1
|
Qi Q, Li Y, Chen Z, Luo Z, Zhou T, Zhou J, Zhang Y, Chen S, Wang L. Update on the pathogenesis of endometriosis-related infertility based on contemporary evidence. Front Endocrinol (Lausanne) 2025; 16:1558271. [PMID: 40130159 PMCID: PMC11930837 DOI: 10.3389/fendo.2025.1558271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
Endometriosis, the most prevalent cause of infertility, is associated with anatomical distortion leading to adhesions and fibrosis, as well as endocrine abnormalities and immune disorders. This review discusses the mechanisms underlying endometriosis-related infertility. Firstly, alterations in the hypothalamic-pituitary-ovarian axis lead to the secretion of gonadotropins and steroid hormones, with adverse effects on ovulation and implantation, leading to fertility decline. Secondly, dysregulation of the hypothalamic-pituitary-adrenal axis induces elevated serum cortisol and prolactin levels in patients with endometriosis, accounting for its regulation of stress, depression, and anxiety. Abnormal interactions between endometrial cells and the immune system change the local microenvironment, resulting in epithelial-mesenchymal transition and inflammation. Activated epithelial cells, stromal cells, and immunocytes produce various chemokines, cytokines, or autoantibodies, creating an unfavorable environment for embryo implantation. These findings suggest that alterations in the immune spectrum play a crucial role in endometriosis-related infertility. Thirdly, oxidative stress has adverse effects on the ovarian reserve and subsequent embryonic development, predicting another promising strategy for endometriosis-related infertility. An unbalanced redox state, including impaired mitochondrial function, dysregulated lipid metabolism, and iron-induced oxidative stress, generates a pro-oxidative microenvironment, which negatively impacts oocyte quality and sperm and embryo viability. Thus, an updated understanding of the mechanisms involved in this disease will help to develop effective strategies to manage endometriosis-related infertility.
Collapse
Affiliation(s)
- Qing Qi
- School of Physical Education and National Equestrian Academy, Wuhan Business University, Wuhan, Hubei, China
| | - Yaonan Li
- School of Physical Education and National Equestrian Academy, Wuhan Business University, Wuhan, Hubei, China
| | - Ziqin Chen
- College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zhihui Luo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhou
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yanlin Zhang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Song Chen
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ling Wang
- Department of Obstetrics and Reproductive Immunology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Center of Eugenics Research, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
2
|
Bavarsad SB, Shahryarhesami S, Karami N, Naseri N, Tajbakhsh A, Gheibihayat SM. Efferocytosis and infertility: Implications for diagnosis and therapy. J Reprod Immunol 2025; 167:104413. [PMID: 39631138 DOI: 10.1016/j.jri.2024.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Recent research has shed light on the intricate connection between efferocytosis and infertility, revealing its dysregulation as a contributing factor in various reproductive diseases. Despite the multifaceted nature of infertility etiology, the impact of insufficient clearance of apoptotic cells on fertility has emerged as a focal point. Notably, the removal of apoptotic cells through phagocytosis in the female reproductive system has been a subject of extensive investigation in the field of infertility. Additionally, special functions performed by immune system cell types, such as macrophages and Sertoli cells, in the male reproductive system underscore their significance in spermatogenesis and the efferocytosis of apoptotic germ cells. Dysregulation of efferocytosis emerges as a critical factor contributing to reproductive challenges, such as low pregnancy rates, miscarriages, and implantation failures. Moreover, defective efferocytosis can lead to compromised implantation, recurrent miscarriages, and unsuccessful assisted reproductive procedures. This review article aims to provide a comprehensive overview of efferocytosis in the context of infertility. Molecular mechanisms underlying efferocytosis, its relevance in both female and male infertility, and its implications in various reproductive diseases are elucidated. The elucidation of the intricate relationship between efferocytosis and infertility not only facilitates diagnosis but also paves the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
| | - Soroosh Shahryarhesami
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, Germany.
