1
|
Rajan SS, Chandran R, Abrahamse H. Advancing Photodynamic Therapy with Nano-Conjugated Hypocrellin: Mechanisms and Clinical Applications. Int J Nanomedicine 2024; 19:11023-11038. [PMID: 39502636 PMCID: PMC11537162 DOI: 10.2147/ijn.s486014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
Hypocrellin-based photodynamic therapy (PDT) is developing as a viable cancer therapeutic option, especially when enhanced by nanoconjugation. This review investigates the methods by which nano-conjugated hypocrellin enhances therapeutic efficacy and precision when targeting cancer cells. These nanoconjugates encapsulate or covalently bind hypocrellin photosensitizers (PSs), allowing them to accumulate preferentially in malignancies. When activated by light, the nanoconjugates produce singlet oxygen and other reactive oxygen species (ROS), resulting in oxidative stress that selectively destroys cancer cells while protecting healthy tissues. We look at how they can be used to treat a variety of cancers. Clinical and preclinical studies show that they have advantages such as increased water solubility, improved tumor penetration, longer circulation times, and tailored delivery, all of which contribute to fewer off-target effects and overall toxicity. Ongoing research focuses on improving these nanoconjugates for better tumor targeting, drug release kinetics, and overcoming biological obstacles. Furthermore, the incorporation of developing technologies such as stimuli-responsive nanocarriers and combination therapies opens exciting opportunities for enhancing hypocrellin-based PDT. In conclusion, the combination of hypocrellin and nanotechnology constitutes a significant approach to cancer treatment, increasing the efficacy and safety of PDT. Future research will seek to create conjugates including hypocrellin, herceptin, and gold nanoparticles to induce apoptosis in human breast cancer cells in vitro, opening possibilities for therapeutic applications.
Collapse
Affiliation(s)
- Sheeja S Rajan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
Merlin JPJ, Abrahamse H. Optimizing CRISPR/Cas9 precision: Mitigating off-target effects for safe integration with photodynamic and stem cell therapies in cancer treatment. Biomed Pharmacother 2024; 180:117516. [PMID: 39332185 DOI: 10.1016/j.biopha.2024.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024] Open
Abstract
CRISPR/Cas9 precision genome editing has revolutionized cancer treatment by introducing specific alterations to the cancer genome. But the therapeutic potential of CRISPR/Cas9 is limited by off-target effects, which can cause undesired changes to genomic regions and create major safety concerns. The primary emphasis lies in their implications within the realm of cancer photodynamic therapy (PDT), where precision is paramount. PDT is a promising cancer treatment method; nevertheless, its effectiveness is severely limited and readily leads to recurrence due to the therapeutic resistance of cancer stem cells (CSCs). With a focus on targeted genome editing into cancer cells during PDT and stem cell treatment (SCT), the review aims to further the ongoing search for safer and more accurate CRISPR/Cas9-mediated methods. At the core of this exploration are recent advancements and novel techniques that offer promise in mitigating the risks associated with off-target effects. With a focus on cancer PDT and SCT, this review critically assesses the landscape of off-target effects in CRISPR/Cas9 applications, offering a comprehensive knowledge of their nature and prevalence. A key component of the review is the assessment of cutting-edge delivery methods, such as technologies based on nanoparticles (NPs), to optimize the distribution of CRISPR components. Additionally, the study delves into the intricacies of guide RNA design, focusing on advancements that bolster specificity and minimize off-target effects, crucial elements in ensuring the precision required for effective cancer PDT and SCT. By synthesizing insights from various methodologies, including the exploration of innovative genome editing tools and leveraging robust validation methods and bioinformatics tools, the review aspires to chart a course towards more reliable and precise CRISPR-Cas9 applications in cancer PDT and SCT. For safe PDT and SCT integration in cancer therapy, CRISPR/Cas9 precision optimization is essential. Utilizing sophisticated molecular and computational techniques to address off-target effects is crucial to realizing the therapeutic promise of these technologies, which will ultimately lead to the development of individualized and successful cancer treatment strategies. Our long-term goals are to improve precision genome editing for more potent cancer therapy approaches by refining the way CRISPR/Cas9 is integrated with photodynamic and stem cell therapies.
