1
|
Heidari R, Assadollahi V, Marashi SN, Elahian F, Mirzaei SA. Identification of Novel lncRNAs Related to Colorectal Cancer Through Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2025; 2025:5538575. [PMID: 39949372 PMCID: PMC11824705 DOI: 10.1155/bmri/5538575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/15/2024] [Indexed: 02/16/2025]
Abstract
Long noncoding RNA (lncRNA) plays a critical role in cancer cell proliferation, invasion, metastasis, and chemoresistance. The current study introduces novel lncRNAs in colorectal cancer (CRC) through bioinformatics analysis. GSE134834 CRC-related microarray of Gene Expression Omnibus (GEO) was analyzed to identify differentially expressed genes (DEGs) in CRC samples against normal samples. Analysis revealed 6763 DEGs (p < 0.05 and |log fold change (FC)| ≥ 0.5) that include differentially expressed mRNA (DEmRNA) and differentially expressed long noncoding RNA (DElncRNA). Novel lncRNAs were identified, and to better understand the biological function of the identified lncRNAs, gene modules were constructed using weighted gene coexpression network analysis (WGCNA), and finally, two modules for lncRNAs were obtained. The coexpression modules with these lncRNAs were subjected to enrichment analysis in FunRich software to predict their functions through their coexpressed genes. Gene ontology results of modules related to novel lncRNA revealed they significantly enriched the cellular pathways regulation in cancer. The protein-protein interaction (PPI) network of novel lncRNAs-related modules was constructed using Search Tool for the Retrieval of Interacting Genes (STRING) and visualized using the Cytoscape software. Hub genes were screened from the PPI network by the CytoHubba plug-in of Cytoscape. The hub genes were MRTO4, CDK1, CDC20, RPF2, NOP58, NIFK, GTPBP4, BUB1, BUB1B, and BOP1 for the lightpink4 module and BYSL, RPS23 (ribosomal protein S23), RSL1D1 (ribosomal L1 domain containing 1), NAT10, NOP14, GNL2, MRPS12, NOL6 (nucleolar protein 6), IMP4, and RRP12 (ribosomal RNA processing 12 homolog) for the pink module. The expression levels of the top DEmRNA and module hub genes in CRC were validated using the Gene Expression Profiling Interactive Analysis (GEPIA) database. Generally, our findings offer crucial insight into the hub genes and novel lncRNAs in the development of CRC by bioinformatics analysis, information that may prove useful in the identification of new biomarkers and treatment targets in CRC; however, more experimental investigation is required to validate the findings of the present study.
Collapse
Affiliation(s)
- Razieh Heidari
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyedeh Negar Marashi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Advanced Technologies Core, Baylor College of Medicine, Houston, Texas, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Li X, Ye C, Wang M, Kwan P, Tian X, Zhang Y. Crosstalk Between the Nervous System and Colorectal Cancer. Neurosci Bull 2025; 41:93-106. [PMID: 38879846 PMCID: PMC11748644 DOI: 10.1007/s12264-024-01238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 01/05/2025] Open
Abstract
The nervous system is the dominant regulatory system in the human body. The traditional theory is that tumors lack innervation. However, an increasing number of studies have shown complex bidirectional interactions between tumors and the nervous system. Globally, colorectal cancer (CRC) is the third most common cancer. With the rise of tumor neuroscience, the role of nervous system imbalances in the occurrence and development of CRC has attracted increasing amounts of attention. However, there are still many gaps in the research on the interactions and mechanisms involved in the nervous system in CRC. This article systematically reviews emerging research on the bidirectional relationships between the nervous system and CRC, focusing on the following areas: (1) Effects of the nervous system on colon cancer. (2) Effects of CRC on the nervous system. (3) Treatment of CRC associated with the nervous system.
Collapse
Affiliation(s)
- Xi Li
- Jining Medical University, Jining, 272000, China
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Chunshui Ye
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, Jining, 272000, China
| | - Min Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Patrick Kwan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, 3004, Australia.
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, 3004, Australia.
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| | - Yanke Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, 272000, China.