| | - Noorodin Karami
- Genetics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Nasim Naseri
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
3
|
Potì F, Scalera E, Feuerborn R, Fischer J, Arndt L, Varga G, Pardali E, Seidl MD, Fobker M, Liebisch G, Hesse B, Lukasz AH, Rossaint J, Kehrel BE, Rosenbauer F, Renné T, Christoffersen C, Simoni M, Burkhardt R, Nofer JR. Sphingosine 1-phosphate receptor 1signaling in macrophages reduces atherosclerosis in LDL receptor-deficient mice. JCI Insight 2024; 9:e158127. [PMID: 39531328 PMCID: PMC11665566 DOI: 10.1172/jci.insight.158127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Sphingosine 1-phosphate (S1P) is a lysosphingolipid with antiatherogenic properties, but mechanisms underlying its effects remain unclear. We here investigated atherosclerosis development in cholesterol-rich diet-fed LDL receptor-deficient mice with high or low overexpression levels of S1P receptor 1 (S1P1) in macrophages. S1P1-overexpressing macrophages showed increased activity of transcription factors PU.1, interferon regulatory factor 8 (IRF8), and liver X receptor (LXR) and were skewed toward an M2-distinct phenotype characterized by enhanced production of IL-10, IL-1RA, and IL-5; increased ATP-binding cassette transporter A1- and G1-dependent cholesterol efflux; increased expression of MerTK and efferocytosis; and reduced apoptosis due to elevated B cell lymphoma 6 and Maf bZIP B. A similar macrophage phenotype was observed in mice administered S1P1-selective agonist KRP203. Mechanistically, the enhanced PU.1, IRF8, and LXR activity in S1P1-overexpressing macrophages led to downregulation of the cAMP-dependent PKA and activation of the signaling cascade encompassing protein kinases AKT and mTOR complex 1 as well as the late endosomal/lysosomal adaptor MAPK and mTOR activator 1. Atherosclerotic lesions in aortic roots and brachiocephalic arteries were profoundly or moderately reduced in mice with high and low S1P1 overexpression in macrophages, respectively. We conclude that S1P1 signaling polarizes macrophages toward an antiatherogenic functional phenotype and countervails the development of atherosclerosis in mice.
Collapse
Affiliation(s)
- Francesco Potì
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Enrica Scalera
- Department of Food and Drug, University of Parma, Parma, Italy
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Renata Feuerborn
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Josephine Fischer
- Institute of Molecular Tumor Biology, University of Münster, Münster, Germany
| | - Lilli Arndt
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster, Germany
| | - Evangelia Pardali
- Department of Cardiology, University Hospital Münster, Münster, Germany
- Pharvaris GmbH, Zug, Switzerland
| | - Matthias D. Seidl
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Manfred Fobker
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Bettina Hesse
- Division of General Internal Medicine, Nephrology, and Rheumatology, Department of Medicine D, and
| | - Alexander H. Lukasz
- Division of General Internal Medicine, Nephrology, and Rheumatology, Department of Medicine D, and
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Beate E. Kehrel
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Münster, Münster, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Jerzy-Roch Nofer
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Laboratory Medicine, Marien-Hospital, Niels-Stensen-Kliniken, Osnabrück, Germany
| |
Collapse
|
4
|
Bortot B, Di Florio R, Merighi S, Peacock B, Lees R, Valle F, Brucale M, Mangogna A, Di Lorenzo G, Romano F, Zito G, Zanconati F, Ricci G, Cancila V, Belmonte B, Biffi S. Platelets as key cells in endometriosis patients: Insights from small extracellular vesicles in peritoneal fluid and endometriotic lesions analysis. FASEB J 2024; 38:e70267. [PMID: 39698929 DOI: 10.1096/fj.202402499r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Endometriosis is a chronic inflammatory condition characterized by the presence of endometrium-like tissue outside the uterus, primarily affecting pelvic organs and tissues. In this study, we explored platelet activation in endometriosis. We utilized the STRING database to analyze the functional interactions among proteins previously identified in small extracellular vesicles (EVs) isolated from the peritoneal fluid of endometriosis patients and controls. The bioinformatic analysis indicated enriched signaling pathways related to platelet activation, hemostasis, and neutrophil degranulation. Double immunohistochemistry analysis for CD61 and MPO revealed a significant presence of neutrophils and platelets in close contact infiltrating endometriotic lesions, suggesting potential cell-cell interactions. Subsequently, we isolated small EVs from the peritoneal fluid of women diagnosed with endometriosis and from women without endometriosis who underwent surgery for non-inflammatory benign diseases. We performed single-particle phenotyping analysis based on platelet biomarkers GPIIb/IIIa and PF4 using nanoflow cytometry, as well as single-particle morphological and nanomechanical characterization through atomic force microscopy. The study demonstrated that patients with endometriosis had a notably higher proportion of particles testing positive for platelet biomarkers compared to the total number of EVs. This finding implies a potential role for platelets in the pathogenesis of endometriosis. Further research is necessary to delve into the mechanisms underlying this phenomenon and its implications for disease progression.
