1
|
Bielska B, Wrońska N, Kołodziejczyk-Czepas J, Mignani S, Majoral JP, Waczulikova I, Lisowska K, Bryszewska M, Miłowska K. Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing. Mol Pharm 2025; 22:927-939. [PMID: 39797813 PMCID: PMC11795522 DOI: 10.1021/acs.molpharmaceut.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing (in vitro). Therefore, the degree of toxicity of the tested compounds for human erythrocytes and the human fibroblast cell line (BJ) was determined, and it was found that at low concentrations, the tested compounds are compatible with blood. The influence of phosphorus dendrimers on plasma proteins (human serum albumin (HSA) and fibrinogen) was examined, with a lack of conformational changes in the structure of these proteins, suggesting that their physiological function was not disturbed. The effects on plasma coagulation cascade and fibrinolysis were also assessed, and it was found that phosphorus dendrimers in low concentrations are blood compatible and interfere neither with coagulation processes nor in clot breakdown. Skin injuries, especially chronic wounds, are also susceptible to infection; therefore, the antimicrobial potential of dendrimers was tested, and it was found that these dendrimers had antibacterial activity against both Gram-negative and Gram-positive bacteria. The highest activity of the tested compounds was found for higher applied concentrations.
Collapse
Affiliation(s)
- Beata Bielska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Doctoral
School of Exact and Natural Sciences, University
of Lodz, 21/23 Jana Matejki
Street, 90-237 Lodz, Poland
| | - Natalia Wrońska
- Department
of Industrial Microbiology and Biotechnology, Faculty of Biology and
Environmental Protection, University of
Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Joanna Kołodziejczyk-Czepas
- Department
of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Serge Mignani
- CQM-Centro
de Química da Madeira, Universidade
da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Centre d’Etudes
et de Recherche sur le Medicament de Normandie (CERMN), Université de Caen Normandie, Caen 14032, France
| | - Jean-Pierre Majoral
- Laboratoire
de Chimie de Coordination CNRS, 205 Route de Narbonne, Toulouse 31077, France
| | - Iveta Waczulikova
- Department
of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics
and Informatics, Comenius University, Mlynska Dolina F1, 84248 Bratislava, Slovakia
| | - Katarzyna Lisowska
- Department
of Industrial Microbiology and Biotechnology, Faculty of Biology and
Environmental Protection, University of
Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Maria Bryszewska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Katarzyna Miłowska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| |
Collapse
|
2
|
Huang T, Li G, Guo Y, Zhang G, Shchabin D, Shi X, Shen M. Recent advances in PAMAM dendrimer-based CT contrast agents for molecular imaging and theranostics of cancer. SENSORS & DIAGNOSTICS 2023; 2:1145-1157. [DOI: 10.1039/d3sd00101f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Recent advances and some key developments in the construction of PAMAM dendrimer-based nanoplatforms for tumor CT imaging and theranostics have been reviewed.
Collapse
Affiliation(s)
- Tianyu Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Guixiang Zhang
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Dzmitry Shchabin
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaya 27, 220072 Minsk, Belarus
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Effect of amphiphilic phosphorous dendrons on the conformation, secondary structure, and zeta potential of albumin and thrombin. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
In Vitro Interactions of Amphiphilic Phosphorous Dendrons with Liposomes and Exosomes—Implications for Blood Viscosity Changes. Pharmaceutics 2022; 14:pharmaceutics14081596. [PMID: 36015222 PMCID: PMC9414926 DOI: 10.3390/pharmaceutics14081596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
Drug delivery by dendron-based nanoparticles is widely studied due to their ability to encapsulate or bind different ligands. For medical purposes, it is necessary (even if not sufficient) for these nanostructures to be compatible with blood. We studied the interaction of amphiphilic dendrons with blood samples from healthy volunteers using standard laboratory methods and rheological measurements. We did not observe clinically relevant abnormalities, but we found a concentration-dependent increase in whole blood viscosity, higher in males, presumably due to the formation of aggregates. To characterize the nature of the interactions among blood components and dendrons, we performed experiments on the liposomes and exosomes as models of biological membranes. Based on results obtained using diverse biophysical methods, we conclude that the interactions were of electrostatic nature. Overall, we have confirmed a concentration-dependent effect of dendrons on membrane systems, while the effect of generation was ambiguous. At higher dendron concentrations, the structure of membranes became disturbed, and membranes were prone to forming bigger aggregates, as visualized by SEM. This might have implications for blood flow disturbances when used in vivo. We propose to introduce blood viscosity measurements in early stages of investigation as they can help to optimize drug-like properties of potential drug carriers.
Collapse
|