1
|
Spazzapan M, Pegoraro S, Vuerich R, Zito G, Balduit A, Longo E, Pascolo L, Toffoli M, Meshini G, Mangogna A, Ros G, Buonomo F, Romano F, Lombardelli L, Papa G, Piccinni MP, Zacchigna S, Agostinis C, Bulla R, Ricci G. Endothelial cell supplementation promotes xenograft revascularization during short-term ovarian tissue transplantation. Bioact Mater 2025; 50:305-321. [PMID: 40276538 PMCID: PMC12020896 DOI: 10.1016/j.bioactmat.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
The ischemic/hypoxic window after Ovarian Tissue Transplantation (OTT) can be responsible for the loss of more than 60 % of follicles. The implantation of the tissue supplemented with endothelial cells (ECs) inside dermal substitutes represents a promising strategy for improving graft revascularization. Ovarian biopsies were partly cryopreserved and partly digested to isolate ovarian ECs (OVECs). Four dermal substitutes (Integra®, made of bovine collagen enriched with chondroitin 6-sulfate; PELNAC®, composed of porcine collagen; Myriad Matrix®, derived from decellularized ovine forestomach; and NovoSorb® BMT, a foam of polyurethane) were compared for their angiogenic bioactive properties. OVECs cultured onto the scaffolds upregulated the expression of angiogenic factors, supporting their use in boosting revascularization. Adhesion and proliferation assays suggested that the most suitable scaffold was the bovine collagen one, which was chosen for further in vivo experiments. Cryopreserved tissue was transplanted onto the 3D scaffold in immunodeficient mice with or without cell supplementation, and after 14 days, it was analyzed by immunofluorescence (IF) and X-ray phase contrast microtomography. The revascularization area of OVECs-supplemented tissue was doubled (7.14 %) compared to the scaffold transplanted alone (3.67 %). Furthermore, tissue viability, evaluated by nuclear counting, was significantly higher (mean of 169.6 nuclei/field) in the tissue grafted with OVECs than in the tissue grafted alone (mean of 87.2 nuclei/field). Overall, our findings suggest that the OVECs-supplementation shortens the ischemic interval and may significantly improve fertility preservation procedures.
Collapse
Affiliation(s)
| | - Silvia Pegoraro
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Roman Vuerich
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Andrea Balduit
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Elena Longo
- Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste, 34149, Italy
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Miriam Toffoli
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Giorgia Meshini
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Gloria Ros
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Francesca Buonomo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Letizia Lombardelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni Papa
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Marie-Pierre Piccinni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| |
Collapse
|
2
|
Angwin C, Doolan BJ, Hausser I, Labine B, Lavallee M, Mackay D, Pope FM, Seneviratne SL, Winship I, Burrows NP. Skin fragility and wound management in Ehlers-Danlos syndromes: a report by the International Consortium on Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders Skin Working Group. Clin Exp Dermatol 2024; 49:1496-1503. [PMID: 38767179 DOI: 10.1093/ced/llae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/06/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
The Ehlers-Danlos syndromes (EDSs) are a heterogeneous group of heritable connective tissue disorders characterized by joint hypermobility, skin hyperextensibility and generalized tissue fragility. In all types of EDS, skin wound healing is impaired to a variable degree. Additional support through wound management plans may help to improve these outcomes; however, there is a paucity of evidence regarding clinical management of skin fragility and wounds in EDS. This paper aims to review current evidence and provide recommendations for management of skin wounds in EDS types. Preventative measures to avoid skin injury are strongly recommended, including avoidance of high-impact sports and use of appropriate protection such as shin guards. Bruising is common, and some types of EDS are associated with haematoma formation, with management including compression bandages and consideration of pharmacological therapy. Skin fragility and tears should be managed with a focus on protection of remaining tissue, avoidance of wound tension and low-adherence dressings to avoid further injury. This paper provides clear recommendations to address skin management for this group of patients. It highlights the lack of good-quality published data to support treatment decisions.