Collapse
Affiliation(s)
- Barbara Bortot
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Roberta Di Florio
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Simona Merighi
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | | | | | - Francesco Valle
- Institute of Nanostructured Materials, Consiglio Nazionale delle Ricerche (CNR), Bologna, Italy
| | - Marco Brucale
- Institute of Nanostructured Materials, Consiglio Nazionale delle Ricerche (CNR), Bologna, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
5
|
Song Y, Wang L, Zhang Y. Identification of central genes for endometriosis through integration of single-cell RNA sequencing and bulk RNA sequencing analysis. Medicine (Baltimore) 2023; 102:e36707. [PMID: 38115253 PMCID: PMC10727599 DOI: 10.1097/md.0000000000036707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
This study aimed to identify the key genes involved in the development of endometriosis and construct an accurate predictive model to provide new directions for the diagnosis and treatment of endometriosis. Using bioinformatics analysis, we employed the single-cell cell communication method to identify the key cell subtypes. By combining chip data and integrating differential analysis, WGCNA analysis, and the least absolute shrinkage and selection operator (LASSO) model, key genes were identified for immune infiltration and functional enrichment analyses. Cell communication analysis identified tissue stem cells as the key subtype. Differential analysis revealed 1879 differentially expressed genes, whereas WGCNA identified 357 module genes. The LASSO model further selects 4 key genes: Adipocyte Enhancer Binding Protein 1(AEBP1), MBNL1, GREM1, and DES. All 4 key genes showed significant correlations with immune cell content. Moreover, these genes were significantly expressed in single cells. The predictive model demonstrated good diagnostic performance. Through scRNA-seq, WGCNA, and LASSO methodologies, DES, GREM1, MBNL1, and AEBP1 emerged as crucial core genes linked to tissue stem cell markers in endometriosis. These genes have promising applications as diagnostic markers and therapeutic targets for endometriosis.
Collapse
Affiliation(s)
- Yulin Song
- Department of obstetrics and gynecology, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, Hebei, China
| | - Le Wang
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Yu Zhang
- Department of Gynecology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, China
| |
Collapse
|
6
|
Bernacchioni C, Rossi M, Vannuzzi V, Prisinzano M, Seidita I, Raeispour M, Muccilli A, Castiglione F, Bruni P, Petraglia F, Donati C. Sphingosine-1-phosphate receptor 3 is a non-hormonal target to counteract endometriosis-associated fibrosis. Fertil Steril 2023:S0015-0282(23)02074-5. [PMID: 38072366 DOI: 10.1016/j.fertnstert.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/31/2023]
Abstract
OBJECTIVE To study the molecular mechanisms responsible for fibrosis in endometriosis by investigating whether the protein expression levels of sphingosine-1-phosphate receptor 3 (S1PR3), one of the five specific receptors of the bioactive sphingolipid sphingosine-1-phosphate (S1P), correlate with fibrosis extent in endometriotic lesions and which are the cellular mechanisms involved in this process. DESIGN Case-control laboratory study and cultured endometriotic cells. SETTING University research institute and university hospital. PATIENT(S) A total of 33 women, with and without endometriosis, were included in the study. INTERVENTIONS(S) Endometriotic lesions were obtained from women with endometriosis (ovarian endometrioma, n = 8; deep infiltrating endometriosis, n = 15; [urological n = 5, gastrointestinal n = 6, and posterior n = 4]) and control endometrium from healthy women, n = 10, by means of laparoscopic and hysteroscopic surgery. The expression of S1PR3 was evaluated using immunohistochemistry and the extent of fibrosis was assessed