1
|
Lesbats J, Brillac A, Reisz JA, Mukherjee P, Lhuissier C, Fernández-Monreal M, Dupuy JW, Sequeira A, Tioli G, De La Calle Arregui C, Pinson B, Wendisch D, Rousseau B, Efeyan A, Sander LE, D'Alessandro A, Garaude J. Macrophages recycle phagocytosed bacteria to fuel immunometabolic responses. Nature 2025; 640:524-533. [PMID: 40011782 DOI: 10.1038/s41586-025-08629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
Macrophages specialize in phagocytosis, a cellular process that eliminates extracellular matter, including microorganisms, through internalization and degradation1,2. Despite the critical role of phagocytosis during bacterial infection, the fate of phagocytosed microbial cargo and its impact on the host cell are poorly understood. In this study, we show that ingested bacteria constitute an alternative nutrient source that skews immunometabolic host responses. By tracing stable isotope-labelled bacteria, we found that phagolysosomal degradation of bacteria provides carbon atoms and amino acids that are recycled into various metabolic pathways, including glutathione and itaconate biosynthesis, and satisfies the bioenergetic needs of macrophages. Metabolic recycling of microbially derived nutrients is regulated by the nutrient-sensing mechanistic target of rapamycin complex C1 and is intricately tied to microbial viability. Dead bacteria, as opposed to live bacteria, are enriched in cyclic adenosine monophosphate, sustain the cellular adenosine monophosphate pool and subsequently activate adenosine monophosphate protein kinase to inhibit the mechanistic target of rapamycin complex C1. Consequently, killed bacteria strongly fuel metabolic recycling and support macrophage survival but elicit decreased reactive oxygen species production and reduced interleukin-1β secretion compared to viable bacteria. These results provide a new insight into the fate of engulfed microorganisms and highlight a microbial viability-associated metabolite that triggers host metabolic and immune responses. Our findings hold promise for shaping immunometabolic intervention for various immune-related pathologies.
Collapse
Affiliation(s)
| | - Aurélia Brillac
- University of Bordeaux, INSERM, MRGM, U1211, Bordeaux, France
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Parnika Mukherjee
- Department of Infectious Diseases, Respiratory Medicine, and Critical Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Charlène Lhuissier
- ImmunoConcEpT, CNRS UMR 5164, INSERM ERL 1303, University of Bordeaux, Bordeaux, France
| | | | - Jean-William Dupuy
- University of Bordeaux, CNRS, INSERM, TBM-Core, US5, UAR3421, OncoProt, Bordeaux, France
- University of Bordeaux, Bordeaux Protéome, Bordeaux, France
| | - Angèle Sequeira
- ImmunoConcEpT, CNRS UMR 5164, INSERM ERL 1303, University of Bordeaux, Bordeaux, France
| | - Gaia Tioli
- University of Bordeaux, INSERM, MRGM, U1211, Bordeaux, France
- Biomedical and Neuromotor Sciences, Alma Mater University of Bologna, Bologna, Italy
| | - Celia De La Calle Arregui
- Metabolism and Cell Signalling Laboratory, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Benoît Pinson
- Service Analyses Métabolomiques, TBMCore, CNRS UAR 3427, INSERM US005, Université Bordeaux, Bordeaux, France
| | - Daniel Wendisch
- Department of Infectious Diseases, Respiratory Medicine, and Critical Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Benoît Rousseau
- University of Bordeaux, Animal Facility A2, Service Commun des Animaleries, Bordeaux, France
| | - Alejo Efeyan
- Metabolism and Cell Signalling Laboratory, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Leif Erik Sander
- Department of Infectious Diseases, Respiratory Medicine, and Critical Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Johan Garaude
- University of Bordeaux, INSERM, MRGM, U1211, Bordeaux, France.
