1
|
Bellelli F, Angioni D, Arosio B, Vellas B, De Souto Barreto P. Hallmarks of aging and Alzheimer's Disease pathogenesis: Paving the route for new therapeutic targets. Ageing Res Rev 2025; 106:102699. [PMID: 39986483 DOI: 10.1016/j.arr.2025.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/10/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Aging is the leading risk factor for Alzheimer's Disease (AD). Understanding the intricate interplay between biological aging and the AD pathophysiology may help to discover innovative treatments. The relationship between aging and core pathways of AD pathogenesis (amyloidopathy and tauopathy) have been extensively studied in preclinical models. However, the potential discordance between preclinical models and human pathology could represent a limitation in the identification of new therapeutic targets. This narrative review aims to gather the evidence currently available on the associations of β-Amyloid and Tau pathology with the hallmarks of aging in human studies. Briefly, our review suggests that while several hallmarks exhibit a robust association with AD pathogenesis (e.g., epigenetic alterations, chronic inflammation, dysbiosis), others (e.g., telomere attrition, cellular senescence, stem cell exhaustion) demonstrate either no relationship or weak associations. This is often due to limitations such as small sample sizes and study designs, being either cross-sectional or with short follow-up intervals, limiting the generalizability of the findings. Distinct hallmarks play varying roles in different stages of AD pathology, emphasizing the need for longitudinal studies with longer follow-up periods. Considering the intricate interconnections across the hallmarks of aging, future research on AD pathology should focus on multiple hallmarks simultaneously.
Collapse
Affiliation(s)
- Federico Bellelli
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; Fellowship in Geriatric and Gerontology, University of Milan, Milan, Italy.
| | - Davide Angioni
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| | | | - Bruno Vellas
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| | - Philipe De Souto Barreto
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| |
Collapse
|
2
|
Yu Z, Lin S, Gong X, Zou Z, Yang X, Ruan Y, Qian L, Liu Y, Si Z. The role of macroautophagy in substance use disorders. Ann N Y Acad Sci 2025; 1543:68-78. [PMID: 39714908 DOI: 10.1111/nyas.15272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Macroautophagy, a universal cellular process, sends cellular material to lysosomes for breakdown and is often activated by stressors like hypoxia or drug exposure. It is vital for protein balance, neurotransmitter release, synaptic function, and neuron survival. The role of macroautophagy in substance use disorders is dual. On one hand, substances like cocaine, methamphetamine, opiates, and alcohol can activate macroautophagy pathways to degrade various neuroinflammatory factors in neuronal cells, providing a protective function. On the other hand, long-term and excessive use of addictive substances can inhibit macroautophagy pathways, obstructing the fusion of autophagosomes with lysosomes and losing the original protective function. This review first summarizes the key proteins and signaling pathways involved in macroautophagy, including mTORC1, AMPK, and endoplasmic reticulum stress, and suggests that the regulation of macroautophagy plays a central role in drug-rewarding behavior and addiction. Second, we focus on the interactions between macroautophagy and neuroinflammation induced by drugs, evaluating the potential of macroautophagy modulators as therapeutic strategies for substance use disorder (SUD), and identifying autophagy-related biomarkers that can be used for early diagnosis and monitoring of treatment response. Our review summarizes the important scientific basis involved in macroautophagy pathways for the development of new therapies for SUD.