using Masson's trichrome staining. Human-cultured epithelial endometriotic 12Z cells were used to evaluate the mechanisms involved in the profibrotic effect of S1PR3 activation. MAIN OUTCOME MEASURE(S) The expression of S1PR3 in endometriotic lesions is positively correlated with endometriosis-associated fibrosis. In addition, S1P induced epithelial-mesenchymal transition (EMT) and fibrosis in epithelial endometriotic cells. Using RNA interference and pharmacological approaches, the profibrotic effect of S1P was shown to rely on S1PR3, thus unveiling the molecular mechanism implicated in the profibrotic action of the bioactive sphingolipid. RESULT(S) The protein expression levels of S1PR3 were significantly augmented in the glandular sections of endometrioma and deep infiltrating endometriosis of different localizations with respect to the control endometrium and positively correlated with the extent of fibrosis. Sphingosine-1-phosphate was shown to have a crucial role in the onset of fibrosis in epithelial endometriotic cells, stimulating the expression of EMT and fibrotic markers. Genetic approaches have highlighted that S1PR3 mediates the fibrotic effect of S1P. Downstream of S1PR3, ezrin and extracellular-signal-regulated kinases 1 and 2 signaling were found to be critically implicated in the EMT and fibrosis elicited by S1P. CONCLUSION(S) Sphingosine-1-phosphate receptor 3 may represent a possible innovative pharmacological target for endometriosis.
Collapse
Affiliation(s)
- Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy.
| | - Margherita Rossi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | | | - Matteo Prisinzano
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Isabelle Seidita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Maryam Raeispour
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Angela Muccilli
- Histopathology and Molecular Diagnostics, Careggi University Hospital, Florence, Italy
| | - Francesca Castiglione
- Histopathology and Molecular Diagnostics, Careggi University Hospital, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy; Obstetrics and Gynecology, Careggi University Hospital, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| |
Collapse
|
7
|
Zhang F, Peng M, Zheng X, Wang X, Liu X, Chen C, Lu Y. Blocking sphingosine 1-phosphate receptor 1 with modulators reduces immune cells infiltration and alleviates endometriosis in mice. Reprod Biomed Online 2023; 47:103304. [PMID: 37757611 DOI: 10.1016/j.rbmo.2023.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023]
Abstract
RESEARCH QUESTION Do sphingosine 1-phosphate (S1P) modulators have therapeutic effects on endometriosis in mice and, if they do, which receptor is responsible for these effects? DESIGN A surgically induced endometriosis mouse model was established. In the pilot experiment, lesions were harvested to assess fibrosis and inflammation and determine the optimal concentration of a broad-spectrum S1P modulator, FTY720. Subsequently, FTY720 was compared with a selective S1P receptor 1 modulator, SEW2871 to evaluate their effects on endometriotic lesion growth, fibrosis, inflammation and immune cell infiltration. RESULTS The results demonstrated that both FTY720 and SEW2871, two S1P receptor modulators, effectively inhibited the growth and fibrosis of endometriotic lesions. SEW2871 inhibited inflammation-related cytokine expression, including PTGS-2, IL-1β, TNF-α and TGF-β1, more effectively compared with FTY720. Lymphopaenia was mainly caused by FTY720, whereas SEW2871 had a lesser effect. Both FTY720 and SEW2871 significantly reduced CD45+ cells (P = 0.002 and P = 0.032, respectively) and F4/80+ cells (P < 0.001 and P = 0.004, respectively) infiltration into the lesions, with FTY720 exerting a strong regulatory effect on CD4+ T cells. CONCLUSIONS This study suggests that S1P receptor 1 could be investigated as a potential novel therapeutic target for endometriosis in the future.