- ImmunoConcEpT, CNRS UMR 5164, INSERM ERL 1303, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
2
|
Desigaux T, Comperat L, Dusserre N, Stachowicz ML, Lea M, Dupuy JW, Vial A, Molinari M, Fricain JC, Paris F, Oliveira H. 3D bioprinted breast cancer model reveals stroma-mediated modulation of extracellular matrix and radiosensitivity. Bioact Mater 2024; 42:316-327. [PMID: 39290339 PMCID: PMC11405629 DOI: 10.1016/j.bioactmat.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Deciphering breast cancer treatment resistance remains hindered by the lack of models that can successfully capture the four-dimensional dynamics of the tumor microenvironment. Here, we show that microextrusion bioprinting can reproducibly generate distinct cancer and stromal compartments integrating cells relevant to human pathology. Our findings unveil the functional maturation of this millimeter-sized model, showcasing the development of a hypoxic cancer core and an increased surface proliferation. Maturation was also driven by the presence of cancer-associated fibroblasts (CAF) that induced elevated microvascular-like structures complexity. Such modulation was concomitant to extracellular matrix remodeling, with high levels of collagen and matricellular proteins deposition by CAF, simultaneously increasing tumor stiffness and recapitulating breast cancer fibrotic development. Importantly, our bioprinted model faithfully reproduced response to treatment, further modulated by CAF. Notably, CAF played a protective role for cancer cells against radiotherapy, facilitating increased paracrine communications. This model holds promise as a platform to decipher interactions within the microenvironment and evaluate stroma-targeted drugs in a context relevant to human pathology.
Collapse
Affiliation(s)
- Theo Desigaux
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Leo Comperat
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Nathalie Dusserre
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Marie-Laure Stachowicz
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Malou Lea
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Jean-William Dupuy
- Univ. Bordeaux, Bordeaux Proteome, F-33000, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, TBM-Core, US5, UAR 3427, OncoProt, F-33000, Bordeaux, France
| | - Anthony Vial
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
| | - Michael Molinari
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
- Services d'Odontologie et de Santé Buccale, CHU Bordeaux, F-33000, Bordeaux, France
| | - François Paris
- CRCINA, INSERM, CNRS, Univ. Nantes, F-44000, Nantes, France
- Institut de Cancérologie de l'Ouest, F-44800, Saint Herblain, France
| | - Hugo Oliveira
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| |
Collapse
|
3
|
Urzúa-Traslaviña CG, van Lieshout T, Boulogne F, Domanegg K, Zidan M, Bakker OB, Claringbould A, de Ridder J, Zwart W, Westra HJ, Deelen P, Franke L. Co-expression in tissue-specific gene networks links genes in cancer-susceptibility loci to known somatic driver genes. BMC Med Genomics 2024; 17:186. [PMID: 39010058 PMCID: PMC11247850 DOI: 10.1186/s12920-024-01941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The genetic background of cancer remains complex and challenging to integrate. Many somatic mutations within genes are known to cause and drive cancer, while genome-wide association studies (GWAS) of cancer have revealed many germline risk factors associated with cancer. However, the overlap between known somatic driver genes and positional candidate genes from GWAS loci is surprisingly small. We hypothesised that genes from multiple independent cancer GWAS loci should show tissue-specific co-regulation patterns that converge on cancer-specific driver genes. RESULTS We studied recent well-powered GWAS of breast, prostate, colorectal and skin cancer by estimating co-expression between genes and subsequently prioritising genes that show significant co-expression with genes mapping within susceptibility loci from cancer GWAS. We observed that the prioritised genes were strongly enriched for cancer drivers defined by COSMIC, IntOGen and Dietlein et al. The enrichment of known cancer driver genes was most significant when using co-expression networks derived from non-cancer samples of the relevant tissue of origin. CONCLUSION We show how genes within risk loci identified by cancer GWAS can be linked to known cancer driver genes through tissue-specific co-expression networks. This provides an important explanation for why seemingly unrelated sets of genes that harbour either germline risk factors or somatic mutations can eventually cause the same type of disease.
