1
|
Wu PS, Wang CY, Hsu HJ, Yen JH, Wu MJ. 8-Hydroxydaidzein Induces Apoptosis and Inhibits AML-Associated Gene Expression in U-937 Cells: Potential Phytochemical for AML Treatment. Biomolecules 2023; 13:1575. [PMID: 38002257 PMCID: PMC10669020 DOI: 10.3390/biom13111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND 8-hydroxydaidzein (8-OHD) is a compound derived from daidzein, known for its anti-inflammatory and anti-proliferative properties in K562 human chronic myeloid leukemia (CML) cells. However, its effects on acute myeloid leukemia (AML) cells have not been fully understood. METHOD To investigate its potential anti-AML mechanism, we employed an integrated in vitro-in silico approach. RESULTS Our findings demonstrate that 8-OHD suppresses the expression of CDK6 and CCND2 proteins and induces cell apoptosis in U-937 cells by activating Caspase-7 and cleaving PARP-1. Microarray analysis revealed that 8-OHD downregulates differentially expressed genes (DEGs) associated with rRNA processing and ribosome biogenesis pathways. Moreover, AML-target genes, including CCND2, MYC, NPM1, FLT3, and TERT, were downregulated by 8-OHD. Additionally, molecular docking software predicted that 8-OHD has the potential to interact with CDK6, FLT3, and TERT proteins, thereby reducing their activity and inhibiting cell proliferation. Notably, we discovered a synergic pharmacological interaction between 8-OHD and cytarabine (Ara-C). CONCLUSIONS Overall, this study provides insights into the therapeutic applications of 8-OHD in treating AML and elucidates its underlying mechanisms of action.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 110301, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110301, Taiwan
| | - Hao-Jen Hsu
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 970, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Ming-Jiuan Wu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| |
Collapse
|
2
|
Kooshki L, Zarneshan SN, Fakhri S, Moradi SZ, Echeverria J. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154686. [PMID: 36804755 DOI: 10.1016/j.phymed.2023.154686] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunctionality which results in disability and human life-threatening events. In recent decades, NDDs are on the rise. Besides, conventional drugs have not shown potential effectiveness to attenuate the complications of NDDs. So, exploring novel therapeutic agents is an urgent need to combat such disorders. Accordingly, growing evidence indicates that polyphenols and alkaloids are promising natural candidates, possessing several beneficial pharmacological effects against diseases. Considering the complex pathophysiological mechanisms behind NDDs, Janus kinase (JAK), insulin receptor substrate (IRS), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT) seem to play critical roles during neurodegeneration/neuroregeneration. In this line, modulation of the JAK/STAT and IRS/PI3K signaling pathways and their interconnected mediators by polyphenols/alkaloids could play pivotal roles in combating NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), stroke, aging, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), depression and other neurological disorders. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of polyphenols/alkaloids as multi-target natural products against NDDs which are critically passing through the modulation of the JAK/STAT and IRS/PI3K signaling pathways. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of polyphenols and alkaloids on the JAK/STAT and IRS/PI3K signaling pathways in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including Scopus, PubMed, ScienceDirect, and associated reference lists. RESULTS In the present study 141 articles were included from a total of 1267 results. The results showed that phenolic compounds such as curcumin, epigallocatechin-3-gallate, and quercetin, and alkaloids such as berberine could be introduced as new strategies in combating NDDs through JAK/STAT and IRS/PI3K signaling pathways. This is the first systematic review that reveals the correlation between the JAK/STAT and IRS/PI3K axis which is targeted by phytochemicals in NDDs. Hence, this review highlighted promising insights into the neuroprotective potential of polyphenols and alkaloids through the JAK/STAT and IRS/PI3K signaling pathway and interconnected mediators toward neuroprotection. CONCLUSION Amongst natural products, phenolic compounds and alkaloids are multi-targeting agents with the most antioxidants and anti-inflammatory effects possessing the potential of combating NDDs with high efficacy and lower toxicity. However, additional reports are needed to prove the efficacy and possible side effects of natural products.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Holvoet P. Noncoding RNAs Controlling Oxidative Stress in Cancer. Cancers (Basel) 2023; 15:cancers15041155. [PMID: 36831498 PMCID: PMC9954372 DOI: 10.3390/cancers15041155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondria in cancer cells tend to overproduce reactive oxygen species (ROS), inducing a vicious cycle between mitochondria, ROS, genomic instability, and cancer development. The first part of this review deals with the role of noncoding RNAs in regulating mitochondrial ROS production and the expression of antioxidants in cancer cells, preventing the increase of ROS in the tumor microenvironment. In addition, cytotoxic T and natural killer cells release high levels of ROS, inducing cell death, while anti-immune regulatory T cells, tumor-associated M2 macrophages, and myeloid-derived suppressor cells, at least at the initial stage of tumor growth, release