Collapse
Affiliation(s)
- Fengrui Zhang
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai 200011, People's Republic of China
| | - Mingyi Peng
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai 200011, People's Republic of China
| | - Xufen Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaofang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chun Chen
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai 200011, People's Republic of China.
| | - Yuan Lu
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai 200011, People's Republic of China.
| |
Collapse
|
8
|
Zhang F, Lu Y. The Sphingosine 1-Phosphate Axis: an Emerging Therapeutic Opportunity for Endometriosis. Reprod Sci 2023; 30:2040-2059. [PMID: 36662421 PMCID: PMC9857924 DOI: 10.1007/s43032-023-01167-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Endometriosis is a common condition in women of reproductive age, but its current interventions are unsatisfactory. Recent research discovered a dysregulation of the sphingosine 1-phosphate (S1P) signaling pathway in endometriosis and showed a positive outcome by targeting it. The S1P axis participates in a series of fundamental pathophysiological processes. This narrative review is trying to expound the reported and putative (due to limited reports in this area for now) interactions between the S1P axis and endometriosis in those pathophysiological processes, to provide some perspectives for future research. In short, S1P signaling pathway is highly activated in the endometriotic lesion. The S1P concentration has a surge in the endometriotic cyst fluid and the peritoneal fluid, with the downstream dysregulation of its receptors. The S1P axis plays an essential role in the migration and activation of the immune cells, fibrosis, angiogenesis, pain-related hyperalgesia, and innervation. S1P receptor (S1PR) modulators showed an impressive therapeutic effect by targeting the different S1P receptors in the endometriosis model, and many other conditions resemble endometriosis. And several of them already got approval for clinical application in many diseases, which means a drug repurposing direction and a rapid clinical translation for endometriosis treatments.
Collapse
Affiliation(s)
- Fengrui Zhang
- Department of Gynecology, The Obstetrics & Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai, 200011, People's Republic of China
| | - Yuan Lu
- Department of Gynecology, The Obstetrics & Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
9
|
Garcia Garcia JM, Vannuzzi V, Donati C, Bernacchioni C, Bruni P, Petraglia F. Endometriosis: Cellular and Molecular Mechanisms Leading to Fibrosis. Reprod Sci 2023; 30:1453-1461. [PMID: 36289173 PMCID: PMC10160154 DOI: 10.1007/s43032-022-01083-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
Endometriosis is a chronic inflammatory condition affecting women of reproductive age. A relevant feature of endometriosis is the presence of fibrotic tissue inside and around the lesions, thus contributing to the classic endometriosis-related symptoms, pain, and infertility. The molecular mechanisms responsible for the development of fibrosis in endometriosis are not yet defined. The present review aimed to examine the biological mechanisms and signalling pathways involved in fibrogenesis of endometriotic lesions, highlighting the difference between deep infiltrating and ovarian endometriosis. The main cell types involved in the development of fibrosis are platelets, myofibroblasts, macrophages, and sensory nerve fibers. Members of the transforming growth factor (TGF) -β family, as well as the receptor Notch, or the bioactive sphingolipid sphingosine 1-phosphate (S1P), play a role in the development of tissue fibrosis, resulting in their metabolism and/or their signalling pathways altered in endometriotic lesions. It is relevant the knowledge of the molecular mechanisms that guide and support fibrosis in endometriosis, to identify new drug targets and provide new therapeutic approaches to patients.
Collapse
Affiliation(s)
- Jose Manuel Garcia Garcia
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Valentina Vannuzzi
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Chiara Donati
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Caterina Bernacchioni
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Paola Bruni
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Felice Petraglia
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy.
