1
|
Idotta C, Pagano MA, Tibaldi E, Cadamuro M, Saetti R, Silvestrini M, Pigato G, Leanza L, Peruzzo R, Meneghetti L, Piazza S, Meneguzzo P, Favaro A, Grassi L, Toffanin T, Brunati AM. Neural stem/progenitor cells from olfactory neuroepithelium collected by nasal brushing as a cell model reflecting molecular and cellular dysfunctions in schizophrenia. World J Biol Psychiatry 2024; 25:317-329. [PMID: 38869228 DOI: 10.1080/15622975.2024.2357096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVES Neural stem/progenitor cells derived from olfactory neuroepithelium (hereafter olfactory neural stem/progenitor cells, ONSPCs) are emerging as a potential tool in the exploration of psychiatric disorders. The present study intended to assess whether ONSPCs could help discern individuals with schizophrenia (SZ) from non-schizophrenic (NS) subjects by exploring specific cellular and molecular features. METHODS ONSPCs were collected from 19 in-patients diagnosed with SZ and 31 NS individuals and propagated in basal medium. Mitochondrial ATP production, expression of β-catenin and cell proliferation, which are described to be altered in SZ, were examined in freshly isolated or newly thawed ONSPCs after a few culture passages. RESULTS SZ-ONSPCs exhibited a lower mitochondrial ATP production and insensitivity to agents capable of positively or negatively affecting β-catenin expression with respect to NS-ONSPCs. As to proliferation, it declined in SZ-ONSPCs as the number of culture passages increased compared to a steady level of growth shown by NS-ONSPCs. CONCLUSIONS The ease and safety of sample collection as well as the differences observed between NS- and SZ-ONSPCs, may lay the groundwork for a new approach to obtain biological material from a large number of living individuals and gain a better understanding of the mechanisms underlying SZ pathophysiology.
Collapse
Affiliation(s)
- Carlo Idotta
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mario Angelo Pagano
- Department of Molecular Medicine, University of Padua, Padua, Italy
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Elena Tibaldi
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Roberto Saetti
- Department of Otolaryngology, San Bortolo Hospital, ULSS 8 Berica, Vicenza, Italy
| | - Marina Silvestrini
- Department of Otolaryngology, San Bortolo Hospital, ULSS 8 Berica, Vicenza, Italy
| | | | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy
| | - Roberta Peruzzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Stefano Piazza
- Department of Mental Health, ULSS 8 Berica, Vicenza, Italy
| | - Paolo Meneguzzo
- Department of Neuroscience, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Angela Favaro
- Department of Neuroscience, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Tommaso Toffanin
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
2
|
Fang W, Chen S, Jin X, Liu S, Cao X, Liu B. Metabolomics in aging research: aging markers from organs. Front Cell Dev Biol 2023; 11:1198794. [PMID: 37397261 PMCID: PMC10313136 DOI: 10.3389/fcell.2023.1198794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolism plays an important role in regulating aging at several levels, and metabolic reprogramming is the main driving force of aging. Due to the different metabolic needs of different tissues, the change trend of metabolites during aging in different organs and the influence of different levels of metabolites on organ function are also different, which makes the relationship between the change of metabolite level and aging more complex. However, not all of these changes lead to aging. The development of metabonomics research has opened a door for people to understand the overall changes in the metabolic level in the aging process of organisms. The omics-based "aging clock" of organisms has been established at the level of gene, protein and epigenetic modifications, but there is still no systematic summary at the level of metabolism. Here, we reviewed the relevant research published in the last decade on aging and organ metabolomic changes, discussed several metabolites with high repetition rate, and explained their role in vivo, hoping to find a group of metabolites that can be used as metabolic markers of aging. This information should provide valuable information for future diagnosis or clinical intervention of aging and age-related diseases.
Collapse
Affiliation(s)
- Weicheng Fang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shuxin Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Danics L, Abbas AA, Kis B, Pircs K. Fountain of youth—Targeting autophagy in aging. Front Aging Neurosci 2023; 15:1125739. [PMID: 37065462 PMCID: PMC10090449 DOI: 10.3389/fnagi.2023.1125739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
As our society ages inexorably, geroscience and research focusing on healthy aging is becoming increasingly urgent. Macroautophagy (referred to as autophagy), a highly conserved process of cellular clearance and rejuvenation has attracted much attention due to its universal role in organismal life and death. Growing evidence points to autophagy process as being one of the key players in the determination of lifespan and health. Autophagy inducing interventions show significant improvement in organismal lifespan demonstrated in several experimental models. In line with this, preclinical models of age-related neurodegenerative diseases demonstrate pathology modulating effect of autophagy induction, implicating its potential to treat such disorders. In humans this specific process seems to be more complex. Recent clinical trials of drugs targeting autophagy point out some beneficial effects for clinical use, although with limited effectiveness, while others fail to show any significant improvement. We propose that using more human-relevant preclinical models for testing drug efficacy would significantly improve clinical trial outcomes. Lastly, the review discusses the available cellular reprogramming techniques used to model neuronal autophagy and neurodegeneration while exploring the existing evidence of autophagy’s role in aging and pathogenesis in human-derived in vitro models such as embryonic stem cells (ESCs), induced pluripotent stem cell derived neurons (iPSC-neurons) or induced neurons (iNs).
Collapse
Affiliation(s)
- Lea Danics
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Anna Anoir Abbas
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Balázs Kis
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Karolina Pircs
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- *Correspondence: Karolina Pircs,
| |
Collapse
|
4
|
Assessing the neurotoxicity of airborne nano-scale particulate matter in human iPSC-derived neurons using a transcriptomics benchmark dose model. Toxicol Appl Pharmacol 2022; 449:116109. [DOI: 10.1016/j.taap.2022.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
|