1
|
Gossman KR, Andrews E, Dykstra B, Ta K, Ashourvan A, Smith AS. Structural connectivity of the fore- and mid-brain in prairie voles. iScience 2025; 28:112065. [PMID: 40144636 PMCID: PMC11938270 DOI: 10.1016/j.isci.2025.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/14/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Mammals live in complex social systems that require higher order cognition to process and display complex social behaviors. It is suggested that brain networks, such as the social decision-making network (SDMN), have evolved to process such information. Recent functional connectivity studies of the SDMN have revealed distinct network dynamics during different social events across several species. However, the structural mapping of this network is incomplete which limits structural-functional modeling. Here, we assess the structural connectivity of an extended SDMN as well as the fore- and mid-brain afferent projections with the use of cholera toxin subunit-B retrograde tracers and the prairie vole (Microtus ochrogaster), a socially monogamous rodent that displays complex social behaviors. This work greatly expands upon the limited structural connectivity of the vole social brain and highlights important regions within the SDMN and other highly innervated regions that may serve as information hubs.
Collapse
Affiliation(s)
- Kyle R. Gossman
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Emalee Andrews
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Ben Dykstra
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Kyle Ta
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Arian Ashourvan
- Department of Psychology, University of Kansas, Lawrence KS, USA
| | - Adam S. Smith
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
- Program in Neuroscience, University of Kansas, Lawrence KS, USA
| |
Collapse
|
2
|
Amaral IM, Ouaidat S, Scheffauer L, Granza AE, Monteiro DG, Salti A, Hofer A, El Rawas R. Exploring the role of orexins in the modulation of social reward. Psychopharmacology (Berl) 2025; 242:401-412. [PMID: 39302438 PMCID: PMC11775052 DOI: 10.1007/s00213-024-06688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
RATIONALE positive social interactions are essential for mental health, by offering emotional support, reducing stress levels, and promoting resilience against drugs of abuse effects. However, not all individuals perceive social interaction as rewarding. OBJECTIVES the goal of this study was to investigate whether the modulation of the orexin system can shift passive coping and non-social behavior (vulnerable) to active coping and social behavior (resilient). This knowledge is primordial for stress- and addiction-related disorders, and for other psychiatric disorders involving impairment in social interaction. METHODS male C57/BL6N mice categorized into social and non-social groups, received injections of SB334867, a selective orexin 1 receptor (OX1R) antagonist, before the conditioning sessions with a male conspecific of the same weight and age. RESULTS our results from the conditioned place preference test (CPP) show that SB334867 has no effect on social preference in non-social mice, but it reduces their stress levels and depression-like behavior. These effects appear to be due to a higher OX1R expression in the basolateral amygdala (BLA), a stress-related brain area, of non-social mice compared to their social counterparts. CONCLUSIONS these data suggest that the orexin system may be a target to alleviate stress and depression-like behavior in non-social individuals rather than to promote social reward.
Collapse
Affiliation(s)
- Inês M Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Sara Ouaidat
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria
- University Clinic of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, 4020, Austria
| | - Laura Scheffauer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Anna E Granza
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Diogo G Monteiro
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Ahmad Salti
- University Clinic of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, 4020, Austria
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, 6020, Austria.
| |
Collapse
|
3
|
Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev 2024; 164:105809. [PMID: 39004323 PMCID: PMC11771367 DOI: 10.1016/j.neubiorev.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.
Collapse
|
4
|
Ouaidat S, Amaral IM, Monteiro DG, Harati H, Hofer A, El Rawas R. Orexins/Hypocretins: Gatekeepers of Social Interaction and Motivation. Int J Mol Sci 2024; 25:2609. [PMID: 38473854 PMCID: PMC10931973 DOI: 10.3390/ijms25052609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Ever since the discovery of the brain's orexin/hypocretin system, most research was directed toward unveiling its contribution to the normal functioning of individuals. The investigation of reward-seeking behaviors then gained a lot of attention once the distribution of orexinergic neurons was revealed. Here, we discuss findings on the involvement of orexins in social interaction, a natural reward type. While some studies have succeeded in defining the relationship between orexin and social interaction, the controversy regarding its nature (direct or inverse relation) raises questions about what aspects have been overlooked until now. Upon examining the literature, we identified a research gap concerning conditions influencing the impact of orexins on social behavior expression. In this review, we introduce a number of factors (e.g., stress, orexin's source) that must be considered while studying the role of orexins in social interaction. Furthermore, we refer to published research to investigate the stage at which orexins affect social interaction and we highlight the nucleus accumbens (NAc) shell's role in social interaction and other rewarding behaviors. Finally, the underlying orexin molecular pathway influencing social motivation in particular illnesses is proposed. We conclude that orexin's impact on social interaction is multifactorial and depends on specific conditions available at a time.