Collapse
Affiliation(s)
- Carlos G Urzúa-Traslaviña
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Tijs van Lieshout
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Floranne Boulogne
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Kevin Domanegg
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Mahmoud Zidan
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Olivier B Bakker
- Wellcome Sanger Institute, Human Genetics, Hinxton, UK
- Open Targets, Hinxton, UK
| | - Annique Claringbould
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- EMBL Heidelberg, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Jeroen de Ridder
- Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilbert Zwart
- Oncode Institute, Utrecht, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Dantzer C, Vaché J, Brunel A, Mahouche I, Raymond AA, Dupuy JW, Petrel M, Bioulac-Sage P, Perrais D, Dugot-Senant N, Verdier M, Bessette B, Billottet C, Moreau V. Emerging role of oncogenic ß-catenin in exosome biogenesis as a driver of immune escape in hepatocellular carcinoma. eLife 2024; 13:RP95191. [PMID: 39008536 PMCID: PMC11249736 DOI: 10.7554/elife.95191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.
Collapse
Affiliation(s)
| | - Justine Vaché
- Université de Bordeaux, INSERM, U1312, BRICBordeauxFrance
| | - Aude Brunel
- Université de Limoges, INSERM, U1308, CAPTuRLimogesFrance
| | | | - Anne-Aurélie Raymond
- Université de Bordeaux, INSERM, U1312, BRICBordeauxFrance
- Plateforme OncoProt, Université de Bordeaux, CNRS, INSERM, TBM-Core, US5, UAR3457BordeauxFrance
| | - Jean-William Dupuy
- Plateforme OncoProt, Université de Bordeaux, CNRS, INSERM, TBM-Core, US5, UAR3457BordeauxFrance
- Plateforme Protéome, Université de Bordeaux, Bordeaux ProteomeBordeauxFrance
| | - Melina Petrel
- Bordeaux Imaging Center, Université de Bordeaux, CNRS, INSERM, BICBordeauxFrance
| | | | - David Perrais
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, BordeauxBordeauxFrance
| | - Nathalie Dugot-Senant
- Plateforme d'histologie, Université de Bordeaux, CNRS, INSERM, TBM-Core, US5, UAR3457BordeauxFrance
| | | | | | | | | |
Collapse
|
5
|
Shahidi S, Ansari Shayesteh P, Alami M, Parsamanesh N. Comprehensive Analysis of the Prognostic Marker and Immune Infiltrates of LDLR-Related Proteins Family Members in Breast Cancer. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:31-49. [PMID: 38864077 PMCID: PMC11164315 DOI: 10.30699/ijp.2024.1995769.3077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/07/2023] [Indexed: 06/13/2024]
Abstract
Background & Objective Breast cancer (BC) is one of the most frequent tumors worldwide, accounting for 15% of all cancer-related deaths. A timely diagnosis of BC is essential for optimal treatment and increasing patients' survival rates. LRP family proteins are important components of cell-surface receptors involved in numerous biological activities. Expression of LRP is related to breast malignancy. In this study, we initially studied the expression of LRPs in BC tissues compared to normal tissues-the relation of LRP expression with relapse-free survival (RFS) and overall survival (OS). Then, we investigated the association of LRPs relation and immune infiltrating abundance. Methods We analyzed the LDLR family expression and prognostic value in BC by mining UALCAN, TIMER, and Kaplan-Meier plotter databases. Subsequently, we explored the association of LDLR expression and immune infiltrating abundance via the TIMER database. Results Expression levels of LRP1/2/4/9/10 were found to be higher in the cases with positive estrogen receptors. There was a positive association between LRP1/6 expression and the infiltration of CD8+ T cells, CD4+ T Cell, Macrophage, Dendritic Cell, and Neutrophil. Conclusion Our study recommends LDLR as a potential prognostic biomarker that can be promising to improve the survival of BC patients' survival. However, further investigations are needed to evaluate the studied LDLR members in more detail.