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
3
|
Geltz A, Seraszek-Jaros A, Andrzejewska M, Pietras P, Leśniczak-Staszak M, Szaflarski W, Szmeja J, Kasprzak A. Differentially Expressed Somatostatin (SST) and Its Receptors (SST1-5) in Sporadic Colorectal Cancer and Normal Colorectal Mucosa. Cancers (Basel) 2024; 16:3584. [PMID: 39518025 PMCID: PMC11545382 DOI: 10.3390/cancers16213584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Colorectal cancer (CRC) is one of the most common human malignancies worldwide. The somatotropin-releasing inhibitory factor/somatostatin (SRIF/SST) acts through activation of five membrane receptors (SSTRs, SST1-5). The diagnostic and prognostic role of these peptides in sporadic CRC remains unclear. This study aimed to determine the role of tissue expression of SST and all SSTRs in the pathogenesis, diagnosis, and prognosis of sporadic CRC. METHODS The expression of SST and all SSTRs was assessed in the tissues of CRC patients, control colorectal mucosa and lymph node metastasis from the same patients using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). RESULTS Decreased SST (mRNA and peptide) and higher SST2 and SST5 (mRNA and peptide) expression in CRC vs. control was noted. A negative correlation between SST mRNA expression and patient's age in CRC and control groups were observed. IHC study confirmed the coexpression of SSTRs in all tissue groups and significant dependence on the cellular localization. Immunoexpression of SST2 and SST3 showed the most correlations with clinicopathological data in CRC patients. Interestingly, only control tissue showed differences in SST1-5 expression depending on the colon segment. CONCLUSIONS Reduced SST expression in CRC indicates a weakening in its antitumor effect in this cancer in vivo. Overexpression of SST2 and SST5 in CRC suggests that these receptors play an important role in the pathogenesis of this cancer. Analysis of SST1-5 tissue expression allows for differentiation between the mucinous and nonmucinous CRC subtypes. The coexpression of all SST1-5 and overexpression of not only SST2 and SST5 in CRC may have applications for future therapy based on the SRIF system in sporadic CRC.
Collapse
Affiliation(s)
- Agnieszka Geltz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland (M.A.); (P.P.); (M.L.-S.); (W.S.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska Street 70, 60-812 Poznan, Poland
| | - Agnieszka Seraszek-Jaros
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Bukowska Street 70, 60-812 Poznan, Poland;
| | - Małgorzata Andrzejewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland (M.A.); (P.P.); (M.L.-S.); (W.S.)
| | - Paulina Pietras
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland (M.A.); (P.P.); (M.L.-S.); (W.S.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska Street 70, 60-812 Poznan, Poland
| | - Marta Leśniczak-Staszak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland (M.A.); (P.P.); (M.L.-S.); (W.S.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska Street 70, 60-812 Poznan, Poland
| | - Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland (M.A.); (P.P.); (M.L.-S.); (W.S.)
| | - Jacek Szmeja
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznan University of Medical Sciences, Przybyszewski Street 49, 60-355 Poznan, Poland;
| | - Aldona Kasprzak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland (M.A.); (P.P.); (M.L.-S.); (W.S.)
| |
Collapse
|
4
|
Kasprzak A, Geltz A. The State-of-the-Art Mechanisms and Antitumor Effects of Somatostatin in Colorectal Cancer: A Review. Biomedicines 2024; 12:578. [PMID: 38540191 PMCID: PMC10968376 DOI: 10.3390/biomedicines12030578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 01/03/2025] Open
Abstract
Somatostatin, a somatotropin release inhibiting factor (SST, SRIF), is a widely distributed multifunctional cyclic peptide and acts through a transmembrane G protein-coupled receptor (SST1-SST5). Over the past decades, research has begun to reveal the molecular mechanisms underlying the anticancer activity of this hormonal peptide. Among gastrointestinal tract (GIT) tumors, direct and indirect antitumor effects of SST have been documented best in gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and less well in non-endocrine cancers, including sporadic colorectal cancer (CRC). In the latter, the signaling pathways involved in the antitumor function of SST are primarily MAPK/ERK/AKT and Wnt/β-catenin. Direct (involving the MAPK pathway) and indirect (VEGF production) antiangiogenic effects of SST in CRC have also been described. The anti-inflammatory role of SST in CRC is emphasized, but detailed molecular mechanisms are still being explored. The role of SST in tumor genome/tumor microenvironment (TME)/host's gut microbiome interactions is only partially known. The results of SST analogues (SSAs)' treatment of sporadic CRC in monotherapy in vivo are not spectacular. The current review aims to present the state-of-the-art mechanisms and antitumor activity of endogenous SST and its synthetic analogues in CRC, with particular emphasis on sporadic CRC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznań, Poland;
| | | |
Collapse
|
5
|