Collapse
Affiliation(s)
- Zhaoying Yu
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Shujun Lin
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Xinshuang Gong
- Department of Medicine, School of Public Health, Ningbo University, Ningbo, China
| | - Zhiting Zou
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Xiangdong Yang
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Yuer Ruan
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Liyin Qian
- Department of Medicine, School of Public Health, Ningbo University, Ningbo, China
| | - Yu Liu
- Department of Medicine, School of Basic Medicine, Ningbo University, Ningbo, China
| | - Zizhen Si
- Department of Medicine, School of Basic Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Gu R, Bai L, Yan F, Zhang S, Zhang X, Deng R, Zeng X, Sun B, Hu X, Li Y, Bai J. Thioredoxin-1 decreases alpha-synuclein induced by MPTP through promoting autophagy-lysosome pathway. Cell Death Discov 2024; 10:93. [PMID: 38388451 PMCID: PMC10884002 DOI: 10.1038/s41420-024-01848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the formation of Lewy body in dopaminergic neurons in the substantia nigra pars compacta (SNpc). Alpha-synuclein (α-syn) is a major component of Lewy body. Autophagy eliminates damaged organelles and abnormal aggregated proteins. Thioredoxin-1 (Trx-1) is a redox regulating protein and plays roles in protecting dopaminergic neurons against neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the relationship between Trx-1 and α-syn in PD is still unknown. In the present study, the movement disorder and dopaminergic neurotoxicity in MPTP-treated mice were improved by Trx-1 overexpression and were aggravated by Trx-1 knockdown in the SNpc in mice. The expression of α-syn was increased in the SNpc of MPTP-treated mice, which was inhibited by Trx-1 overexpression and was exacerbated in Trx-1 knockdown mice. Autophagosomes was increased under electron microscope after MPTP treatment, which were recovered in Trx-1 overexpressing mice and were further increased in Trx-1 knockdown in the SNpc in mice. The expressions of phosphatase and tensin homolog deleted on chromosome ten (PTEN)-induced putative kinase 1 (PINK1), Parkin, LC3 II and p62 were increased by MPTP, which were blocked in Trx-1 overexpressing mice and were further increased in Trx-1 knockdown mice. Cathepsin D was decreased by MPTP, which was restored in Trx-1 overexpressing mice and was further decreased in Trx-1 knockdown mice. The mRFP-GFP-LC3 green fluorescent dots were increased by 1-methyl-4-phenylpyridinium (MPP+) and further increased in Trx-1 siRNA transfected PC12 cells, while mRFP-GFP-LC3 red fluorescent dots were increased in Trx-1 overexpressing cells. These results indicate that Trx-1 may eliminate α-syn in PD mice through potentiating autophagy-lysosome pathway.
Collapse
Affiliation(s)
- Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Fang Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Se Zhang
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xianwen Zhang
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ruhua Deng
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiansi Zeng
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Bo Sun
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaomei Hu
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ye Li
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
4
|
Mishima T, Yuasa-Kawada J, Fujioka S, Tsuboi Y. Perry Disease: Bench to Bedside Circulation and a Team Approach. Biomedicines 2024; 12:113. [PMID: 38255218 PMCID: PMC10813069 DOI: 10.3390/biomedicines12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
With technological applications, especially in genetic testing, new diseases have been discovered and new disease concepts have been proposed in recent years; however, the pathogenesis and treatment of these rare diseases are not as well established as those of common diseases. To demonstrate the importance of rare disease research, in this paper we focus on our research topic, Perry disease (Perry syndrome). Perry disease is a rare autosomal dominant neurodegenerative disorder clinically characterized by parkinsonism, depression/apathy, weight loss, and respiratory symptoms including central hypoventilation and central sleep apnea. The pathological classification of Perry disease falls under TAR DNA-binding protein 43 (TDP-43) proteinopathies. Patients with Perry disease exhibit DCTN1 mutations, which is the causative gene for the disease; they also show relatively uniform pathological and clinical features. This review summarizes recent findings regarding Perry disease from both basic and clinical perspectives. In addition, we describe technological innovations and outline future challenges and treatment prospects. We discuss the expansion of research from rare diseases to common diseases and the importance of collaboration between clinicians and researchers. Here, we highlight the importance of researching rare diseases as it contributes to a deeper understanding of more common diseases, thereby opening up new avenues for scientific exploration.
Collapse
Affiliation(s)
| | | | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka 814-0180, Japan; (T.M.); (J.Y.-K.); (S.F.)
| |
Collapse
|
5
|
Sanghai N, Tranmer GK. Biochemical and Molecular Pathways in Neurodegenerative Diseases: An Integrated View. Cells 2023; 12:2318. [PMID: 37759540 PMCID: PMC10527779 DOI: 10.3390/cells12182318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are defined by a myriad of complex aetiologies. Understanding the common biochemical molecular pathologies among NDDs gives an opportunity to decipher the overlapping and numerous cross-talk mechanisms of neurodegeneration. Numerous interrelated pathways lead to the progression of neurodegeneration. We present evidence from the past pieces of literature for the most usual global convergent hallmarks like ageing, oxidative stress, excitotoxicity-induced calcium butterfly effect, defective proteostasis including chaperones, autophagy, mitophagy, and proteosome networks, and neuroinflammation. Herein, we applied a holistic approach to identify and represent the shared mechanism across NDDs. Further, we believe that this approach could be helpful in identifying key modulators across NDDs, with a particular focus on AD, PD, and ALS. Moreover, these concepts could be applied to the development and diagnosis of novel strategies for diverse NDDs.
