1
|
Cairoli V, Valle-Millares D, Terrón-Orellano MC, Luque D, Ryan P, Dominguez L, Martín-Carbonero L, De Los Santos I, De Matteo E, Ameigeiras B, Briz V, Casciato P, Preciado MV, Valva P, Fernández-Rodríguez A. MicroRNA signature from extracellular vesicles of HCV/HIV co-infected individuals differs from HCV mono-infected. J Mol Med (Berl) 2023; 101:1409-1420. [PMID: 37704856 PMCID: PMC10663177 DOI: 10.1007/s00109-023-02367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
Hepatitis C virus (HCV) coinfection with human immunodeficiency virus (HIV) has a detrimental impact on disease progression. Increasing evidence points to extracellular vesicles (EVs) as important players of the host-viral cross-talk. The microRNAs (miRNAs), as essential components of EVs cargo, are key regulators of normal cellular processes and also promote viral replication, viral pathogenesis, and disease progression. We aimed to characterize the plasma-derived EVs miRNA signature of chronic HCV infected and HIV coinfected patients to unravel the molecular mechanisms of coinfection. EVs were purified and characterized from 50 plasma samples (21 HCV mono- and 29 HCV/HIV co-infected). EV-derived small RNAs were isolated and analyzed by massive sequencing. Known and de novo miRNAs were identified with miRDeep2. Significant differentially expressed (SDE) miRNA identification was performed with generalized linear models and their putative dysregulated biological pathways were evaluated. Study groups were similar for most clinical and epidemiological characteristics. No differences were observed in EVs size or concentration between groups. Therefore, HCV/HIV co-infection condition did not affect the concentration or size of EVs but produced a disturbance in plasma-derived EVs miRNA cargo. Thus, a total of 149 miRNAs were identified (143 known and 6 de novo) leading to 37 SDE miRNAs of which 15 were upregulated and 22 downregulated in HCV/HIV co-infected patients. SDE miRNAs regulate genes involved in inflammation, fibrosis, and cancer, modulating different biological pathways related to HCV and HIV pathogenesis. These findings may help to develop new generation biomarkers and treatment strategies, in addition to elucidate the mechanisms underlying virus-host interaction. KEY MESSAGES: HCV and HCV/HIV displayed similar plasma-EV size and concentration. EVs- derived miRNA profile was characterized by NGS. 37 SDE miRNAs between HCV and HCV/HIV were observed. SDE miRNAs regulate genes involved in inflammation, fibrosis and cancer.
Collapse
Affiliation(s)
- Victoria Cairoli
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, C1425EFD CABA, Buenos Aires, Argentina
| | - Daniel Valle-Millares
- Unit of Viral Infection and Immunity, Centro Nacional de Mirobiología, Instituto de Salud Carlos III (ISCIII), 28222, Majadahonda, Madrid, Spain
| | - María C Terrón-Orellano
- Unit of Electron Microscopy Scientific and Technical Central Units (UCCT), Health Institute Carlos III (ISCIII), 28222, Majadahonda, Madrid, Spain
| | - Daniel Luque
- Unit of Electron Microscopy Scientific and Technical Central Units (UCCT), Health Institute Carlos III (ISCIII), 28222, Majadahonda, Madrid, Spain
| | - Pablo Ryan
- Infectious Diseases Department, Internal Medicine Department HIV/Hepatitis, Infanta Leonor University Hospital, 28031, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222, Madrid, Spain
| | - Lourdes Dominguez
- HIV Unit, Internal Medicine Department, Research Institute of the Hospital, 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Luz Martín-Carbonero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222, Madrid, Spain
- Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, IdiPAZ, 28046, Madrid, Spain
| | - Ignacio De Los Santos
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222, Madrid, Spain
- Infectious Diseases Unit, Internal Medicine Department, La Princesa University Hospital, 28006, Madrid, Spain
| | - Elena De Matteo
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, C1425EFD CABA, Buenos Aires, Argentina
| | - Beatriz Ameigeiras
- Liver Unit, Ramos Mejía Hospital, C1221ADC CABA, Buenos Aires, Argentina
| | - Verónica Briz
- Viral Hepatitis Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222, Majadahonda, Madrid, Spain
| | - Paola Casciato
- Liver Unit, Italian's Hospital of Buenos Aires, C1199 CABA, Buenos Aires, Argentina
| | - María Victoria Preciado
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, C1425EFD CABA, Buenos Aires, Argentina
| | - Pamela Valva
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, C1425EFD CABA, Buenos Aires, Argentina
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, Centro Nacional de Mirobiología, Instituto de Salud Carlos III (ISCIII), 28222, Majadahonda, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222, Madrid, Spain.