Kurz SC, Zan E, Cordova C, Troxel AB, Barbaro M, Silverman JS, Snuderl M, Zagzag D, Kondziolka D, Golfinos JG, Chi AS, Sulman EP. Evaluation of the SSTR2-targeted Radiopharmaceutical 177Lu-DOTATATE and SSTR2-specific 68Ga-DOTATATE PET as Imaging Biomarker in Patients with Intracranial Meningioma. Clin Cancer Res 2024; 30:680-686. [PMID: 38048045 DOI: 10.1158/1078-0432.ccr-23-2533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE There are no effective medical therapies for patients with meningioma who progress beyond surgical and radiotherapeutic interventions. Somatostatin receptor type 2 (SSTR2) represents a promising treatment target in meningiomas. In this multicenter, single-arm phase II clinical study (NCT03971461), the SSTR2-targeting radiopharmaceutical 177Lu-DOTATATE is evaluated for its feasibility, safety, and therapeutic efficacy in these patients. PATIENTS AND METHODS Adult patients with progressive intracranial meningiomas received 177Lu-DOTATATE at a dose of 7.4 GBq (200 mCi) every eight weeks for four cycles. 68Ga-DOTATATE PET-MRI was performed before and six months after the start of the treatment. The primary endpoint was progression-free survival (PFS) at 6 months (PFS-6). Secondary endpoints were safety and tolerability, overall survival (OS) at 12 months (OS-12), median PFS, and median OS. RESULTS Fourteen patients (female = 11, male = 3) with progressive meningiomas (WHO 1 = 3, 2 = 10, 3 = 1) were enrolled. Median age was 63.1 (range 49.7-78) years. All patients previously underwent tumor resection and at least one course of radiation. Treatment with 177Lu-DOTATATE was well tolerated. Seven patients (50%) achieved PFS-6. Best radiographic response by modified Macdonald criteria was stable disease (SD) in all seven patients. A >25% reduction in 68Ga-DOTATATE uptake (PET) was observed in five meningiomas and two patients. In one lesion, this corresponded to >50% reduction in bidirectional tumor measurements (MRI). CONCLUSIONS Treatment with 177Lu-DOTATATE was well tolerated. The predefined PFS-6 threshold was met in this interim analysis, thereby allowing this multicenter clinical trial to continue enrollment. 68Ga-DOTATATE PET may be a useful imaging biomarker to assess therapeutic outcome in patients with meningioma.
Collapse
Affiliation(s)
- Sylvia C Kurz
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospitals Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Germany
| | - Elcin Zan
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | | | - Andrea B Troxel
- Department of Population Health, New York University Grossman School of Medicine, New York, New York
| | - Marissa Barbaro
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
| | - Joshua S Silverman
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York
| | - Matija Snuderl
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - David Zagzag
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Douglas Kondziolka
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York
| | - John G Golfinos
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York
| | | | - Erik P Sulman
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
6
|
Kumar U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int J Mol Sci 2023; 25:436. [PMID: 38203605 PMCID: PMC10779198 DOI: 10.3390/ijms25010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Somatostatin (SST), a growth hormone inhibitory peptide, is expressed in endocrine and non-endocrine tissues, immune cells and the central nervous system (CNS). Post-release from secretory or immune cells, the first most appreciated role that SST exhibits is the antiproliferative effect in target tissue that served as a potential therapeutic intervention in various tumours of different origins. The SST-mediated in vivo and/or in vitro antiproliferative effect in the tumour is considered direct via activation of five different somatostatin receptor subtypes (SSTR1-5), which are well expressed in most tumours and often more than one receptor in a single cell. Second, the indirect effect is associated with the regulation of growth factors. SSTR subtypes are crucial in tumour diagnosis and prognosis. In this review, with the recent development of new SST analogues and receptor-specific agonists with emerging functional consequences of signaling pathways are promising therapeutic avenues in tumours of different origins that are discussed.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
7
|
Ramírez-Perdomo A, Márquez-Barrios G, Gutiérrez-Castañeda LD, Parra-Medina R. NEUROENDOCRINE PEPTIDES IN THE PATHOGENESIS OF COLORECTAL CARCINOMA. Exp Oncol 2023; 45:3-16. [PMID: 37417286 DOI: 10.15407/exp-oncology.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Indexed: 07/08/2023]
Abstract
Colorectal carcinoma (CRC) is the third most frequent neoplasm worldwide and the second leading cause of mortality. Neuroendocrine peptides such as glucagon, bombesin, somatostatin, cholecystokinin, and gastrin as well as growth factors such as platelet-derived growth factor, epidermal growth factor, insulin-like growth factor, and fibroblast growth factor have been postulated as being involved in carcinogenesis. The fact that these neuroendocrine peptides are involved in the development of CRC through the activation of growth factors that stimulate a series of molecular pathways that activate oncogenic signaling mechanisms is emphasized in this review. Peptides such as CCK1, serotonin, and bombesin have been found to be over-expressed in human tumor tissues. Meanwhile, the expression of peptides such as GLP2 has been seen mainly in murine models. The information contained in this review provides a better understanding of the role these peptides play in the pathogenesis of CRC for basic and clinical science studies.