Collapse
Affiliation(s)
- J P Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, South Africa
| |
Collapse
|
3
|
Merlin JPJ, Crous A, Abrahamse H. Combining Photodynamic Therapy and Targeted Drug Delivery Systems: Enhancing Mitochondrial Toxicity for Improved Cancer Outcomes. Int J Mol Sci 2024; 25:10796. [PMID: 39409125 PMCID: PMC11477455 DOI: 10.3390/ijms251910796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer treatment continues to be a substantial problem due to tumor complexities and persistence, demanding novel therapeutic techniques. This review investigates the synergistic potential of combining photodynamic therapy (PDT) and tailored medication delivery technologies to increase mitochondrial toxicity and improve cancer outcomes. PDT induces selective cellular damage and death by activating photosensitizers (PS) with certain wavelengths of light. However, PDT's efficacy can be hampered by issues such as poor light penetration and a lack of selectivity. To overcome these challenges, targeted drug delivery systems have emerged as a promising technique for precisely delivering therapeutic medicines to tumor cells while avoiding off-target effects. We investigate how these technologies can improve mitochondrial targeting and damage, which is critical for causing cancer cell death. The combination method seeks to capitalize on the advantages of both modalities: selective PDT activation and specific targeted drug delivery. We review current preclinical and clinical evidence supporting the efficacy of this combination therapy, focusing on case studies and experimental models. This review also addresses issues such as safety, distribution efficiency, resistance mechanisms, and costs. The prospects of further research include advances in photodynamic agents and medication delivery technology, with a focus on personalized treatment. In conclusion, combining PDT with targeted drug delivery systems provides a promising frontier in cancer therapy, with the ability to overcome current treatment limits and open the way for more effective, personalized cancer treatments.
Collapse
Affiliation(s)
- J. P. Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (A.C.); (H.A.)
| | | | | |
Collapse
|
4
|
Merlin JPJ, Crous A, Abrahamse H. Nano-phototherapy: Favorable prospects for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1930. [PMID: 37752098 DOI: 10.1002/wnan.1930] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Nanotechnology-based phototherapies have drawn interest in the fight against cancer because of its noninvasiveness, high flexibility, and precision in terms of cancer targeting and drug delivery based on its surface properties and size. Phototherapy has made remarkable development in recent decades. Approaches to phototherapy, which utilize nanomaterials or nanotechnology have emerged to contribute to advances around nanotechnologies in medicine, particularly for cancers. A brief overviews of the development of photodynamic therapy as well as its mechanism in cancer treatment is provided. We emphasize the design of novel nanoparticles utilized in photodynamic therapy while summarizing the representative progress during the recent years. Finally, to forecast important future research in this area, we examine the viability and promise of photodynamic therapy systems based on nanoparticles in clinical anticancer treatment applications and briefly make mention of the elimination of all reactive metabolites pertaining to nano formulations inside living organisms providing insight into clinical mechanistic processes. Future developments and therapeutic prospects for photodynamic treatments are anticipated. Our viewpoints might encourage scientists to create more potent phototherapy-based cancer therapeutic modalities. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- J P Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
5
|
Rajan SS, Chandran R, Abrahamse H. Overcoming challenges in cancer treatment: Nano-enabled photodynamic therapy as a viable solution. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1942. [PMID: 38456341 DOI: 10.1002/wnan.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Cancer presents a formidable challenge, necessitating innovative therapies that maximize effectiveness while minimizing harm to healthy tissues. Nanotechnology has emerged as a transformative force in cancer treatment, particularly through nano-enabled photodynamic therapy (NE-PDT), which leverages precise and targeted interventions. NE-PDT capitalizes on photosensitizers activated by light to generate reactive oxygen species (ROS) that initiate apoptotic pathways in cancer cells. Nanoparticle enhancements optimize this process, improving drug delivery, selectivity, and ROS production within tumors. This review dissects NE-PDT's mechanistic framework, showcasing its potential to harness apoptosis as a potent tool in cancer therapy. Furthermore, the review explores the synergy between NE-PDT and complementary treatments like chemotherapy, immunotherapy, and targeted therapies, highlighting the potential to amplify apoptotic responses, enhance immune recognition of cancer cells, and inhibit resistance mechanisms. Preclinical and clinical advancements in NE-PDT demonstrate its efficacy across various cancer types. Challenges in translating NE-PDT into clinical practice are also addressed, emphasizing the need for optimizing nanoparticle design, refining dosimetry, and ensuring long-term safety. Ultimately, NE-PDT represents a promising approach in cancer therapy, utilizing the intricate mechanisms of apoptosis to address therapeutic hurdles. The review underscores the importance of understanding the interplay between nanoparticles, ROS generation, and apoptotic pathways, contributing to a deeper comprehension of cancer biology and novel therapeutic strategies. As interdisciplinary collaborations continue to thrive, NE-PDT offers hope for effective and targeted cancer interventions, where apoptosis manipulation becomes central to conquering cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Sheeja S Rajan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