| |
Collapse
|
10
|
Effects of STAT Inhibitors in Mouse Models of Endometriosis. Reprod Sci 2023:10.1007/s43032-023-01202-2. [PMID: 36854823 DOI: 10.1007/s43032-023-01202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
The signal transducer and activator of transcription (STAT) pathway, which regulates cell proliferation and immunity, has been implicated in chronic inflammatory diseases such as rheumatoid arthritis. However, few reports have described the effects of STAT inhibitors on endometriosis, another chronic inflammatory disease. Here, we investigated the intraperitoneal microenvironment and the effects of a STAT inhibitor in a mouse model of endometriosis. In the treatment group, a STAT3 inhibitor (Stattic®, 80 mg/kg) was orally administered three times per week; control animals received orally dosed phosphate-buffered saline. Endometriosis-like lesions and peritoneal lavage fluid were collected before and 1, 2, and 3 weeks after STAT3 inhibitor administration was initiated. The lesion area was significantly increased in both groups after the first week. However, in the treatment group, the lesion areas were significantly reduced at weeks 2 and 3 compared with week 1. Transforming growth factor (TGF)-β messenger RNA (mRNA) levels in ascites cells were significantly lower at weeks 1 and 2 than at week 0. Interleukin (IL)-6 mRNA levels were significantly higher at week 1 than at week 0 but were significantly lower at weeks 2 and 3 than at week 1. Thus, STAT inhibitors appeared to reduce the extent of endometriosis in this mouse model, and may also inhibit the IL-6 signaling pathway and reduce TGF-β levels. This study suggests that STAT inhibitors warrant further exploration for use in the treatment of endometriosis.
Collapse
|
11
|
Chen S, Liu Y, Zhong Z, Wei C, Liu Y, Zhu X. Peritoneal immune microenvironment of endometriosis: Role and therapeutic perspectives. Front Immunol 2023; 14:1134663. [PMID: 36865552 PMCID: PMC9971222 DOI: 10.3389/fimmu.2023.1134663] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Endometriosis, an estrogen-dependent chronic inflammatory disease characterized by the growth of endometrium-like tissues outside the uterine cavity, affects 10% of reproductive-age women. Although the pathogenesis of endometriosis is uncertain, it is widely accepted that retrograde menstruation results in ectopic endometrial tissue implantation. Given that not all women with retrograde menstruation develop endometriosis, immune factors have been hypothesized to affect the pathogenesis of endometriosis. In this review, we demonstrate that the peritoneal immune microenvironment, including innate immunity and adaptive immunity, plays a central role in the pathogenesis of endometriosis. Current evidence supports the fact that immune cells, such as macrophages, natural killer (NK) cells, dendritic cells (DCs), neutrophils, T cells, and B cells, as well as cytokines and inflammatory mediators, contribute to the vascularization and fibrogenesis of endometriotic lesions, accelerating the implantation and development of ectopic endometrial lesions. Endocrine system dysfunction influences the immune microenvironment through overexpressed estrogen and progesterone resistance. In light of the limitations of hormonal therapy, we describe the prospects for potential diagnostic biomarkers and nonhormonal therapy based on the regulation of the immune microenvironment. Further studies are warranted to explore the available diagnostic biomarkers and immunological therapeutic strategies for endometriosis.
Collapse
Affiliation(s)
- Siman Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yukai Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zhiqi Zhong
- Xinglin College, Nantong University, Nantong, Jiangsu, China
| | - Chunyan Wei
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yuyin Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyong Zhu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China,*Correspondence: Xiaoyong Zhu,
| |
Collapse
|
12
|
The Role of Platelets in the Pathogenesis and Pathophysiology of Adenomyosis. J Clin Med 2023; 12:jcm12030842. [PMID: 36769489 PMCID: PMC9918158 DOI: 10.3390/jcm12030842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Widely viewed as an enigmatic disease, adenomyosis is a common gynecological disease with bewildering pathogenesis and pathophysiology. One defining hallmark of adenomyotic lesions is cyclic bleeding as in eutopic endometrium, yet bleeding is a quintessential trademark of tissue injury, which is invariably followed by tissue repair. Consequently, adenomyotic lesions resemble wounds. Following each bleeding episode, adenomyotic lesions undergo tissue repair, and, as such, platelets are the first responder that heralds the subsequent tissue repair. This repeated tissue injury and repair (ReTIAR) would elicit several key molecular events crucial for lesional progression, eventually leading to lesional fibrosis. Platelets interact with adenomyotic cells and actively participate in these events, promoting the lesional progression and fibrogenesis. Lesional fibrosis may also be propagated into their neighboring endometrial-myometrial interface and then to eutopic endometrium, impairing endometrial repair and causing heavy menstrual bleeding. Moreover, lesional progression may result in hyperinnervation and an enlarged uterus. In this review, the role of platelets in the pathogenesis, progression, and pathophysiology is reviewed, along with the therapeutic implication. In addition, I shall demonstrate how the notion of ReTIAR provides a much needed framework to tether to and piece together many seemingly unrelated findings and how it helps to make useful predictions.
