1
|
Lu Y, Ge Y, Tu F, Li X, Geng P, Zhang F, Wang Q. In Situ Investigation of Intercellular Communication in Ferroptosis Integrated Scanning Electrochemical Microscopy with Microfluidic Devices. ACS Sens 2025. [PMID: 40295188 DOI: 10.1021/acssensors.5c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Ferroptosis has been recognized as a potential treatment for various cancers. Still, in the complex tumor microenvironment, the communication between cancer cells and tumor-associated macrophages (TAMs) plays a crucial role in tumorigenesis and progression. In this work, scanning electrochemical microscopy (SECM) has been combined with microfluidic devices to enable on-chip cell coculture and in situ investigation of the communication between triple-negative breast cancer cells (TNBCs) and TAMs in ferroptosis. In the coculture system, TNBCs and TAMs were used as responding cells and signaling cells, respectively. By in situ monitoring the changes of key parameters (ROS, glutathione (GSH), and cell membrane permeability) in Erastin-induced ferroptosis, it was found that TAMs partially restored the reduced GSH efflux, increased ROS release, and impaired cell membrane barrier in TNBCs, indicating that TAMs can suppress TNBC ferroptosis. Mechanistically, TNBCs could promote M2 macrophage polarization, and M2-TAMs achieved suppression of TNBCs ferroptosis through the STAT3-related signaling pathway. After inhibition of STAT3, increased ROS release and membrane permeability as well as decreased GSH efflux of TNBCs were in situ monitored by SECM, demonstrating the intercellular communication mechanism in ferroptosis. Therefore, this work provides a potential strategy of targeting TAMs for ferroptosis-based TNBC therapy.
Collapse
Affiliation(s)
- Yuqi Lu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Yuxi Ge
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Feng Tu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Xin Li
- School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Ping Geng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
2
|
Zhou QM, Lu YF, Yang XY, Zhang JG, Wang YN, Luo WP, Mao J, Hou J, Wu F, Wang WL, Tang GP, Bai HZ, Yu RS. Redox-driven hybrid nanoenzyme dynamically activating ferroptosis and disulfidptosis for hepatocellular carcinoma theranostics. J Colloid Interface Sci 2025; 693:137611. [PMID: 40253866 DOI: 10.1016/j.jcis.2025.137611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Hepatocellular carcinoma (HCC) presents formidable therapeutic challenges due to its pronounced metabolic heterogeneity, particularly arising from spatially uneven glucose availability within the tumor microenvironment (TME). To address this, we developed a glutathione (GSH)-responsive, biomimetic hybrid nanoenzyme system (M@GOx/Fe-HMON) composed of hollow mesoporous organosilica nanoparticles co-loaded with glucose oxidase (GOx) and Fe2+/Fe3+ redox pairs, and cloaked in homologous tumor cell membranes for enhanced targeting. In glucose-rich regions, the nanoenzyme orchestrates a GOx-peroxidase (POD) cascade that produces reactive oxygen species (ROS) via the Fenton reaction, leading to ferroptosis through intensified oxidative stress and GSH depletion. Conversely, under glucose-deficient conditions, the nanoenzyme promotes disulfidptosis by aggravating glucose deprivation, depleting nicotinamide adenine dinucleotide phosphate (NADPH), and impairing cystine metabolism, ultimately resulting in actin cytoskeletal collapse. This dual-action platform dynamically adapts to the tumor's metabolic landscape, selectively inducing ferroptosis or disulfidptosis according to glucose levels, disrupting redox homeostasis and amplifying antitumor efficacy. Notably, this study is the first to integrate ferroptosis and disulfidptosis activation into a single, metabolism-sensitive nanoenzyme system, providing a novel paradigm for exploiting tumor metabolic heterogeneity. Furthermore, the combination of endogenous metabolic regulation with magnetic resonance imaging (MRI)-guided diagnosis introduces an innovative and noninvasive strategy for precision cancer theranostics.
Collapse
Affiliation(s)
- Qiao-Mei Zhou
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Yuan-Fei Lu
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Xiao-Yan Yang
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Jin-Guo Zhang
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Yi-Ning Wang
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Wang-Ping Luo
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Jin Mao
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Jue Hou
- Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Fan Wu
- Department of Neurosurgery, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Wei-Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Gu-Ping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| | - Hong-Zhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| | - Ri-Sheng Yu
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China.
