1
|
Mokra D, Porvaznik I, Mokry J. N-Acetylcysteine in the Treatment of Acute Lung Injury: Perspectives and Limitations. Int J Mol Sci 2025; 26:2657. [PMID: 40141299 PMCID: PMC11942046 DOI: 10.3390/ijms26062657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
N-acetylcysteine (NAC) can take part in the treatment of chronic respiratory diseases because of the potent mucolytic, antioxidant, and anti-inflammatory effects of NAC. However, less is known about its use in the treatment of acute lung injury. Nowadays, an increasing number of studies indicates that early administration of NAC may reduce markers of oxidative stress and alleviate inflammation in animal models of acute lung injury (ALI) and in patients suffering from distinct forms of acute respiratory distress syndrome (ARDS) or pulmonary infections including community-acquired pneumonia or Coronavirus Disease (COVID)-19. Besides low costs, easy accessibility, low toxicity, and rare side effects, NAC can also be combined with other drugs. This article provides a review of knowledge on the mechanisms of inflammation and oxidative stress in various forms of ALI/ARDS and critically discusses experience with the use of NAC in these disorders. For preparing the review, articles published in the English language from the PubMed database were used.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| | - Igor Porvaznik
- Department of Laboratory Medicine, Faculty of Health Sciences, Catholic University in Ružomberok, SK-03401 Ružomberok, Slovakia;
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia;
| |
Collapse
|
2
|
Wang H, Jiao Y, Ma S, Li Z, Gong J, Jiang Q, Shang Y, Li H, Li J, Li N, Zhao RC, Ding B. Nebulized Inhalation of Peptide-Modified DNA Origami To Alleviate Acute Lung Injury. NANO LETTERS 2024; 24:6102-6111. [PMID: 38739578 DOI: 10.1021/acs.nanolett.4c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Acute lung injury (ALI) is a severe inflammatory lung disease, with high mortality rates. Early intervention by reactive oxygen species (ROS) scavengers could reduce ROS accumulation, break the inflammation expansion chain in alveolar macrophages (AMs), and avoid irreversible damage to alveolar epithelial and endothelial cells. Here, we reported cell-penetrating R9 peptide-modified triangular DNA origami nanostructures (tDONs-R9) as a novel nebulizable drug that could reach the deep alveolar regions and exhibit an enhanced uptake preference of macrophages. tDONs-R9 suppressed the expression of pro-inflammatory cytokines and drove polarization toward the anti-inflammatory M2 phenotype in macrophages. In the LPS-induced ALI mouse model, treatment with nebulized tDONs-R9 alleviated the overwhelming ROS, pro-inflammatory cytokines, and neutrophil infiltration in the lungs. Our study demonstrates that tDONs-R9 has the potential for ALI treatment, and the programmable DNA origami nanostructures provide a new drug delivery platform for pulmonary disease treatment with high delivery efficiency and biosecurity.
Collapse
Affiliation(s)
- Haiyan Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Yunfei Jiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Shuaijing Ma
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Zhuoting Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Jintao Gong
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hongling Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Na Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Lim EY, Lee SY, Shin HS, Kim GD. Reactive Oxygen Species and Strategies for Antioxidant Intervention in Acute Respiratory Distress Syndrome. Antioxidants (Basel) 2023; 12:2016. [PMID: 38001869 PMCID: PMC10669909 DOI: 10.3390/antiox12112016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening pulmonary condition characterized by the sudden onset of respiratory failure, pulmonary edema, dysfunction of endothelial and epithelial barriers, and the activation of inflammatory cascades. Despite the increasing number of deaths attributed to ARDS, a comprehensive therapeutic approach for managing patients with ARDS remains elusive. To elucidate the pathological mechanisms underlying ARDS, numerous studies have employed various preclinical models, often utilizing lipopolysaccharide as the ARDS inducer. Accumulating evidence emphasizes the pivotal role of reactive oxygen species (ROS) in the pathophysiology of ARDS. Both preclinical and clinical investigations have asserted the potential of antioxidants in ameliorating ARDS. This review focuses on various sources of ROS, including NADPH oxidase, uncoupled endothelial nitric oxide synthase, cytochrome P450, and xanthine oxidase, and provides a comprehensive overview of their roles in ARDS. Additionally, we discuss the potential of using antioxidants as a strategy for treating ARDS.
Collapse
Affiliation(s)
- Eun Yeong Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
| |
Collapse
|
4
|
Zila I, Kolomaznik M, Mikolka P, Kosutova P, Czippelova B, Javorka M, Calkovska A. Vagal cardiac control in rats with LPS-induced lung injury. Respir Physiol Neurobiol 2023; 316:104120. [PMID: 37473790 DOI: 10.1016/j.resp.2023.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Heart rate variability (HRV) as an index of cardiac autonomic control in acute lung injury (ALI) has been evaluated in anaesthetized rats intratracheally instilled with bacterial lipopolysaccharide (LPS) and ventilated with breathing frequency of 60/min, 40% oxygen, inspiratory time 40%, tidal volume of 6 mL/kg. ECG was recorded before and 30, 60, 120, 180 and 240 min after LPS or saline (control) administration. HRV was quantified by time and frequency-domain analysis (mean RR interval, SDRR, RMSSD and spectral power in high frequency (HF) band. Lactate in plasma, and oxidative stress, IL-1β, IL-5, IL-12p70 and IL-13 and galectin-3 in heart tissue raised in LPS-injured rats. Overall HRV magnitude (SDRR) and marker of vagal heart rate control (RMSSD), as well as frequency domain parameter, spectral power HF was increased 120 and 180 min since ALI onset. In conclusion, LPS-induced ALI is accompanied by altered vagal cardiac control mediated by autonomic nervous system, likely based on the close relationship between immune response and vagally mediated autonomic nervous activity.