Collapse
Affiliation(s)
- Sara Ouaidat
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 1533, Lebanon
| | - Inês M. Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Diogo G. Monteiro
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 1533, Lebanon
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Granza AE, Amaral IM, Monteiro DG, Salti A, Hofer A, El Rawas R. Social Interaction Is Less Rewarding in Adult Female than in Male Mice. Brain Sci 2023; 13:1445. [PMID: 37891813 PMCID: PMC10605033 DOI: 10.3390/brainsci13101445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Positive social relationships are essential for mental and physical health. However, not all individuals experience social interaction as a rewarding activity. (2) Methods: Social interaction reward in mice can be assessed by social conditioned place preference (CPP). The aim of this study is to investigate sex-dependent differences in the neurological underpinnings underlying social versus non-social phenotypes, using adult male and female C57BL/6J mice. (3) Results: Adult female mice expressed significantly less social reward than males from the same strain. Accordingly, pairs of male mice spent more time interacting as compared to female pairs. Subsequently, we analyzed neuropeptides previously reported to be important regulators of social behavior such as oxytocin, vasopressin, and orexin, in addition to Ca2+/calmodulin-dependent protein kinase II (αCaMKII), shown to be involved in social reward. Levels of neuropeptides and αCaMKII were comparable between males and females in all investigated regions. Yet, a significant negative correlation was found between endogenous oxytocin expression and social reward in female pairs. (4) Conclusions: Sex differences in the prevalence of many mental health disorders might at least in part be due to sex differences in social reward. Therefore, more research is needed to unravel the candidate(s) underlying this behavioral difference.
Collapse
Affiliation(s)
- Anna E. Granza
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Inês M. Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Diogo G. Monteiro
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Ahmad Salti
- University Clinic of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Lu MF, Fu Q, Qiu TY, Yang JH, Peng QH, Hu ZZ. The CaMKII-dependent phosphorylation of GABA B receptors in the nucleus accumbens was involved in cocaine-induced behavioral sensitization in rats. CNS Neurosci Ther 2023; 29:1345-1356. [PMID: 36756679 PMCID: PMC10068462 DOI: 10.1111/cns.14107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Previous studies have established that the regulation of prolonged, distal neuronal inhibition by the GABAB heteroreceptor (GABAB R) is determined by its stability, and hence residence time, on the plasma membrane. AIMS Here, we show that GABAB R in the nucleus accumbens (NAc) of rats affects the development of cocaine-induced behavioral sensitization by mediating its perinucleus internalization and membrane expression. MATERIALS & METHODS By immunofluorescent labeling, flow cytometry analysis, Co-immunoprecipitation and open field test, we measured the role of Ca2+ /calmodulin-dependent protein kinase II (CaMKII) to the control of GABAB R membrane anchoring and cocaine induced-behavioral sensitization. RESULTS Repeated cocaine treatment in rats (15 mg/kg) significantly decreases membrane levels of GABAB1 R and GABAB2 R in the NAc after day 3, 5 and 7. The membrane fluorescence and protein levels of GABAB R was also decreased in NAc GAD67 + neurons post cocaine (1 μM) treatment after 5 min. Moreover, the majority of internalized GABAB1 Rs exhibited perinuclear localization, a decrease in GABAB1 R-pHluroin signals was observed in cocaine-treated NAc neurons. By contrast, membrane expression of phosphorylated CaMKII (pCaMKII) post cocaine treatment was significantly increased after day 1, 3, 5 and 7. Baclofen blocked the cocaine induced behavioral sensitization via inhibition of cocaine enhanced-pCaMKII-GABAB1 R interaction. CONCLUSION These findings reveal a new mechanism by which pCaMKII-GABAB R signaling can promote psychostimulant-induced behavioral sensitization.
Collapse
Affiliation(s)
- Ming F Lu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Fu
- Department of Respiration, Department Two, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Tian Y Qiu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Jian H Yang
- Department of Physiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Qing H Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Zhen Z Hu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Olaniran A, Garcia KT, Burke MAM, Lin H, Venniro M, Li X. Operant social seeking to a novel peer after social isolation is associated with activation of nucleus accumbens shell in rats. Psychopharmacology (Berl) 2022:10.1007/s00213-022-06280-9. [PMID: 36449074 PMCID: PMC10227185 DOI: 10.1007/s00213-022-06280-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
RATIONALE AND OBJECTIVE Deprivation of social interaction promotes social reward seeking in rodents, assessed primarily by the conditioned place preference procedure. Here, we used an operant social procedure in rats and examined the effect of the housing condition (pair-housing vs. single-housing) during or after social self-administration on social reward seeking. METHODS We first trained paired-housed or single-housed rats to gain access to an age- and sex-matched novel peer. On post-training day 1 (PTD1), we tested both groups for social seeking without the presence of the novel peer. Next, we divided each group into pair-housing or single-housing conditions and tested all four groups (pair-pair, pair-single, single-pair, and single-single) for social seeking on post-training day 12 (PTD12). Finally, we analyzed Fos expression in the striatum associated with social seeking on PTD12. RESULT Single-housed rats earned more social rewards during social self-administration than pair-housed rats. Social isolation during social self-administration also promoted social seeking on PTD1 and PTD12, regardless of their housing conditions after social self-administration training. Additionally, in pair-housed rats, social isolation during the post-training period led to a time-dependent increase of social seeking on PTD12 compared with PTD1. Finally, the Fos analyses revealed an increase of Fos expression in NAc shell of single-single rats after social seeking test on PTD12 compared with pair-pair rats. CONCLUSION Our data suggest that social isolation promotes operant social self-administration and social seeking. In addition, neuronal activation of NAc shell is associated with social seeking after social isolation.