Collapse
Affiliation(s)
- Nitesh Sanghai
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
| | - Geoffrey K. Tranmer
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
6
|
Jasutkar HG, Yamamoto A. Autophagy at the synapse, an early site of dysfunction in neurodegeneration. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100631. [PMID: 36968133 PMCID: PMC10035630 DOI: 10.1016/j.cophys.2023.100631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macroautophagy, herein referred to as autophagy, has long been implicated in the pathophysiology of neurodegenerative diseases. However, an incomplete understanding of how autophagy contributes to disease pathogenesis has limited progress in acting on this potential target for the development of disease modifying therapeutics. Research in the past few decades has revealed that autophagy plays a specialized role in the synapse, a site of early dysfunction in multiple neurodegenerative diseases. In this review we discuss the evidence suggesting that inadequate autophagy at the synapse may contribute to neurodegeneration, and why the functions of autophagy may be particularly relevant for synaptic function.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
7
|
Rathore AS, Singh SS, Birla H, Zahra W, Keshri PK, Dilnashin H, Singh R, Singh S, Singh SP. Curcumin Modulates p62-Keap1-Nrf2-Mediated Autophagy in Rotenone-Induced Parkinson's Disease Mouse Models. ACS Chem Neurosci 2023. [PMID: 36989171 DOI: 10.1021/acschemneuro.2c00706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Autophagy mediates self-digestion of abnormally aggregated proteins and organelles present in the cytoplasm. This mechanism may prove to be neuroprotective against Parkinson's disease (PD) by clearing misfolded α-synuclein (α-syn) aggregates from dopaminergic neurons. p62, an adaptor protein acts as a selective substrate for autophagy and regulates the formation as well as the degradation of protein aggregates. p62 sequesters keap1 freeing Nrf2 and consequently activating the transcription of its target genes. In the present study, we aimed to investigate the anti-parkinsonian activity of curcumin targeting primarily activation of autophagy via the Nrf2-Keap1 pathway. The mice were subcutaneously injected with rotenone (2.5 mg/kg bodyweight) and co-treated with oral administration of curcumin (80 mg/kg bodyweight) for 35 days. Following completion of dosing, motor activities, anti-oxidative potential, mitochondrial dysfunction, and various protein expressions, including Nrf2, Keap1, p62, LC3, Bcl2, Bax, and caspase 3, were assessed. The results revealed that curcumin restored the motor coordination and anti-oxidative activity while improving the mitochondrial functioning in PD mice. Autophagy was evaluated by the change in the expression of autophagic markers, p62 and LC3-II. Reduced p62 and LC3-II expressions in the rotenone mouse model of PD confirmed the compromised autophagy pathway, consequently increasing the aggregation of misfolded protein α-syn. Whereas, curcumin treatment-enhanced autophagy-mediated clearance of misfolded α-syn proteins by increasing the LC3-II expression and blocked apoptotic cascade. Curcumin administration upregulated the Nrf2 expression and normalized the Nrf2-Keap1 pathway, which justifies the improved anti-oxidative activity. Therefore, the findings reveal that curcumin is a Nrf2-inducer and is endowed with neuroprotective potential, which may prove to be a potential candidate for the anti-Parkinson's disease treatment therapy.
Collapse
Affiliation(s)
- Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shekhar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
8
|
The Role of Bacteria-Mitochondria Communication in the Activation of Neuronal Innate Immunity: Implications to Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24054339. [PMID: 36901773 PMCID: PMC10001700 DOI: 10.3390/ijms24054339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Mitochondria play a key role in regulating host metabolism, immunity and cellular homeostasis. Remarkably, these organelles are proposed to have evolved from an endosymbiotic association between an alphaproteobacterium and a primitive eukaryotic host cell or an archaeon. This crucial event determined that human cell mitochondria share some features with bacteria, namely cardiolipin, N-formyl peptides, mtDNA and transcription factor A, that can act as mitochondrial-derived damage-associated molecular patterns (DAMPs). The impact of extracellular bacteria on the host act largely through the modulation of mitochondrial activities, and often mitochondria are themselves immunogenic organelles that can trigger protective mechanisms through DAMPs mobilization. In this work, we demonstrate that mesencephalic neurons exposed to an environmental alphaproteobacterium activate innate immunity through toll-like receptor 4 and Nod-like receptor 3. Moreover, we show that mesencephalic neurons increase the expression and aggregation of alpha-synuclein that interacts with mitochondria, leading to their dysfunction. Mitochondrial dynamic alterations also affect mitophagy which favors a positive feedback loop on innate immunity signaling. Our results help to elucidate how bacteria and neuronal mitochondria interact and trigger neuronal damage and neuroinflammation and allow us to discuss the role of bacterial-derived pathogen-associated molecular patterns (PAMPs) in Parkinson's disease etiology.