6
|
Thapa R, Afzal O, Bhat AA, Goyal A, Alfawaz Altamimi AS, Almalki WH, Alzarea SI, Kazmi I, Singh SK, Dua K, Thangavelu L, Gupta G. New horizons in lung cancer management through ATR/CHK1 pathway modulation. Future Med Chem 2023; 15:1807-1818. [PMID: 37877252 DOI: 10.4155/fmc-2023-0164] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Molecular profiling has contributed to a new classification of lung cancer, driving advancements in research and therapy. The ataxia telangiectasia and rad3/checkpoint kinase 1 (ATR/CHK1) pathway plays a crucial role in maintaining genomic stability, and its activation has been linked to the development of lung cancer, drug resistance and poor prognosis. Clinical and preclinical studies have demonstrated promising results in targeting this pathway. ATR and CHK1 are proteins that collaborate to repair DNA damage caused by radiation or chemotherapy. ATR/CHK1 inhibitors are currently under investigation in preclinical and clinical trials. This article explores the ATR/CHK1 pathway and its potential for treating lung cancer.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, U.P., India
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- School of Pharmacy, Graphic Era Hill University Dehradun, 248007, India
| |
Collapse
|
7
|
Fagbohun OF, Gillies CR, Murphy KPJ, Rupasinghe HPV. Role of Antioxidant Vitamins and Other Micronutrients on Regulations of Specific Genes and Signaling Pathways in the Prevention and Treatment of Cancer. Int J Mol Sci 2023; 24:ijms24076092. [PMID: 37047063 PMCID: PMC10093825 DOI: 10.3390/ijms24076092] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Cancer is an escalating global issue, with 19.3 million new cases and 9.9 million deaths in 2020. Therefore, effective approaches to prevent cancer are urgently required. Diet plays a significant role in determining cancer risk. Nutrients and food bioactives influence specific signaling pathways in the body. Recently, there have been significant advances in cancer prevention research through nutrigenomics or with the effects of dietary components on the genome. Google Scholar, PubMed, and Scopus databases were used to search for peer-reviewed articles between 2017 and 2023. Criteria used were vitamins, minerals, tumors, cancer, genes, inflammation, signaling pathways, and nutrigenomics. Among the total of 1857 articles available, the highest relevant 90 articles that specifically discussed signaling pathways and genes on cancer cell lines and human cancer patients were selected and reviewed. Food sources are rich in antioxidant micronutrients, which are effective in activating or regulating signaling pathways involved in pathogenesis and cancer therapy by activating enzymes such as mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3K). The micronutrients are involved in the regulation of β-catenin (WNT/β-catenin) including mutations in Kras and epidermal growth factor receptor (EGFR) alongside inhibition of the NF-kB pathway. The most common mechanism of cancer prevention by these micronutrients is their antioxidative, anti-inflammation, and anti-apoptosis effects. This review discusses how nutrigenomics is essential and beneficial for developing cancer prevention and treatment approaches.
Collapse
Affiliation(s)
- Oladapo F Fagbohun
- Department Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
| | - Caroline R Gillies
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
| | - Kieran P J Murphy
- Department of Medical Imaging, Faculty of Medicine, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - H P Vasantha Rupasinghe
- Department Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
8
|
Suraweera TL, Merlin JPJ, Dellaire G, Xu Z, Rupasinghe HPV. Genistein and Procyanidin B2 Reduce Carcinogen-Induced Reactive Oxygen Species and DNA Damage through the Activation of Nrf2/ARE Cell Signaling in Bronchial Epithelial Cells In Vitro. Int J Mol Sci 2023; 24:ijms24043676. [PMID: 36835090 PMCID: PMC9961944 DOI: 10.3390/ijms24043676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Chemotherapy and radiation therapy are currently providing the basis for cancer therapies, although both are associated with significant side effects. Thus, cancer prevention through dietary modifications has been receiving growing interest. The potential of selected flavonoids in reducing carcinogen-induced reactive oxygen species (ROS) and DNA damage through the activation of nuclear factor erythroid 2 p45 (NF-E2)-related factor (Nrf2)/antioxidant response element (ARE) pathway was studied in vitro. Dose-dependent effects of pre-incubated flavonoids on pro-carcinogen 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone (NNKAc)-induced ROS and DNA damage in human bronchial epithelial cells were studied in comparison to non-flavonoids. The most effective flavonoids were assessed for the activation of Nrf2/ARE pathway. Genistein, procyanidin B2 (PCB2), and quercetin significantly suppressed the NNKAc-induced ROS and DNA damage. Quercetin significantly upregulated the phosphorylated protein kinase B/Akt. PCB2 significantly upregulated the activation of Nrf2 and Akt through phosphorylation. Genistein and PCB2 significantly upregulated the phospho-Nrf2 nuclear translocation and catalase activity. In summary, genistein and PCB2 reduced the NNKAc-induced ROS and DNA damage through the activation of Nrf2. Further studies are required to understand the role of dietary flavonoids on the regulation of the Nrf2/ARE pathway in relation to carcinogenesis.