Collapse
Affiliation(s)
- Adedayo Olaniran
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Kristine T Garcia
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Megan A M Burke
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Hongyu Lin
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Marco Venniro
- Department of Neurobiology and Anatomy, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| | - Xuan Li
- Department of Psychology, University of Maryland College Park, College Park, MD, 20742, USA.
| |
Collapse
|
8
|
Amaral IM, Scheffauer L, Hofer A, El Rawas R. Protein kinases in natural versus drug reward. Pharmacol Biochem Behav 2022; 221:173472. [PMID: 36244528 DOI: 10.1016/j.pbb.2022.173472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Natural and drug rewards act on the same neural pathway, the mesolimbic dopaminergic system. In brain regions such as the nucleus accumbens and ventral tegmental area, drugs of abuse-induced stimulation of signaling pathways can lead to synaptic reshaping within this system. This is believed to be underlying the maladaptive alterations in behaviors associated with addiction. In this review, we discuss animal studies disclosing the implication of several protein kinases, namely protein kinase A (PKA), extracellular signal regulated kinase (ERK) mitogen-activated protein kinases (MAPK), p38 MAPK, and calcium/calmodulin-dependent kinase II (CaMKII), in reward-related brain regions in drug and natural reward. Furthermore, we refer to studies that helped pave the way toward a better understanding of the neurobiology underlying non-drug and drug reward through genetic deletion or brain region-specific pharmacological inhibition of these kinases. Whereas the role of kinases in drug reward has been extensively studied, their implication in natural reward, such as positive social interaction, is less investigated. Discovering molecular candidates, recruited specifically by drug versus natural rewards, can promote the identification of novel targets for the pharmacological treatment of addiction with less off-target effects and being effective when used combined with behavioral-based therapies.
Collapse
Affiliation(s)
- Inês M Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Laura Scheffauer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| |
Collapse
|
9
|
Ferrara NC, Trask S, Ritger A, Padival M, Rosenkranz JA. Developmental differences in amygdala projection neuron activation associated with isolation-driven changes in social preference. Front Behav Neurosci 2022; 16:956102. [PMID: 36090658 PMCID: PMC9449454 DOI: 10.3389/fnbeh.2022.956102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Adolescence is a developmental period characterized by brain maturation and changes in social engagement. Changes in the social environment influence social behaviors. Memories of social events, including remembering familiar individuals, require social engagement during encoding. Therefore, existing differences in adult and adolescent social repertoires and environmentally-driven changes in social behavior may impact novel partner preference, associated with social recognition. Several amygdala subregions are sensitive to the social environment and can influence social behavior, which is crucial for novelty preference. Amygdala neurons project to the septum and nucleus accumbens (NAc), which are linked to social engagement. Here, we investigated how the social environment impacts age-specific social behaviors during social encoding and its subsequent impact on partner preference. We then examined changes in amygdala-septal and -NAc circuits that accompany these changes. Brief isolation can drive social behavior in both adults and adolescents and was used to increase social engagement during encoding. We found that brief isolation facilitates social interaction in adolescents and adults, and analysis across time revealed that partner discrimination was intact in all groups, but there was a shift in preference within isolated and non-isolated groups. We found that this same isolation preferentially increases basal amygdala (BA) activity relative to other amygdala subregions in adults, but activity among amygdala subregions was similar in adolescents, even when considering conditions (no isolation, isolation). Further, we identify isolation-driven increases in BA-NAc and BA-septal circuits in both adults and adolescents. Together, these results provide evidence for changes in neuronal populations within amygdala subregions and their projections that are sensitive to the social environment that may influence the pattern of social interaction within briefly isolated groups during development.
Collapse
Affiliation(s)
- Nicole C. Ferrara
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Sydney Trask
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Alexandra Ritger
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - J. Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: J. Amiel Rosenkranz,
| |
Collapse
|
10
|
El Rawas R, Amaral IM, Hofer A. The Anti-social Brain in Schizophrenia: A Role of CaMKII? Front Psychiatry 2022; 13:868244. [PMID: 35711581 PMCID: PMC9197422 DOI: 10.3389/fpsyt.2022.868244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Current pharmacological therapy has limited effects on the cognitive impairments and negative symptoms associated with schizophrenia. Therefore, understanding the molecular underpinnings of this disorder is essential for the development of effective treatments. It appears that a reduction in calcium/calmodulin-dependent protein kinase II (α-CaMKII) activity is a common mechanism underlying the abnormal social behavior and cognitive deficits associated with schizophrenia. In addition, in a previous study social interaction with a partner of the same sex and weight increased the activity of α-CaMKII in rats. Here, we propose that boosting of CaMKII signaling, in a manner that counteracts this neuropsychiatric disease without disrupting the normal brain function, might ameliorate the abnormalities in social cognition and the negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|