Collapse
Affiliation(s)
- Chloe Angwin
- National Ehlers Danlos Syndrome Service, London North West University Healthcare NHS Trust, London, UK
| | - Brent J Doolan
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Ingrid Hausser
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Barry Labine
- Department of Dermatology, Lakewood Health System, Sartell, MN, USA
| | - Mark Lavallee
- Department of Orthopedics and Sports Medicine, UPMC-Central PA, Harrisburg, PA, USA
| | - Donald Mackay
- Department of Surgery, Division of Plastic Surgery, Penn State College of Medicine, Hershey, PA, USA
| | - F Michael Pope
- National Ehlers Danlos Syndrome Service, London North West University Healthcare NHS Trust, London, UK
- Department of Dermatology, Chelsea and Westminster Hospital NHS Foundation Trust (West Middlesex University Hospital), London, UK
| | - Suranjith L Seneviratne
- Institute of Immunity and Transplantation, Royal Free Hospital and University College London, London, UK
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals, Colombo, Sri Lanka
| | - Ingrid Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, and Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Nigel P Burrows
- Department of Dermatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
3
|
Andolina C, Graumans W, Guelbeogo M, van Gemert GJ, Ramijth J, Harouna S, Soumanaba Z, Stoter R, Vegte-Bolmer M, Pangos M, Sinnis P, Collins K, Staedke SG, Tiono AB, Drakeley C, Lanke K, Bousema T. Quantification of sporozoite expelling by Anopheles mosquitoes infected with laboratory and naturally circulating P. falciparum gametocytes. eLife 2024; 12:RP90989. [PMID: 38517746 PMCID: PMC10959522 DOI: 10.7554/elife.90989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
It is currently unknown whether all Plasmodium falciparum-infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and naturally circulating strains in Burkina Faso. We quantified the number of sporozoites expelled into artificial skin in relation to intact oocysts, ruptured oocysts, and residual salivary gland sporozoites. In laboratory conditions, higher total sporozoite burden was associated with shorter duration of sporogony (p<0.001). Overall, 53% (116/216) of infected Anopheles stephensi mosquitoes expelled sporozoites into artificial skin with a median of 136 expelled sporozoites (interquartile range [IQR], 34-501). There was a strong positive correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.8; p<0.0001) and a weaker positive correlation between salivary gland sporozoite load and number of sporozoites expelled (ρ = 0.35; p=0.0002). In Burkina Faso, Anopheles coluzzii mosquitoes were infected by natural gametocyte carriers. Among salivary gland sporozoite positive mosquitoes, 89% (33/37) expelled sporozoites with a median of 1035 expelled sporozoites (IQR, 171-2969). Again, we observed a strong correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.9; p<0.0001) and a positive correlation between salivary gland sporozoite load and the number of sporozoites expelled (ρ = 0.7; p<0.0001). Several mosquitoes expelled multiple parasite clones during probing. Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is positively associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential.
Collapse
Affiliation(s)
- Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Wouter Graumans
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Moussa Guelbeogo
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Jordache Ramijth
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Soré Harouna
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Zongo Soumanaba
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Rianne Stoter
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Marga Vegte-Bolmer
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Martina Pangos
- Department of Plastic and Reconstructive Surgery, Azienda Ospedaliero Universitaria GiulianoIsontina TriesteTriesteItaly
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns HopkinsBloomberg School of Public HealthBaltimoreUnited States
| | - Katharine Collins
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Sarah G Staedke
- Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
4
|
Chen Z, Cheng Q, Wang L, Mo Y, Li K, Mo J. Optical coherence tomography for in vivo longitudinal monitoring of artificial dermal scaffold. Lasers Surg Med 2023; 55:316-326. [PMID: 36806261 DOI: 10.1002/lsm.23645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/21/2023]
Abstract
OBJECTIVES Artificial dermal scaffold (ADS) has undergone rapid development and been increasingly used for treating skin wound in clinics due to its good biocompatibility, controllable degradation, and low risk of disease infection. To obtain good treatment efficacy, ADS needs to be monitored longitudinally during the treatment process. For example, scaffold-tissue fit, cell in-growth, vascular regeneration, and scaffold degradation are the key properties to be inspected. However, to date, there are no effective, real-time, and noninvasive techniques to meet the requirement of the scaffold monitoring above. MATERIALS AND METHODS In this study, we propose to use optical coherence tomography (OCT) to monitor ADS in vivo through three-dimensional imaging. A swept source OCT system with a handheld probe was developed for in vivo skin imaging. Moreover, a cell in-growth, vascular regeneration, and scaffold degradation rate (IRDR) was defined with the volume reduction rate of the scaffold's collagen sponge layer. To measure the IRDR, a semiautomatic image segmentation algorithm was designed based on U-Net to segment the collagen sponge layer of the scaffold from OCT images. RESULTS The results show that the scaffold-tissue fit can be clearly visualized under OCT imaging. The IRDR can be computed based on the volume of the segmented collagen sponge layer. It is observed that the IRDR appeared to a linear function of the time and in addition, the IRDR varied among different skin parts. CONCLUSION Overall, it can be concluded that OCT has a good potential to monitor ADS in vivo. This can help guide the clinicians to control the treatment with ADS to improve the therapy.