Collapse
|
13
|
Jo H, Shim K, Jeoung D. The Crosstalk between FcεRI and Sphingosine Signaling in Allergic Inflammation. Int J Mol Sci 2022; 23:ijms232213892. [PMID: 36430378 PMCID: PMC9695510 DOI: 10.3390/ijms232213892] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Sphingolipid molecules have recently attracted attention as signaling molecules in allergic inflammation diseases. Sphingosine-1-phosphate (S1P) is synthesized by two isoforms of sphingosine kinases (SPHK 1 and SPHK2) and is known to be involved in various cellular processes. S1P levels reportedly increase in allergic inflammatory diseases, such as asthma and anaphylaxis. FcεRI signaling is necessary for allergic inflammation as it can activate the SPHKs and increase the S1P level; once S1P is secreted, it can bind to the S1P receptors (S1PRs). The role of S1P signaling in various allergic diseases is discussed. Increased levels of S1P are positively associated with asthma and anaphylaxis. S1P can either induce or suppress allergic skin diseases in a context-dependent manner. The crosstalk between FcεRI and S1P/SPHK/S1PRs is discussed. The roles of the microRNAs that regulate the expression of the components of S1P signaling in allergic inflammatory diseases are also discussed. Various reports suggest the role of S1P in FcεRI-mediated mast cell (MC) activation. Thus, S1P/SPHK/S1PRs signaling can be the target for developing anti-allergy drugs.
Collapse
|
14
|
Di Paolo A, Vignini A, Alia S, Membrino V, Delli Carpini G, Giannella L, Ciavattini A. Pathogenic Role of the Sphingosine 1-Phosphate (S1P) Pathway in Common Gynecologic Disorders (GDs): A Possible Novel Therapeutic Target. Int J Mol Sci 2022; 23:13538. [PMID: 36362323 PMCID: PMC9658294 DOI: 10.3390/ijms232113538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid, noteworthy for its involvement both in the modulation of various biological processes and in the development of many diseases. S1P signaling can be either pro or anti-inflammatory, and the sphingosine kinase (SphK)-S1P-S1P receptor (S1PR) axis is a factor in accelerating the growth of several cells, including endometriotic cells and fibrosis. Gynecologic disorders, including endometriosis, adenomyosis, and uterine fibroids are characterized by inflammation and fibrosis. S1P signaling and metabolism have been shown to be dysregulated in those disorders and they are likely implicated in their pathogenesis and pathophysiology. Enzymes responsible for inactivating S1P are the most affected by the dysregulation of S1P balanced levels, thus causing accumulation of sphingolipids within these cells and tissues. The present review highlights the past and latest evidence on the role played by the S1P pathways in common gynecologic disorders (GDs). Furthermore, it discusses potential future approaches in the regulation of this signaling pathway that could represent an innovative and promising therapeutical target, also for ovarian cancer treatment.
Collapse
Affiliation(s)
- Alice Di Paolo
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Sonila Alia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Valentina Membrino
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Giovanni Delli Carpini
- Department of Clinical Sciences, Section of Obstetrics and Gynecology, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Luca Giannella
- Department of Clinical Sciences, Section of Obstetrics and Gynecology, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Andrea Ciavattini
- Department of Clinical Sciences, Section of Obstetrics and Gynecology, Università Politecnica delle Marche, 60121 Ancona, Italy
| |
Collapse
|
15
|
Zhang D, Yu Y, Duan T, Zhou Q. The role of macrophages in reproductive-related diseases. Heliyon 2022; 8:e11686. [DOI: 10.1016/j.heliyon.2022.e11686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
|