1
|
Hummelgaard S, Hvid H, Birn H, Glerup S, Tom N, Bilgin M, Kirchhoff JE, Weyer K. Lack of renoprotective effects by long-term PCSK9 and SGLT2 inhibition using alirocumab and empagliflozin in obese ZSF1 rats. Am J Physiol Renal Physiol 2025; 328:F48-F67. [PMID: 39556312 DOI: 10.1152/ajprenal.00065.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with an increased risk of cardiovascular disease (CVD). Despite the entry of sodium glucose cotransporter 2 (SGLT2) inhibitors, CKD persists as a medical challenge. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition reduces low-density lipoprotein (LDL)-cholesterol, a major risk factor of CVD. Interestingly, studies indicate that PCSK9 inhibition decreases proteinuria in kidney disease, complementing the reduced CVD risk. This study aimed to validate obese ZSF1 rats as a model for the renoprotective effects of PCSK9 and SGLT2 inhibition using alirocumab and empagliflozin for 15 wk. Obese rats revealed a significant reduction in measured glomerular filtration rate (mGFR) and increased urine albumin/creatinine ratio (UACR) during follow-up compared with lean controls. Alirocumab treatment resulted in a decline in mGFR and increased UACR compared with vehicle-treated obese rats. Immunohistochemistry showed increased fibrosis and inflammation in kidney tissue from obese rats treated with empagliflozin or alirocumab, whereas hepatic cholesterol and triglyceride levels were lowered compared with vehicle-treated obese rats. Although alirocumab lowered circulating free cholesterol levels throughout the treatment period, certain cholesteryl esters were increased at the end of the study, resulting in no overall difference in total cholesterol levels in the alirocumab group. Correspondingly, only a trend toward increased hepatic LDL-receptor levels was observed. In conclusion, these findings suggest that alirocumab treatment aggravates kidney dysfunction in obese ZSF1 rats. Moreover, in contrast to the renoprotective properties of empagliflozin observed in patients with CKD, empagliflozin did not ameliorate kidney disease progression in the obese ZSF1 rat.NEW & NOTEWORTHY New treatments to slow kidney disease progression and reduce cardiovascular disease risk are needed for chronic kidney disease (CKD). We investigated the cholesterol-lowering PCSK9 inhibitor alirocumab as a new treatment for proteinuric CKD and the effect of SGLT2 inhibition using empagliflozin in obese ZSF1 rats. Regarding renoprotection, our findings were contradictory with previous preclinical studies and clinical data, suggesting that different pathophysiological mechanisms may apply to this rat model.
Collapse
Affiliation(s)
- Sandra Hummelgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardio-Renal Pharmacology, Novo Nordisk, Måløv, Denmark
| | - Henning Hvid
- Department of Pathology and Imaging, Novo Nordisk, Måløv, Denmark
| | - Henrik Birn
- Department of Clinical Medicine and Renal Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Draupnir Bio, c/o INCUBA Skejby, Aarhus, Denmark
| | - Nikola Tom
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | | | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Ganjali S, Cardenia V, Bonciolini A, Santos RD, Al-Rasadi K, Sahebkar A. Lipidomic profiling in patients with familial hypercholesterolemia: Abnormalities in glycerolipids and oxysterols. Clin Biochem 2024; 131-132:110812. [PMID: 39197573 DOI: 10.1016/j.clinbiochem.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVES AND AIM This study aimed to identify precise biomarkers and develop targeted therapeutic strategies for preventing premature atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia (FH) by investigating the quantitative and qualitative abnormalities in the metabolic network of lipids in these patients using an advanced lipidomics platform. DESIGN & METHODS The study population comprised 18 homozygous (HoFH), 18 heterozygous (HeFH) FH patients, and 20 healthy controls. Cholesterol oxidation products (oxysterol, COPs) and main lipid classes were determined using gas chromatography-mass spectrometry. Results were expressed as percentages of total fat matter for lipid classes and percentages of total COPs for oxysterols. The principal component analysis (PCA) was also carried out, to highlight the correlation between studied parameters and groups investigated. RESULTS Patients (both HoFH and HeFH) showed lower content of free fatty acids (FFAs) and greater values of triacylglycerols (TAGs) in comparison to controls. HoFH showed lower monoacylglycerols (P<0.01) and higher free cholesterol (FC) (P<0.05) when compared to HeFH and controls. The total content of COPs ranged from 1.96 to 4.25 mg/dL, from 2.27 to 4.05 mg/dL, and from 0.79 to 4.12 mg/dL in healthy controls, HoFH and HeFH groups, respectively, with no significant differences between patients and controls. In general, the 7α-hydroxycholesterol (7α-HC) was greater than other COPs. However, no significant differences were found between the three studied groups. Moreover, an opposite trend was observed between 7α-HC and 7-ketocholesterol (7-KC). Additionally, when PCA was carried out, the first two PCs explained 92.13 % of the total variance, of which the PC1 describes 53.94 % of variance mainly correlated to TAGs, diacylglycerols (DAGs), and 7-KC. On the other hand, the PC2 was correlated primarily for FFAs, FC and esterified sterols (E-STE). CONCLUSIONS In conclusion, abnormal levels of TAGs, DAGs and 7-KC were associated with HeFH while HoFH was associated with the abnormal amount of E-STE.