| |
Collapse
|
3
|
Zhao S, Yang C, Wan W, Yuan S, Wei H, Chen J. Computational Identification and Validation of Metabolic Cell Death-Related Prognostic Biomarkers for Personalized Treatment Strategies in Prostate Cancer. Cell Biochem Biophys 2025:10.1007/s12013-025-01746-x. [PMID: 40210782 DOI: 10.1007/s12013-025-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
Prostate cancer (PCa) is a prevalent malignancy characterized by metabolic dysregulation and varied prognosis. Identifying prognostic biomarkers related to metabolic cell death could enhance risk stratification and treatment strategies. The purpose of this study was to identify prognostic genes associated with metabolic cell death in PCa and formulate a risk model for improved patient stratification. We identified genes that exhibit differential expression in The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) cohort (n = 394), with validation using GSE70769 (n = 92) and RT-qPCR on tissue samples from 5 patients. Candidate genes were intersected with metabolic cell death-related genes to identify prognostic markers. Independent prognostic factors were determined utilizing univariate and multivariate Cox regression analyses (p < 0.05, HR ≠ 1). A nomogram was designed, and the validation of gene expression was carried out using RT-qPCR on tissue samples from five PCa patients. A total of 78 candidate genes were identified, with ASNS and ZNF419 emerging as independent prognostic factors. The gene-based risk model successfully stratified patients into high- and low-risk groups, demonstrating correlations with overall survival and clinicopathological features, while also revealing significant differences in immune cell infiltration patterns through immune microenvironment analysis. Additionally, somatic mutation analysis indicated TP53, TTN, and SPOP as frequently mutated genes. This study identifies ASNS and ZNF419 as novel prognostic biomarkers in PCa, contributing to improved risk stratification and personalized treatment strategies. Further investigation into their functional roles may provide insights into therapeutic targets for PCa management.
Collapse
Affiliation(s)
- Shixian Zhao
- Department of urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650033, China
- Kunming Medical University, Kunming, 650500, China
| | - Chadanfeng Yang
- Department of urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650033, China
- Kunming Medical University, Kunming, 650500, China
| | - Weiming Wan
- Department of urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650033, China
| | - Shunhui Yuan
- Department of urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650033, China
| | - Hairong Wei
- Department of urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650033, China.
| | - Jian Chen
- Department of urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650033, China.
| |
Collapse
|
4
|
Rahman MA, Yadab MK, Ali MM. Emerging Role of Extracellular pH in Tumor Microenvironment as a Therapeutic Target for Cancer Immunotherapy. Cells 2024; 13:1924. [PMID: 39594672 PMCID: PMC11592846 DOI: 10.3390/cells13221924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Identifying definitive biomarkers that predict clinical response and resistance to immunotherapy remains a critical challenge. One emerging factor is extracellular acidosis in the tumor microenvironment (TME), which significantly impairs immune cell function and contributes to immunotherapy failure. However, acidic conditions in the TME disrupt the interaction between cancer and immune cells, driving tumor-infiltrating T cells and NK cells into an inactivated, anergic state. Simultaneously, acidosis promotes the recruitment and activation of immunosuppressive cells, such as myeloid-derived suppressor cells and regulatory T cells (Tregs). Notably, tumor acidity enhances exosome release from Tregs, further amplifying immunosuppression. Tumor acidity thus acts as a "protective shield," neutralizing anti-tumor immune responses and transforming immune cells into pro-tumor allies. Therefore, targeting lactate metabolism has emerged as a promising strategy to overcome this barrier, with approaches including buffer agents to neutralize acidic pH and inhibitors to block lactate production or transport, thereby restoring immune cell efficacy in the TME. Recent discoveries have identified genes involved in extracellular pH (pHe) regulation, presenting new therapeutic targets. Moreover, ongoing research aims to elucidate the molecular mechanisms driving extracellular acidification and to develop treatments that modulate pH levels to enhance immunotherapy outcomes. Additionally, future clinical studies are crucial to validate the safety and efficacy of pHe-targeted therapies in cancer patients. Thus, this review explores the regulation of pHe in the TME and its potential role in improving cancer immunotherapy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | | | - Meser M. Ali
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| |
Collapse
|
5
|
Cao T, Wang J. PYGL regulation of glycolysis and apoptosis in glioma cells under hypoxic conditions via HIF1α-dependent mechanisms. Transl Cancer Res 2024; 13:5627-5648. [PMID: 39525037 PMCID: PMC11543057 DOI: 10.21037/tcr-24-1974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Background Gliomas are highly aggressive brain tumors with complex metabolic and molecular alterations. The role of glycolysis in glioma progression and its regulation by hypoxia remain poorly understood. This study investigated the function of glycogen phosphorylase L (PYGL) in glioma and its interaction with glycolytic pathways under hypoxic conditions. Methods Differential expression analysis was conducted using The Cancer Genome Atlas (TCGA) glioma and GSE67089 datasets, revealing significant changes in the expression of genes. A prognostic risk model incorporating PYGL was built by univariate and multivariate Cox regression analyses. The impacts of PYGL on glioma cell proliferation, glycolysis, apoptosis, and metabolic activities were evaluated by in vitro assays. Additionally, the influences of hypoxia and hypoxia-inducible factor 1-alpha (HIF1α) on PYGL expression were evaluated. Results Our prognostic prediction model showed a C-index of 0.76 [95% confidence interval (CI): 0.70-0.82], indicating a good predictive accuracy of the model. In addition, genetic predictors included in the nomogram included PYGL, HIF1α, and other genes associated with the glycolytic pathway. Differential expression analysis identified PYGL as a key gene associated with glioma survival. PYGL expression was significantly upregulated in glioma cells. PYGL knockdown inhibited cell invasion, proliferation, migration, and colony formation and enhanced apoptosis via modulation of Bcl-2, caspase-3, and Bax. Glycolysis was impaired in PYGL-knockdown cells, as indicated by increased glycogen levels and a reduced extracellular acidification rate (ECAR), adenosine triphosphate (ATP) levels, lactate levels, and PKM2 and LDHA expression. PYGL overexpression promoted glycolysis and cell viability, which was counteracted by 2-deoxy-D-glucose (2-DG). Hypoxia-induced PYGL expression was regulated by HIF1α, underscoring the interplay between the hypoxia and glycolysis pathways. Conclusions PYGL is a crucial regulator of glycolysis in gliomas and contributes to tumor progression under hypoxic conditions. Targeting PYGL and its associated metabolic pathways may offer new therapeutic strategies for glioma treatment.