Collapse
Affiliation(s)
- Shabnam Shahidi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- these authors contributed equally
| | - Parvin Ansari Shayesteh
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- these authors contributed equally
| | - Mahsa Alami
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
Comperat L, Chagot L, Massot S, Stachowicz M, Dusserre N, Médina C, Desigaux T, Dupuy J, Fricain J, Oliveira H. Harnessing Human Placental Membrane-Derived Bioinks: Characterization and Applications in Bioprinting and Vasculogenesis. Adv Healthc Mater 2024; 13:e2303370. [PMID: 37942849 PMCID: PMC11469061 DOI: 10.1002/adhm.202303370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Bioprinting applications in the clinical field generate great interest, but developing suitable biomaterial inks for medical settings is a challenge. Placental tissues offer a promising solution due to their abundance, stability, and status as medical waste. They contain basement membrane components, have a clinical history, and support angiogenesis. This study formulates bioinks from two placental tissues, amnion (AM) and chorion (CHO), and compares their unique extracellular matrix (ECM) and growth factor compositions. Rheological properties of the bioinks are evaluated for bioprinting and maturation of human endothelial cells. Both AM and Cho-derived bioinks sustained human endothelial cell viability, proliferation, and maturation, promoting optimal vasculogenesis. These bioinks derived from human sources have significant potential for tissue engineering applications, particularly in supporting vasculogenesis. This research contributes to the advancement of tissue engineering and regenerative medicine, bringing everyone closer to clinically viable bioprinting solutions using placental tissues as valuable biomaterials.
Collapse
Affiliation(s)
- Léo Comperat
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Lise Chagot
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Sarah Massot
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Marie‐Laure Stachowicz
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Nathalie Dusserre
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Chantal Médina
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Théo Desigaux
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Jean‐William Dupuy
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- University of BordeauxPlateforme ProtéomeBordeaux33000France
| | - Jean‐Christophe Fricain
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- University of BordeauxPlateforme ProtéomeBordeaux33000France
| | - Hugo Oliveira
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| |
Collapse
|
7
|
Proteins Found in the Triple-Negative Breast Cancer Secretome and Their Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24032100. [PMID: 36768435 PMCID: PMC9916912 DOI: 10.3390/ijms24032100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The cancer secretome comprises factors secreted by tumors, including cytokines, growth factors, proteins from the extracellular matrix (ECM), proteases and protease inhibitors, membrane and extracellular vesicle proteins, peptide hormones, and metabolic proteins. Secreted proteins provide an avenue for communication with other tumor cells and stromal cells, and these in turn promote tumor growth and progression. Breast cancer is the most commonly diagnosed cancer in women in the US and worldwide. Triple-negative breast cancer (TNBC) is characterized by its aggressiveness and its lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and HER2, making it unable to be treated with therapies targeting these protein markers, and leaving patients to rely on standard chemotherapy. In order to develop more effective therapies against TNBC, researchers are searching for targetable molecules specific to TNBC. Proteins in the TNBC secretome are involved in wide-ranging cancer-promoting processes, including tumor growth, angiogenesis, inflammation, the EMT, drug resistance, invasion, and development of the premetastatic niche. In this review, we catalog the currently known proteins in the secretome of TNBC tumors and correlate these secreted molecules with potential therapeutic opportunities to facilitate translational research.