Collapse
Affiliation(s)
- Ziye Chen
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Qiong Cheng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingyun Wang
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Yunfeng Mo
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Ke Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianhua Mo
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Vuerich R, Groppa E, Vodret S, Ring NAR, Stocco C, Bossi F, Agostinis C, Cauteruccio M, Colliva A, Ramadan M, Simoncello F, Benvenuti F, Agnelli A, Dore F, Mazzarol F, Moretti M, Paulitti A, Palmisano S, De Manzini N, Chiesa M, Casaburo M, Raucci A, Lorizio D, Pompilio G, Bulla R, Papa G, Zacchigna S. Ischemic wound revascularization by the stromal vascular fraction relies on host-donor hybrid vessels. NPJ Regen Med 2023; 8:8. [PMID: 36774354 PMCID: PMC9922297 DOI: 10.1038/s41536-023-00283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/25/2023] [Indexed: 02/13/2023] Open
Abstract
Nonhealing wounds place a significant burden on both quality of life of affected patients and health systems. Skin substitutes are applied to promote the closure of nonhealing wounds, although their efficacy is limited by inadequate vascularization. The stromal vascular fraction (SVF) from the adipose tissue is a promising therapy to overcome this limitation. Despite a few successful clinical trials, its incorporation in the clinical routine has been hampered by their inconsistent results. All these studies concluded by warranting pre-clinical work aimed at both characterizing the cell types composing the SVF and shedding light on their mechanism of action. Here, we established a model of nonhealing wound, in which we applied the SVF in combination with a clinical-grade skin substitute. We purified the SVF cells from transgenic animals to trace their fate after transplantation and observed that it gave rise to a mature vascular network composed of arteries, capillaries, veins, as well as lymphatics, structurally and functionally connected with the host circulation. Then we moved to a human-in-mouse model and confirmed that SVF-derived endothelial cells formed hybrid human-mouse vessels, that were stabilized by perivascular cells. Mechanistically, SVF-derived endothelial cells engrafted and expanded, directly contributing to the formation of new vessels, while a population of fibro-adipogenic progenitors stimulated the expansion of the host vasculature in a paracrine manner. These data have important clinical implications, as they provide a steppingstone toward the reproducible and effective adoption of the SVF as a standard care for nonhealing wounds.
Collapse
Affiliation(s)
- Roman Vuerich
- grid.425196.d0000 0004 1759 4810Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy ,grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Elena Groppa
- grid.425196.d0000 0004 1759 4810Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy ,grid.5970.b0000 0004 1762 9868Present Address: Scuola Internazionale Studi Superiori Avanzati (SISSA), 34136 Trieste, Italy
| | - Simone Vodret
- grid.425196.d0000 0004 1759 4810Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Nadja Annelies Ruth Ring
- grid.425196.d0000 0004 1759 4810Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy ,Present Address: Ludwig Boltzmann Research Group SHoW—Senescence and Healing of Wounds, LBI Trauma, Vienna, Austria
| | - Chiara Stocco
- grid.5133.40000 0001 1941 4308Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy ,grid.413694.dPlastic Reconstructive and Aesthetic Surgery Department, Ospedale di Cattinara, ASUGI, 34149 Trieste, Italy
| | - Fleur Bossi
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) “Burlo Garofolo”, Trieste, Italy
| | - Chiara Agostinis
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) “Burlo Garofolo”, Trieste, Italy
| | - Matteo Cauteruccio
- grid.425196.d0000 0004 1759 4810Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy ,grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Andrea Colliva
- grid.425196.d0000 0004 1759 4810Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mohammad Ramadan
- grid.425196.d0000 0004 1759 4810Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Francesca Simoncello
- grid.425196.d0000 0004 1759 4810Cellular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Federica Benvenuti
- grid.425196.d0000 0004 1759 4810Cellular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Anna Agnelli
- grid.460062.60000000459364044Nuclear Medicine Unit, University Hospital of Trieste—ASUGI, Trieste, Italy
| | - Franca Dore
- grid.460062.60000000459364044Nuclear Medicine Unit, University Hospital of Trieste—ASUGI, Trieste, Italy
| | | | | | | | - Silvia Palmisano
- grid.5133.40000 0001 1941 4308Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Nicolò De Manzini
- grid.5133.40000 0001 1941 4308Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Mattia Chiesa
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Manuel Casaburo
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Angela Raucci
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Daniela Lorizio
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Giulio Pompilio
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy ,grid.4708.b0000 0004 1757 2822Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milano, Italy
| | - Roberta Bulla
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giovanni Papa
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy ,grid.5133.40000 0001 1941 4308Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy. .,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy. .,Centro Cardiologico Monzino IRCCS, Milano, Italy.