Collapse
Affiliation(s)
- I Zila
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - M Kolomaznik
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - P Mikolka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - P Kosutova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - B Czippelova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - M Javorka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - A Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
5
|
da Costa RID, Fischer JMDS, Rasslan R, Koike MK, Utiyama EM, Montero EFDS. Effects of N-acetylcysteine on the inflammatory response and bacterial translocation in a model of intestinal obstruction and ischemia in rats. Acta Cir Bras 2023; 37:e371204. [PMID: 36651429 PMCID: PMC9839184 DOI: 10.1590/acb371204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/25/2022] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To evaluate effect of N-acetylcysteine (NAC) associated with Ringer lactate or hypertonic saline in inflammation and bacterial translocation on experimental intestinal obstruction (IO). METHODS Wistar rats was subjected to IO. Six or 24 hours after, rats were subjected to enterectomy and fluid resuscitation: IO, RL (subjected to the same procedures but with fluid resuscitation using Ringer's lactate solution); RLNAC (added NAC to Ringer's solution); and HSNAC (surgical procedure + fluid reposition with 7.5% hypertonic saline and NAC). After 24 h, tissues were collected to cytokines, bacterial translocation, and histological assessments. RESULTS In kidney, interleukin-1beta (IL-1beta) was lower in the groups with fluid resuscitation compared to IO group. The RLNAC showed lower levels compared to the RL. Interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-alpha), and (IFN-gamma) were lower in the treatment groups than in IO. In lung, IL-1beta and IL-6 were lower in RLNAC compared to IO. IL-10 was lower in RL, RLNAC and HSNAC compared to IO. TNF-alpha was higher in HSNAC compared to both RL and RLNAC. Bacterial translocation was observed in all animals of IO group. In kidneys, inflammation and congestion degrees were lower in HSNAC compared to RL. In lungs, inflammation levels were higher in RLNAC compared with the sham group. CONCLUSIONS The data indicates that NAC associated with RL can promote a decrease in the inflammatory process in the kidneys and lungs in rats, following intestinal obstruction and ischemia in rats.
Collapse
Affiliation(s)
- Rafael Izar Domingues da Costa
- PhD. Universidade de São Paulo – Division of General Surgery and Trauma – Department of Surgery – School of Medicine – São Paulo (SP), and Universidade Federal de São Carlos – São Carlos (SP), Brazil.,Corresponding author:
- (55 16) 3415-3787
| | | | - Roberto Rasslan
- PhD. Universidade de São Paulo – Division of General Surgery and Trauma – Department of Surgery – School of Medicine – São Paulo (SP), Brazil
| | - Marcia Kiyomi Koike
- PhD. Universidade de São Paulo – Department of Clinical Medicine – Laboratory of Emergency Medicine – School of Medicine – São Paulo (SP), Brazil. And Instituto de Assistência Médica do Servidor Publico Estadual (IAMSPE) - Pós-Graduação em Ciencias da Saúde, São Paulo (SP), Brazil
| | - Edvaldo Massazo Utiyama
- PhD, full professor. Universidade de São Paulo – Division of General Surgery and Trauma – Department of Surgery – School of Medicine – São Paulo (SP), Brazil
| | - Edna Frasson de Souza Montero
- PhD, associate professor. Universidade de São Paulo – Division of General Surgery and Trauma – Department of Surgery – School of Medicine – São Paulo (SP), Brazil
| |
Collapse
|
6
|
Palikov VA, Palikova YA, Rudenko PA, Kazakov VA, Borozdina NA, Kravchenko IN, Pakhomova IA, Kazakova EN, Slashcheva GA, Semushina SG, Khokhlova ON, Dyachenko IA. Modeling of Chronic Lung Inflammation in Rats by Repeated Intratracheal Administration of LPS. Bull Exp Biol Med 2022; 173:790-793. [DOI: 10.1007/s10517-022-05633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 11/06/2022]
|
7
|
Kumar S, Bhagat P, Pandey S, Pandey R. The Role of Antioxidant Agent (N-Acetylcysteine) in Oleic Acid-Induced Acute Lung Injury in a Rat Model. Cureus 2022; 14:e29478. [PMID: 36312610 PMCID: PMC9595236 DOI: 10.7759/cureus.29478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
Context Reactive oxygen species (ROS) produced by inflammatory cells play a major role in mediating lung injury in sepsis or hyperoxic lung injury. Aims N-Acetylcysteine (NAC), an antioxidant, was examined in this research to see whether it helps prevent acute lung injury (ALI). Materials and methods Experiments were performed on Charles-Foster strain healthy male adult albino rats. All the animals were randomly divided into one control and two experimental groups. In control/group I, saline was administered, and cardiorespiratory parameters were recorded. Oleic acid (OA) was administered in group II to produce ALI. In group III, OA was administered to NAC-pretreated rats, and cardiorespiratory parameters were recorded to observe the effect of NAC on ALI. This study used analysis of variance (ANOVA) with two factors and a post hoc test (multiple comparisons - least significant difference (LSD) test) for statical analysis. For determining survival time, the Mantel-Cox test and Kaplan-Meier survival curves were used. A P value < 0.05 was considered significant. Results Respiratory arrest, pulmonary edema, and reduced partial pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio were all indications of OA-induced ALI in rats. The animals in the NAC + OA group had better respiratory and cardiac statistics than those in the OA alone group, and their survival duration was extended. However, NAC pretreatment could not protect the animals against the development of pulmonary edema. Conclusions These observations indicate that NAC (an antioxidant agent) protected rats against ALI in the initial phase and prolonged the survival time but failed to prevent the development of pulmonary edema.
Collapse
|