low levels of ROS supporting tumor growth. Therefore, this review's second part deals with noncoding RNAs' role in regulating the metabolic reprogramming of immune cells about ROS release. Furthermore, the enrichment of noncoding RNAs in microvesicles allows communication between cell types in a tumor and between a tumor and tumor-adjacent tissues. Therefore, the third part illustrates how noncoding RNA-containing microvesicles secreted by mesenchymal stem cells and primary tumor cells may primarily aid the shift of immune cells to a pro-oncogenic phenotype. Conversely, microvesicles released by tumor-adjacent tissues may have the opposite effect. Our review reveals that a specific noncoding RNA may affect oxidative stress by several mechanisms, which may have opposite effects on tumor growth. Furthermore, they may be involved in mechanisms other than regulating oxidative stress, which may level out their effects on oxidative stress and tumor growth. In addition, several noncoding RNAs might share a specific function, making it very unlikely that intervening with only one of these noncoding RNAs will block this particular mechanism. Overall, further validation of the interaction between noncoding RNAs about cancer types and stages of tumor development is warranted.
Collapse
Affiliation(s)
- Paul Holvoet
- Division of Experimental Cardiology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Chai Y, Chen F, Li Z, Yang P, Zhou Q, Liu W, Xi Y. Mechanism of salidroside in the treatment of chronic myeloid leukemia based on the network pharmacology and molecular docking. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:384-395. [PMID: 36369630 DOI: 10.1007/s12094-022-02990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Salidroside is a phenolic natural product, which is a kind of Rhodiola rosea. It has been confirmed that it has inhibitory effects on chronic myeloid leukemia, but the specific performance of its molecular effects is still unclear. OBJECTIVE To systematically study the pharmacological mechanism of salidroside on chronic myeloid leukemia by means of network pharmacology. METHODS First, the possible target genes of salidroside were predicted through the Traditional Chinese Medicine Pharmacology Database and Analysis Platform, the target gene names were converted into standardized gene names using the Uniprot website. At the same time, the related target genes of chronic myeloid leukemia were collected from GeneCards and DisGenet; Collect summary data and screen for commonly targeted genes. Then, the above-mentioned intersected genes were imported into the String website to construct the protein-protein interaction (PPI) network, and the Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were further analyzed. To investigate the overall pharmacological effects of salidroside on chronic myeloid leukemia, we constructed a drug component-target gene-disease (CTD) network. Finally, molecular docking was performed to verify the possible binding conformation between salidroside and the candidate target. RESULTS A total of 126 salidroside target genes were retrieved, and 106 of them had interactions with chronic myeloid leukemia. The pharmacological effects of salidroside on chronic myeloid leukemia are related to some important oncogenes and signaling pathways. Molecular docking studies confirmed that the main role of salidroside binding to the target genes is hydrogen bonding. CONCLUSIONS We revealed the potential mechanism of action of salidroside against chronic myeloid leukemia, verified by network pharmacology combined with molecular docking. However, salidroside is a promising drug for the prevention and treatment of chronic myeloid leukemia, and further research is needed to prove it.
Collapse
Affiliation(s)
- Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.,Department of Hematology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Panpan Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.,Department of Hematology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Wenling Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China. .,Department of Hematology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
5
|
The Protective Mechanism of Afuresertib against Esophageal Cancer. DISEASE MARKERS 2022; 2022:1832241. [PMID: 35872696 PMCID: PMC9303141 DOI: 10.1155/2022/1832241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022]
Abstract
Esophageal cancer (EC) is a common malignant tumor of the digestive system. Exploring the molecular biological mechanism of EC will help to clarify its carcinogenesis mechanism, find important molecular targets in the process of carcinogenesis, and provide new ideas for the diagnosis and treatment of EC. Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway is one of the signal transduction pathways most closely related to cell proliferation and apoptosis. The regulation of various downstream molecules affects the proliferation and growth of tumor cells. In this study, we determined the effect of different concentrations of afuresertib on cell viability by MTT assay and determined the effect of afuresertib on cell apoptosis by Annexin V-FITC/PI dual staining. Animal experiments verified the effects of afuresertib on VEGF, bFGF, and PI3K/Akt. Our results indicated that afuresertib is closely related to the survival, proliferation, and apoptosis of esophageal cancer cell lines. More importantly, we found that afuresertib could reduce tumor volume and mass in EC rats through in vivo experiments. In conclusion, afuresertib may exert its antitumor effect by inhibiting the expression of PI3K and Akt-related proteins in rat tumor tissues.