Collapse
|
9
|
Yang L, Nao J. Focus on Alzheimer's Disease: The Role of Fibroblast Growth Factor 21 and Autophagy. Neuroscience 2023; 511:13-28. [PMID: 36372296 DOI: 10.1016/j.neuroscience.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is a disorder of the central nervous system that is typically marked by progressive cognitive impairment and memory loss. Amyloid β plaque deposition and neurofibrillary tangles with hyperphosphorylated tau are the two hallmark pathologies of AD. In mammalian cells, autophagy clears aberrant protein aggregates, thus maintaining proteostasis as well as neuronal health. Autophagy affects production and metabolism of amyloid β and accumulation of phosphorylated tau proteins, whose malfunction can lead to the progression of AD. On the other hand, defective autophagy has been found to induce the production of the neuroprotective factor fibroblast growth factor 21 (FGF21), although the underlying mechanism is unclear. In this review, we highlight the significance of aberrant autophagy in the pathogenesis of AD, discuss the possible mechanisms by which defective autophagy induces FGF21 production, and analyze the potential of FGF21 in the treatment of AD. The findings provide some insights into the potential role of FGF21 and autophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
10
|
Mani S, Jindal D, Chopra H, Jha SK, Singh SK, Ashraf GM, Kamal M, Iqbal D, Chellappan DK, Dey A, Dewanjee S, Singh KK, Ojha S, Singh I, Gautam RK, Jha NK. ROCK2 Inhibition: A Futuristic Approach for the Management of Alzheimer's Disease. Neurosci Biobehav Rev 2022; 142:104871. [PMID: 36122738 DOI: 10.1016/j.neubiorev.2022.104871] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 12/06/2022]
Abstract
Neurons depend on mitochondrial functions for membrane excitability, neurotransmission, and plasticity.Mitochondrialdynamicsare important for neural cell maintenance. To maintain mitochondrial homeostasis, lysosomes remove dysfunctionalmitochondria through mitophagy. Mitophagy promotes mitochondrial turnover and prevents the accumulation of dysfunctional mitochondria. In many neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), mitophagy is disrupted in neurons.Mitophagy is regulated by several proteins; recently,Rho-associated coiled-coil containing protein kinase 2 (ROCK2) has been suggested to negatively regulate the Parkin-dependent mitophagy pathway.Thus, ROCK2inhibitionmay bea promising therapyfor NDDs. This review summarizesthe mitophagy pathway, the role of ROCK2in Parkin-dependentmitophagyregulation,and mitophagy impairment in the pathology of AD. We further discuss different ROCK inhibitors (synthetic drugs, natural compounds,and genetherapy-based approaches)and examine their effects on triggering neuronal growth and neuroprotection in AD and other NDDs. This comprehensive overview of the role of ROCK in mitophagy inhibition provides a possible explanation for the significance of ROCK inhibitors in the therapeutic management of AD and other NDDs.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Disease, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India.
| | - Divya Jindal
- Centre for Emerging Disease, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Keshav K Singh
- Department of Genetics, UAB School of Medicine, The University of Alabama at Birmingham
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Inderbir Singh
- MM School of Pharmacy, MM University, Sadopur-Ambala -134007, India
| | - Rupesh K Gautam
- MM School of Pharmacy, MM University, Sadopur-Ambala -134007, India.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| |
Collapse
|
11
|
Merino M, Sequedo MD, Sánchez-Sánchez AV, Clares MP, García-España E, Vázquez-Manrique RP, Mullor JL. Mn(II) Quinoline Complex (4QMn) Restores Proteostasis and Reduces Toxicity in Experimental Models of Huntington's Disease. Int J Mol Sci 2022; 23:8936. [PMID: 36012207 PMCID: PMC9409211 DOI: 10.3390/ijms23168936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, of the so-called minority diseases, due to its low prevalence. It is caused by an abnormally long track of glutamines (polyQs) in mutant huntingtin (mHtt), which makes the protein toxic and prone to aggregation. Many pathways of clearance of badly-folded proteins are disrupted in neurons of patients with HD. In this work, we show that one Mn(II) quinone complex (4QMn), designed to work as an artificial superoxide dismutase, is able to activate both the ubiquitin-proteasome system and the autophagy pathway in vitro and in vivo models of HD. Activation of these pathways degrades mHtt and other protein-containing polyQs, which restores proteostasis in these models. Hence, we propose 4QMn as a potential drug to develop a therapy to treat HD.
Collapse
Affiliation(s)
- Marián Merino
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain
| | - María Dolores Sequedo
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | | | - Mª Paz Clares
- Departamento de Química Orgánica e Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Valencia, Spain
| | - Enrique García-España
- Departamento de Química Orgánica e Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Valencia, Spain
| | - Rafael P. Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - José L. Mullor
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain
| |
Collapse
|