| |
Collapse
|
6
|
Investigation of the Properties of Linen Fibers and Dressings. Int J Mol Sci 2022; 23:ijms231810480. [PMID: 36142392 PMCID: PMC9501175 DOI: 10.3390/ijms231810480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
In antiquity, flax was used as a dressing for healing wounds. Currently, work is underway on the genetic modification of flax fibers to improve their properties. Genetic modifications have resulted in an increased content of antioxidants and more favorable mechanical properties. The works published so far have presented independent tests of fibers and dressings after appropriate technological treatments in cell cultures. This study aimed to compare the properties of the fibers and the dressing produced in cell cultures—hamster fibroblasts—V79. The research material was traditional NIKE fibers; genetically modified M, B, and MB fibers; and linen dressings obtained from these fibers. The extract from 48-h incubation of 40 mg of fiber in the culture medium, which was desolved into 10, 20, and 30 mg, was administered to the cell culture. On the other hand, a linen dressing was placed on cells with an area of 0.5 cm2, 1 cm2, 1.5 cm2, and 2 cm2. Cells with fiber or dressing were incubated for 48 h, and then, biological tests were performed, including cell viability (in propidium iodide staining), cell proliferation (in the SRB assay), evaluation of the intracellular free radical level (in the DCF-DA assay), genotoxicity (in the comet assay), assessment of the apoptotic and necrotic cells (in staining anexin-V and iodide propidium), the course of the cell cycle, and the scratch test. The correlation between apoptosis and genotoxicity and the levels of free radicals and genotoxicity were determined for the tested linen fibers and fabrics. The tests presented that the fibers are characterized by the ability to eliminate damaged cells in the elimination phase. However, the obtained fabrics gain different properties during the technological processing of the fibers into linen dressings. Linen fabrics have better regenerative properties for cells than fibers. The linseed dressing made of MB fiber has the most favorable regenerative properties.
Collapse
|
7
|
Huang X, Zhu Z, Lu L, Jin R, Sun D, Luo X. Frozen bean curd-inspired Xenogeneic acellular dermal matrix with triple pretreatment approach of freeze-thaw, laser drilling and ADSCs pre-culture for promoting early vascularization and integration. Regen Biomater 2022; 9:rbac053. [PMID: 35974951 PMCID: PMC9375572 DOI: 10.1093/rb/rbac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/03/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Xenogeneic acellular dermal matrix (ADM) is widely used in clinical practice given its good biocompatibility and biomechanical properties. Yet, its dense structure remains a hindrance. Incorporation of laser drilling and pre-culture with Adipose-derived stem cells (ADSCs) have been attempted to promote early vascularization and integration, but the results were not ideal. Inspired by the manufacturing procedure of frozen bean curd, we proposed a freeze-thaw treatment to enhance the porosity of ADM. We found that the ADM treated with -80°C3R+-30°C3R had the largest disorder of stratified plane arrangement (deviation angle 28.6%) and the largest porosity (96%), making it an optimal approach. Human umbilical vein endothelial cells on freeze-thaw treated ADM demonstrated increased expression in Tie-2 and CD105 genes, proliferation, and tube formation in vitro compared with those on ADM. Combining freeze-thaw with laser drilling and pre-culture with ADSCs, such tri-treatment improved the gene expression of pro-angiogenic factors including IGF-1, EGF, and VEGF, promoted tube formation, increased cell infiltration, and accelerated vascularization soon after implantation. Overall, freeze-thaw is an effective method for optimizing the internal structure of ADM, and tri-treatments may yield clinical significance by promoting early cell infiltration, vascularization, and integration with surrounding tissues.
Collapse
Affiliation(s)
- Xing Huang
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
- Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, PR China
| | - Zhu Zhu
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
- Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, PR China
| | - Lin Lu
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| | - Rui Jin
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| | - Di Sun
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| | - Xusong Luo
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| |
Collapse
|