Collapse
|
6
|
Chen PY, Wang CY, Tsao EC, Chen YT, Wu MJ, Ho CT, Yen JH. 5-Demethylnobiletin Inhibits Cell Proliferation, Downregulates ID1 Expression, Modulates the NF-κB/TNF-α Pathway and Exerts Antileukemic Effects in AML Cells. Int J Mol Sci 2022; 23:ijms23137392. [PMID: 35806401 PMCID: PMC9266321 DOI: 10.3390/ijms23137392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the dysregulation of hematopoietic cell proliferation, resulting in the accumulation of immature myeloid cells in bone marrow. 5-Demethylnobiletin (5-demethyl NOB), a citrus 5-hydroxylated polymethoxyflavone, has been reported to exhibit various bioactivities, such as antioxidant, anti-inflammatory and anticancer properties. In this study, we investigated the antileukemic effects of 5-demethyl NOB and its underlying molecular mechanisms in human AML cells. We found that 5-demethyl NOB (20−80 μM) significantly reduced human leukemia cell viability, and the following trend of effectiveness was observed: THP-1 ≈ U-937 > HEL > HL-60 > K562 cells. 5-Demethyl NOB (20 and 40 μM) modulated the cell cycle through the regulation of p21, cyclin E1 and cyclin A1 expression and induced S phase arrest. 5-Demethyl NOB also promoted leukemia cell apoptosis and differentiation. Microarray-based transcriptome, Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) of differentially expressed genes (DEGs) analysis showed that the expression of inhibitor of differentiation/DNA binding 1 (ID1), a gene associated with the GO biological process (BP) cell population proliferation (GO: 0008283), was most strongly suppressed by 5-demethyl NOB (40 μM) in THP-1 cells. We further demonstrated that 5-demethyl NOB-induced ID1 reduction was associated with the inhibition of leukemia cell growth. Moreover, DEGs involved in the hallmark gene set NF-κB/TNF-α signaling pathway were markedly enriched and downregulated by 5-demethyl NOB. Finally, we demonstrated that 5-demethyl NOB (20 and 40 μM), combined with cytarabine, synergistically reduced THP-1 and U-937 cell viability. Our current findings support that 5-demethyl NOB dramatically suppresses leukemia cell proliferation and may serve as a potential phytochemical for human AML chemotherapy.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - En-Ci Tsao
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Yu-Ting Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-3-856-5301 (ext. 2683)
| |
Collapse
|
7
|
He X, Liao Y, Liu J, Sun S. Research Progress of Natural Small-Molecule Compounds Related to Tumor Differentiation. Molecules 2022; 27:2128. [PMID: 35408534 PMCID: PMC9000768 DOI: 10.3390/molecules27072128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor differentiation is a therapeutic strategy aimed at reactivating the endogenous differentiation program of cancer cells and inducing cancer cells to mature and differentiate into other types of cells. It has been found that a variety of natural small-molecule drugs can induce tumor cell differentiation both in vitro and in vivo. Relevant molecules involved in the differentiation process may be potential therapeutic targets for tumor cells. Compared with synthetic drugs, natural small-molecule antitumor compounds have the characteristics of wide sources, structural diversity and low toxicity. In addition, natural drugs with structural modification and transformation have relatively concentrated targets and enhanced efficacy. Therefore, using natural small-molecule compounds to induce malignant cell differentiation represents a more targeted and potential low-toxicity means of tumor treatment. In this review, we focus on natural small-molecule compounds that induce differentiation of myeloid leukemia cells, osteoblasts and other malignant cells into functional cells by regulating signaling pathways and the expression of specific genes. We provide a reference for the subsequent development of natural small molecules for antitumor applications and promote the development of differentiation therapy.