Collapse
Affiliation(s)
- Shiva Ganjali
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, Australia
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Ambra Bonciolini
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Raul D Santos
- Lipid Clinic Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Khalid Al-Rasadi
- Medical Research Centre, Sultan Qaboos University, Muscat, Oman; Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Amirhossein Sahebkar
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Wu L, Li Y, Chen S, Yang Y, Tang B, Weng M, Shen H, Chen J, Lai P. Widely Targeted Lipidomics and Microbiomics Perspectives Reveal the Mechanism of Auricularia auricula Polysaccharide's Effect of Regulating Glucolipid Metabolism in High-Fat-Diet Mice. Foods 2024; 13:2743. [PMID: 39272508 PMCID: PMC11395039 DOI: 10.3390/foods13172743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The role of Auricularia auricula polysaccharide (AP) in the regulation of glycolipid metabolism was investigated using a high-fat-diet-induced hyperlipidemic mouse model. In a further step, its potential mechanism of action was investigated using microbiome analysis and widely targeted lipidomics. Compared to high-fat mice, dietary AP supplementation reduced body weight by 13.44%, liver index by 21.30%, epididymal fat index by 50.68%, fasting blood glucose (FBG) by 14.27%, serum total cholesterol (TC) by 20.30%, serum total triglycerides (TGs) by 23.81%, liver non-esterified fatty acid (NEFA) by 20.83%, liver TGs by 20.00%, and liver malondialdehyde (MDA) by 21.05%, and increased liver glutathione oxidase (GSH-PX) activity by 52.24%, total fecal bile acid (TBA) by 46.21%, and fecal TG by 27.16%, which significantly regulated glucose and lipid metabolism. Microbiome analysis showed that AP significantly downregulated the abundance of the Desulfobacterota phylum, as well as the genii Desulfovibrio, Bilophila, and Oscillbacter in the cecum of hyperlipidemic mice, which are positively correlated with high lipid indexes, while it upregulated the abundance of the families Eubacterium_coprostanoligenes_group and Ruminococcaceae, as well as the genii Eubacterum_xylanophilum_group, Lachnospiraceae_NK4A136_group, Eubacterium_siraeum_group, and Parasutterella, which were negatively correlated with high lipid indexes. In addition, AP promoted the formation of SCFAs by 119.38%. Widely targeted lipidomics analysis showed that AP intervention regulated 44 biomarkers in metabolic pathways such as sphingolipid metabolism and the AGE-RAGE signaling pathway in the hyperlipidemic mice (of which 15 metabolites such as unsaturated fatty acids, phosphatidylserine, and phosphatidylethanolamine were upregulated, and 29 metabolites such as phosphatidylcholine, ceramide, carnitine, and phosphatidylinositol were downregulated), thereby correcting glucose and lipid metabolism disorders.
