in judging the tumor surgical boundary. Fluorescence imaging technology has been used in the diagnosis of cancer. It is a simple and essentially safe technique that takes no additional time during the operation. Intraoperative fluorescence imaging has potential application prospects in assisting the surgeons in judging the tumor boundary and improving the accuracy of surgical resection. This review mainly starts with clinical studies, animal experimentation, and newly designed probes of intraoperative fluorescence imaging of bone and soft tissue sarcoma, to appraise the application prospects of fluorescence imaging technology in bone and soft tissue sarcoma.
Collapse
|