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda, Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain.
| |
Collapse
|
2
|
Arisan ED, Dart DA, Grant GH, Dalby A, Kancagi DD, Turan RD, Yurtsever B, Karakus GS, Ovali E, Lange S, Uysal-Onganer P. microRNA 1307 Is a Potential Target for SARS-CoV-2 Infection: An in Vitro Model. ACS OMEGA 2022; 7:38003-38014. [PMID: 36275122 PMCID: PMC9578367 DOI: 10.1021/acsomega.2c05245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
microRNAs (miRs) are proposed as critical molecular targets in SARS-CoV-2 infection. Our recent in silico studies identified seven SARS-CoV-2 specific miR-like sequences, which are highly conserved with humans, including miR-1307-3p, with critical roles in COVID-19. In this current study, Vero cells were infected with SARS-CoV-2, and miR expression profiles were thereafter confirmed by qRT-PCR. miR-1307-3p was the most highly expressed miR in the infected cells; we, therefore, transiently inhibited its expression in both infected and uninfected cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) cell proliferation assay assessed cell viability following SARS-CoV-2 infection, identifying that miR-1307 expression is inversely correlated with cell viability. Lastly, changes in miR-1307-dependent pathways were analyzed through a detailed miRNOME and associated in silico analysis. In addition to our previously identified miRs, including miR-1307-3p, the upregulation of miR-193a-5p, miR-5100, and miR-23a-5p and downregulation of miR-130b-5p, miR34a-5p, miR-505-3p, miR181a-2-3p, miR-1271-5p, miR-598-3p, miR-34c-3p, and miR-129-5p were also established in Vero cells related to general lung disease-related genes following SARS-CoV-2 infection. Targeted anti-miR-1307-3p treatment rescued cell viability in infection when compared to SARS CoV-2 mediated cell cytotoxicity only. We furthermore identified by in silico analysis that miR-1307-3p is conserved in all SARS-CoV-2 sequences/strains, except in the BA.2 variant, possibly contributing to the lower disease severity of this variant, which warrants further investigation. Small RNA seq analysis was next used to evaluate alterations in the miRNOME, following miR-1307-3p manipulation, identifying critical pathobiological pathways linked to SARS-CoV-2 infection-mediated upregulation of this miR. On the basis of our findings, miRNAs like miR-1307-3p play a critical role in SARS-CoV-2 infection, including via effects on disease progression and severity.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Gebze
Technical University, Institute of Biotechnology, Gebze, Kocaeli 41400, Turkiye
| | - D. Alwyn Dart
- Institute
of Medical and Biomedical Education, St
George’s University of London, Cranmer Terrace, Tooting, London SW17
0RE, United Kingdom
| | - Guy H. Grant
- School
of Life Sciences, University of Bedfordshire, Park Square, Luton LU1
3JU, United Kingdom
| | - Andrew Dalby
- School
of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | | | - Raife Dilek Turan
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
- Yeditepe
University, Institute of Biotechnology, İstanbul 34755, Turkiye
| | - Bulut Yurtsever
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
| | - Gozde Sir Karakus
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
| | - Ercument Ovali
- Acibadem
Labcell Cellular Therapy Laboratory, İstanbul 34457, Turkiye
| | - Sigrun Lange
- Tissue
Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Pinar Uysal-Onganer
- Cancer
Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| |
Collapse
|