Collapse
Affiliation(s)
- Li Wu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
- Fujian Characteristic Agricultural Products Processing Technology and Economic Integration Service Platform, Fuzhou 350003, China
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
- Fujian Characteristic Agricultural Products Processing Technology and Economic Integration Service Platform, Fuzhou 350003, China
| | - Shouhui Chen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
| | - Yanrong Yang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
| | - Baosha Tang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
- Fujian Characteristic Agricultural Products Processing Technology and Economic Integration Service Platform, Fuzhou 350003, China
| | - Minjie Weng
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
- Fujian Characteristic Agricultural Products Processing Technology and Economic Integration Service Platform, Fuzhou 350003, China
| | - Hengsheng Shen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
| | - Junchen Chen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
- Fujian Characteristic Agricultural Products Processing Technology and Economic Integration Service Platform, Fuzhou 350003, China
| | - Pufu Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
- Fujian Characteristic Agricultural Products Processing Technology and Economic Integration Service Platform, Fuzhou 350003, China
| |
Collapse
|
4
|
Gianazza E, Macchi C, Banfi C, Ruscica M. Proteomics and Lipidomics to unveil the contribution of PCSK9 beyond cholesterol lowering: a narrative review. Front Cardiovasc Med 2023; 10:1191303. [PMID: 37378405 PMCID: PMC10291627 DOI: 10.3389/fcvm.2023.1191303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key regulators of the low-density lipoprotein receptor (LDLR), can play a direct role in atheroma development. Although advances in the understandings of genetic PCSK9 polymorphisms have enabled to reveal the role of PCSK9 in the complex pathophysiology of cardiovascular diseases (CVDs), increasing lines of evidence support non-cholesterol-related processes mediated by PCSK9. Owing to major improvements in mass spectrometry-based technologies, multimarker proteomic and lipidomic panels hold the promise to identify novel lipids and proteins potentially related to PCSK9. Within this context, this narrative review aims to provide an overview of the most significant proteomics and lipidomics studies related to PCSK9 effects beyond cholesterol lowering. These approaches have enabled to unveil non-common targets of PCSK9, potentially leading to the development of novel statistical models for CVD risk prediction. Finally, in the era of precision medicine, we have reported the impact of PCSK9 on extracellular vesicles (EVs) composition, an effect that could contribute to an increased prothrombotic status in CVD patients. The possibility to modulate EVs release and cargo could help counteract the development and progression of the atherosclerotic process.
Collapse
Affiliation(s)
- Erica Gianazza
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
5
|
Calcaterra I, Lupoli R, Di Minno A, Di Minno MND. Volanesorsen to treat severe hypertriglyceridaemia: A pooled analysis of randomized controlled trials. Eur J Clin Invest 2022; 52:e13841. [PMID: 35851450 PMCID: PMC9788245 DOI: 10.1111/eci.13841] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Patients with severe hypertriglyceridaemia (sHTG) are often refractory to lipid-lowering therapy. Apolipoprotein (Apo) CIII inhibition could be promising to treat subjects with sHTG. The antisense oligonucleotide against APOC3 mRNA volanesorsen was recently introduced to treat sHTG. We performed a systematic review and meta-analysis of RCTs on the efficacy and safety of volanesorsen as compared to placebo treatment in patients with severe HTG. METHODS Studies were systematically searched in the PubMed, Web of Science and Scopus databases according to PRISMA guidelines. The last search was performed on 7 February 2022. RESULTS Four studies showed significant reduction in TG after 3 months of treatment with volanesorsen as compared with placebo (MD: -73.9%; 95%CI: -93.5%, -54.2; p < .001 I2 = 89.05%; p < .001); VLDL-C level (MD: -71.0%; 95%CI: -76.6%, -65.4%; p < .001 I2 = 94.1%; p < .001); Apo-B48 level (MD: -69.03%; 95%CI: -98.59.4%, -39.47%; p < .001, I2 = 93.51%; p < .001) and Apo-CIII level (MD: -80.0%; 95%CI: -97.5%, -62.5; p < .001 I2 = 94.1%; p < .001) with an increase in HDL-C level (MD: +45.92%, 95%CI: +37.24%, +54.60%; p < .001 I2 = 94.34%; p < .001) and in LDL-C level (MD: +68.6%, 95%CI: +7.0%, +130.1%; p < .001 I2 = 96.18%; p < .001) without a significant elevation of Apo-B100 level (MD: +4.58%, 95%CI: -5.64%, +14.79%; p = .380 I2 = 95.09%; p < .001) in 139 volanesorsen patients as compared to 100 placebo-treated controls. Most of adverse events were mild and related to local injection site reactions. CONCLUSIONS In patients with severe HTG, volanesorsen is associated with a significant reduction in TG, VLDL-C, Apo-B48 and non-HDL-C and increment of HDL-C as compared to placebo. Documented efficacy is accompanied by an acceptable safety profile.
Collapse
Affiliation(s)
- Ilenia Calcaterra
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Roberta Lupoli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | | | | |
Collapse
|