Collapse
Affiliation(s)
- Tharindu L. Suraweera
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
| | - J. P. Jose Merlin
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada
| | - Zhaolin Xu
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada
- QEII Health Sciences Centre, Division of Anatomical Pathology and Cytopathology, Nova Scotia Health Authority, Halifax, NS B3H 1V8, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada
- Correspondence:
| |
Collapse
|
9
|
A Dietary Antioxidant Formulation Ameliorates DNA Damage Caused by γ-Irradiation in Normal Human Bronchial Epithelial Cells In Vitro. Antioxidants (Basel) 2022; 11:antiox11071407. [PMID: 35883898 PMCID: PMC9311589 DOI: 10.3390/antiox11071407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Antioxidants can be used as radioprotectants to reduce DNA damage due to exposure to radiation that could result in malignancies, including lung cancer. Mortality rates are consistently higher in lung cancer, which is usually diagnosed at later stages of cancer development and progression. In this preliminary study, we examined the potential of an antioxidant formulation (AOX2) to reduce DNA damage using a cell model of human normal bronchial epithelial cells (BEAS-2B). Cells were exposed to γ-irradiation or smoke-related hydrocarbon 4[(acetoxymethyl)nitrosamino]-1 (3-pyridyl) 1-butanone (NNKOAc) to induce DNA damage. We monitored intracellular reactive oxygen species (ROS) levels and evidence of genotoxic damage including DNA fragmentation ELISA, γ-H2AX immunofluorescence, and comet assays. Pre-incubation of the cells with AOX2 before exposure to γ-irradiation and NNKOAc significantly reduced DNA damage. The dietary antioxidant preparation AOX2 significantly reduced the induction of the tumor suppressor protein p53 and DNA damage-associated γ-H2AX phosphorylation by radiation and the NNKOAc treatment. Thus, AOX2 has the potential to act as a chemoprotectant by lowering ROS levels and DNA damage caused by exposure to radiation or chemical carcinogens.
Collapse
|
10
|
Antidiabetic, Antiglycation, and Antioxidant Activities of Ethanolic Seed Extract of Passiflora edulis and Piceatannol In Vitro. Molecules 2022; 27:molecules27134064. [PMID: 35807309 PMCID: PMC9267955 DOI: 10.3390/molecules27134064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this work was to investigate the antidiabetic, antiglycation, and antioxidant potentials of ethanolic extract of seeds of Brazilian Passiflora edulis fruits (PESE), a major by-product of the juice industry, and piceatannol (PIC), one of the main phytochemicals of PESE. PESE, PIC, and acarbose (ACB) exhibited IC50 for alpha-amylase, 32.1 ± 2.7, 85.4 ± 0.7, and 0.4 ± 0.1 µg/mL, respectively, and IC50 for alpha-glucosidase, 76.2 ± 1.9, 20.4 ± 7.6, and 252 ± 4.5 µg/mL, respectively. The IC50 of PESE, PIC, and sitagliptin (STG) for dipeptidyl-peptidase-4 (DPP-4) was 71.1 ± 2.6, 1137 ± 120, and 0.005 ± 0.001 µg/mL, respectively. PESE and PIC inhibited the formation of advanced glycation end-products (AGE) with IC50 of 366 ± 1.9 and 360 ± 9.1 µg/mL for the initial stage and 51.5 ± 1.4 and 67.4 ± 4.6 µg/mL for the intermediate stage of glycation, respectively. Additionally, PESE and PIC inhibited the formation of β-amyloid fibrils in vitro up to 100%. IC50 values for 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) scavenging activity of PESE and PIC were 20.4 ± 2.1, and 6.3 ± 1.3 µg/mL, respectively. IC50 values for scavenging hypochlorous acid (HOCl) were similar in PESE, PIC, and quercetin (QCT) with values of 1.7 ± 0.3, 1.2 ± 0.5, and 1.9 ± 0.3 µg/mL, respectively. PESE had no cytotoxicity to the human normal bronchial epithelial (BEAS-2B), and alpha mouse liver (AML-12) cells up to 100 and 50 µg/mL, respectively. However, 10 µg/mL of the extract was cytotoxic to non-malignant breast epithelial cells (MCF-10A). PESE and PIC were found to be capable of protecting cultured human cells from the oxidative stress caused by the carcinogen NNKOAc at 100 µM. The in vitro evidence of the inhibition of alpha-amylase, alpha-glucosidase, and DPP-4 enzymes as well as antioxidant and antiglycation activities, warrants further investigation of the antidiabetic potential of P. edulis seeds and PIC.
Collapse
|