Collapse
Affiliation(s)
- A Ramírez-Perdomo
- Pathology, University Foundation of Health Sciences, Bogota Calle 10 #18-75, ColombiaPathology, University Foundation of Health Sciences, Bogota Calle 10 #18-75, Colombia
| | - G Márquez-Barrios
- Pathology, University Foundation of Health Sciences, Bogota Calle 10 #18-75, Colombia
| | - L D Gutiérrez-Castañeda
- Basic Health Sciences Group, University Foundation of Health Sciences, Bogota, Colombia
- Research Institute, University Foundation of Health Sciences (FUCS), Bogotá, Colombia
| | - R Parra-Medina
- Pathology Department, University Foundation of Health Sciences (FUCS), Bogota Calle 10 #18-75, Colombia
- Research Institute, University Foundation of Health Sciences, Bogota, Colombia
| |
Collapse
|
8
|
Postnatal Changes of Somatostatin Expression in Hippocampi of C57BL/6 Mice; Modulation of Neuroblast Differentiation in the Hippocampus. Vet Sci 2023; 10:vetsci10020081. [PMID: 36851385 PMCID: PMC9964365 DOI: 10.3390/vetsci10020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
(1) Background: Somatostatin (SST) exhibits expressional changes in the brain during development, but its role is not still clear in brain development. (2) Methods: We investigated postnatal SST expression and its effects on hippocampal neurogenesis via administering SST subcutaneously to P7 mice for 7 days. (3) Results: In the hippocampal CA1 region, SST immunoreactivity reaches peak at P14. However, SST immunoreactivity significantly decreased at P21. In the CA2/3 region, the SST expression pattern was similar to the CA1, and SST-immunoreactive cells were most abundant at P14. In the dentate gyrus, SST-immunoreactive cells were most abundant at P7 and P14 in the polymorphic layer; as in CA1-3 regions, the immunoreactivity decreased at P21. To elucidate the role of SST in postnatal development, we administered SST subcutaneously to P7 mice for 7 days. In the subgranular zone of the hippocampal dentate gyrus, a significant increase was observed in immunoreactivity of doublecortin (DCX)-positive neuroblast after administration of SST.; (4) Conclusions: SST expression in the hippocampal sub-regions is transiently increased during the postnatal formation of the hippocampus and decreases after P21. In addition, SST is involved in neuroblast differentiation in the dentate gyrus of the hippocampus.
Collapse
|
9
|
Liu XY, Zheng LF, Fan YY, Shen QY, Qi Y, Li GW, Sun Q, Zhang Y, Feng XY, Zhu JX. Activation of dopamine D 2 receptor promotes pepsinogen secretion by suppressing somatostatin release from the mouse gastric mucosa. Am J Physiol Cell Physiol 2022; 322:C327-C337. [PMID: 34986020 DOI: 10.1152/ajpcell.00385.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
In vivo administration of dopamine (DA) receptor (DR)-related drugs modulate gastric pepsinogen secretion. However, DRs on gastric pepsinogen-secreting chief cells and DA D2 receptor (D2R) on somatostatin-secreting D cells were subsequently acquired. In this study, we aimed to further investigate the local effect of DA on gastric pepsinogen secretion through DRs expressed on chief cells or potential D2Rs expressed on D cells. To elucidate the modulation of DRs in gastric pepsinogen secretion, immunofluorescence staining, ex vivo incubation of gastric mucosa isolated from normal and D2R-/- mice were conducted, accompanied by measurements of pepsinogen or somatostatin levels using biochemical assays or enzyme-linked immunosorbent assays. D1R, D2R, and D5R-immunoreactivity (IR) were observed on chief cells in mouse gastric mucosa. D2R-IR was widely distributed on D cells from the corpus to the antrum. Ex vivo incubation results showed that DA and the D1-like receptor agonist SKF38393 increased pepsinogen secretion, which was blocked by the D1-like receptor antagonist SCH23390. However, D2-like receptor agonist quinpirole also significantly increased pepsinogen secretion, and D2-like receptor antagonist sulpiride blocked the promotion of DA. Besides, D2-like receptors exerted an inhibitory effect on somatostatin secretion, in contrast to their effect on pepsinogen secretion. Furthermore, D2R-/- mice showed much lower basal pepsinogen secretion but significantly increased somatostatin release and an increased number of D cells in gastric mucosa. Only SKF38393, not quinpirole, increased pepsinogen secretion in D2R-/- mice. DA promotes gastric pepsinogen secretion directly through D1-like receptors on chief cells and indirectly through D2R-mediated suppression of somatostatin release.
Collapse
MESH Headings
- Animals
- Chief Cells, Gastric/drug effects
- Chief Cells, Gastric/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Pepsinogen A/metabolism
- Quinpirole/pharmacology
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Secretory Pathway
- Somatostatin/metabolism
- Somatostatin-Secreting Cells/drug effects
- Somatostatin-Secreting Cells/metabolism
- Mice
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Li-Fei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Yan Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Qian-Ying Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yao Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Guang-Wen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Qi Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jin-Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|