Collapse
Affiliation(s)
- Xiaoli He
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yongkang Liao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
8
|
Rodrigues KE, Azevedo A, Gonçalves PR, Pontes MHB, Alves GM, Oliveira RR, Amarante CB, Issa JPM, Gerlach RF, Prado AF. Doxycycline Decreases Atherosclerotic Lesions in the Aorta of ApoE-⁄- and Ovariectomized Mice with Correlation to Reduced MMP-2 Activity. Int J Mol Sci 2022; 23:ijms23052532. [PMID: 35269673 PMCID: PMC8910467 DOI: 10.3390/ijms23052532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
Atherogenic events promote changes in vessel walls, with alteration of the redox state, and increased activity of matrix metalloproteinases (MMPs). Thus, this study aims to evaluate aortic remodeling, MMP activity, and reactive oxygen species (ROS) levels after treatment with doxycycline in ApoE-⁄- and ovariectomized mice (OVX). Female ApoE-⁄--knockout mice (5 weeks) were submitted to ovariectomy surgery to induce experimental menopause. They then received chow enriched with 1% cholesterol to induce hypercholesterolemia. The animals were divided into two experimental groups: ApoE-⁄-/OVX vehicle and ApoE-⁄-/OVX doxycycline (30 mg/kg) administered by gavage once a day for 28 days (15th to the 18th week of life). Blood samples were collected to measure total cholesterol and fractions. The aorta was used for morphometry and to measure the activity and expression of MMP-2 and ROS levels. The ApoE-⁄-/OVX doxycycline group showed no change in total and fraction cholesterol levels. However, there was a reduction in ROS levels, MMP-2 expression, and activity that correlated with a decrease in atherosclerotic lesions relative to the ApoE-⁄-/OVX vehicle (p > 0.05). Therefore, we conclude that doxycycline in ApoE-⁄-/OVX animals promotes a reduction in atherosclerotic lesions by reducing ROS and MMP-2 activity and expression.
Collapse
Affiliation(s)
- Keuri E. Rodrigues
- Institute of Biological Sciences, Federal University of Pará, Cardiovascular System Pharmacology and Toxicology Laboratory, Belém 66075-110, PA, Brazil; (K.E.R.); (P.R.G.); (M.H.B.P.); (G.M.A.); (R.R.O.)
| | - Aline Azevedo
- Department of Biomechanics, Medicine and Locomotor Apparatus Rehabilitation, Faculty of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto 14049-900, SP, Brazil;
| | - Pricila R. Gonçalves
- Institute of Biological Sciences, Federal University of Pará, Cardiovascular System Pharmacology and Toxicology Laboratory, Belém 66075-110, PA, Brazil; (K.E.R.); (P.R.G.); (M.H.B.P.); (G.M.A.); (R.R.O.)
| | - Maria H. B. Pontes
- Institute of Biological Sciences, Federal University of Pará, Cardiovascular System Pharmacology and Toxicology Laboratory, Belém 66075-110, PA, Brazil; (K.E.R.); (P.R.G.); (M.H.B.P.); (G.M.A.); (R.R.O.)
| | - Gustavo M. Alves
- Institute of Biological Sciences, Federal University of Pará, Cardiovascular System Pharmacology and Toxicology Laboratory, Belém 66075-110, PA, Brazil; (K.E.R.); (P.R.G.); (M.H.B.P.); (G.M.A.); (R.R.O.)
| | - Ruan R. Oliveira
- Institute of Biological Sciences, Federal University of Pará, Cardiovascular System Pharmacology and Toxicology Laboratory, Belém 66075-110, PA, Brazil; (K.E.R.); (P.R.G.); (M.H.B.P.); (G.M.A.); (R.R.O.)
| | - Cristine B. Amarante
- Coordination of Earth Sciences and Ecology, Museu Paraense Emílio Goeldi, Belem 66077-830, PA, Brazil;
| | - João P. M. Issa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo (FORP/USP), Ribeirao Preto 14040-904, SP, Brazil; (J.P.M.I.); (R.F.G.)
| | - Raquel F. Gerlach
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo (FORP/USP), Ribeirao Preto 14040-904, SP, Brazil; (J.P.M.I.); (R.F.G.)
| | - Alejandro F. Prado
- Institute of Biological Sciences, Federal University of Pará, Cardiovascular System Pharmacology and Toxicology Laboratory, Belém 66075-110, PA, Brazil; (K.E.R.); (P.R.G.); (M.H.B.P.); (G.M.A.); (R.R.O.)
- Correspondence:
| |
Collapse
|