Collapse
|
8
|
Li Z, Huang H, Wang C, Zhao Z, Ma W, Wang D, Mao H, Liu F, Yang Y, Pan W, Lu Z. DCE-MRI radiomics models predicting the expression of radioresistant-related factors of LRP-1 and survivin in locally advanced rectal cancer. Front Oncol 2022; 12:881341. [PMID: 36106114 PMCID: PMC9465298 DOI: 10.3389/fonc.2022.881341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Low-density lipoprotein receptor-related protein-1 (LRP-1) and survivin are associated with radiotherapy resistance in patients with locally advanced rectal cancer (LARC). This study aimed to evaluate the value of a radiomics model based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the preoperative assessment of LRP-1 and survivin expressions in these patients. Methods One hundred patients with pathologically confirmed LARC who underwent DCE-MRI before surgery between February 2017 and September 2021 were included in this retrospective study. DCE-MRI perfusion histogram parameters were calculated for the entire lesion using post-processing software (Omni Kinetics, G.E. Healthcare, China), with three quantitative parameter maps. LRP-1 and survivin expressions were assessed by immunohistochemical methods and patients were classified into low- and high-expression groups. Results Four radiomics features were selected to construct the LRP-1 discrimination model. The LRP-1 predictive model achieved excellent diagnostic performance, with areas under the receiver operating curve (AUCs) of 0.853 and 0.747 in the training and validation cohorts, respectively. The other four radiomics characteristics were screened to construct the survivin predictive model, with AUCs of 0.780 and 0.800 in the training and validation cohorts, respectively. Decision curve analysis confirmed the clinical usefulness of the radiomics models. Conclusion DCE-MRI radiomics models are particularly useful for evaluating LRP-1 and survivin expressions in patients with LARC. Our model has significant potential for the preoperative identification of patients with radiotherapy resistance and can serve as an essential reference for treatment planning.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Huizhen Huang
- Shaoxing University School of Medicine, Shaoxing, China
| | - Chuchu Wang
- Shaoxing University School of Medicine, Shaoxing, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Weili Ma
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Dandan Wang
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Haijia Mao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Fang Liu
- Department of Pathology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Ye Yang
- Department of Pathology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Weihuo Pan
- Department of Colon and Rectal Surgery, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Zengxin Lu
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
- *Correspondence: Zengxin Lu,
| |
Collapse
|
9
|
Cadé M, Muñoz-Garcia J, Babuty A, Paré L, Cochonneau D, Fekir K, Chatelais M, Heymann MF, Lokajczyk A, Boisson-Vidal C, Heymann D. FVIII regulates the molecular profile of endothelial cells: functional impact on the blood barrier and macrophage behavior. Cell Mol Life Sci 2022; 79:145. [PMID: 35190870 PMCID: PMC11072670 DOI: 10.1007/s00018-022-04178-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
Hemophilia A is an inherited X-linked recessive bleeding disorder caused by deficient activity of blood coagulation factor VIII (FVIII). In addition, hemophilia patients show associated diseases including osteopenia, altered inflammation and vascular fragility which may represent the consequence of recurrent bleeding or may be related to the direct FVIII deficiency. Nowadays, recombinant FVIII is proposed to treat hemophilia patients with no circulating FVIII inhibitor. Initially described as a coenzyme to factor IXa for initiating thrombin generation, there is emerging evidence that FVIII is involved in multiple biological systems, including bone, vascular and immune systems. The present study investigated: (i) the functional activities of recombinant human FVIII (rFVIII) on endothelial cells, and (ii) the impact of rFVIII activities on the functional interactions of human monocytes and endothelial cells. We then investigated whether rFVIII had a direct effect on the adhesion of monocytes to the endothelium under physiological flow conditions. We observed that direct biological activities for rFVIII in endothelial cells were characterized by: (i) a decrease in endothelial cell adhesion to the underlying extracellular matrix; (ii) regulation of the transcriptomic and protein profiles of endothelial cells; (iii) an increase in the vascular tubes formed and vascular permeability in vitro; and (iv) an increase in monocyte adhesion activated endothelium and transendothelial migration. By regulating vascular permeability plus leukocyte adhesion and transendothelial migration, the present work highlights new biological functions for FVIII.
Collapse
Affiliation(s)
- Marie Cadé
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | - Javier Muñoz-Garcia
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | - Antoine Babuty
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
- Department of Hemostasis, CHU de Nantes, Nantes, France
| | - Louis Paré
- Université de Paris, CNRS, Institut Jacques Monod, UMR 7592, Paris, France
| | - Denis Cochonneau
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | | | | | - Marie-Françoise Heymann
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | | | | | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France.
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France.
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
| |
Collapse
|