Collapse
Affiliation(s)
- Tingyu Cao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinchun Wang
- Department of Blood Transfusion, Affiliated Hospital of Shaoxing University, Shaoxing, China
| |
Collapse
|
6
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
7
|
Smith AJ, Hergenrother PJ. Raptinal: a powerful tool for rapid induction of apoptotic cell death. Cell Death Discov 2024; 10:371. [PMID: 39164225 PMCID: PMC11335860 DOI: 10.1038/s41420-024-02120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
Chemical inducers of apoptosis have been utilized for decades as tools to uncover steps of the apoptotic cascade and to treat various diseases, most notably cancer. While there are several useful compounds available, limitations in potency, universality, or speed of cell death of these pro-apoptotic agents have meant that no single compound is suitable for all (or most) purposes. Raptinal is a recently described small molecule that induces intrinsic pathway apoptosis rapidly and reliably, and consequently, has been utilized in cell culture and whole organisms for a wide range of biological studies. Its distinct mechanism of action complements the current arsenal of cytotoxic compounds, making it useful as a probe for the apoptosis pathway and other cellular processes. The rapid induction of cell death by Raptinal and its widespread commercial availability make it the pro-apoptotic agent of choice for many applications.
Collapse
Affiliation(s)
- Amanda J Smith
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul J Hergenrother
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
8
|
Ruan XF, Wen DT, Xu Z, Du TT, Fan ZF, Zhu FF, Xiao J. Identification and validation of ferroptosis-related prognostic gene signature in patients with cervical cancer. Transl Cancer Res 2024; 13:3382-3396. [PMID: 39145078 PMCID: PMC11319947 DOI: 10.21037/tcr-23-2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/24/2024] [Indexed: 08/16/2024]
Abstract
Background Ferroptosis is an iron-dependent cell death, which is distinct from the other types of regulated cell death. Considerable studies have demonstrated that ferroptosis is involved in the biological process of various cancers. However, the role of ferroptosis in cervical cancer (CC) remains unclear. This study aims to explore the ferroptosis-related prognostic genes (FRPGs) expression profiles and their prognostic values in CC. Methods The ferroptosis-related genes (FRGs) were obtained from The Cancer Genome Atlas (TCGA) and FerrDb databases. Core FRGs were determined by the Search Tool for the Retrieval of Interacting Genes (STRING) website. FRPGs were identified using univariate and multivariate Cox regressions, and the ferroptosis-related prognostic model was constructed. FRPGs were verified in clinical specimens. The relationship between FRPGs and tumor infiltrating immune cells were assessed through the CIBERSORT algorithm and the LM22 signature matrix. Bioinformatics functions of FRPGs were explored with the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Results Thirty-three significantly up-regulated and 28 down-regulated FRGs were screened from databases [P<0.05; false discovery rate (FDR) <0.05; and |log2 fold change (FC)| ≥2]. Twenty-four genes were found closely interacting with each other and regarded as hub genes (degree ≥3). Solute carrier family 2 member 1 (SLC2A1), carbonic anhydrases IX (CA9), and dual oxidase 1 (DUOX1) were identified as independent prognostic signatures for overall survival (OS) in a Cox regression. Time-dependent receiver operating characteristic (ROC) curves showed the predictive ability of the ferroptosis-related prognostic model, especially for 1-year OS [area under the curve (AUC) =0.76]. Consistent with the public data, our experiments demonstrated that the mRNA levels of SLC2A1 and DUOX1, and the protein levels of SLC2A1, DUOX1, and CA9 were significantly higher in the tumor tissues. Further analysis showed that there was a significant difference in the proportion of tumor infiltrating immune cells between the low- and high-risk group based on our prognostic model. The function enrichment of FRPGs was explored by applying Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Conclusions In this study, the features of FRPGs in CC were pictured. The results implicated that targeting ferroptosis may be a new reliable biomarker and an alternative therapy for CC.
Collapse
Affiliation(s)
- Xiao-Feng Ruan
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan-Ting Wen
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng Xu
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ting-Ting Du
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao-Feng Fan
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang-Fang Zhu
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Xiao
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Tigu AB, Tomuleasa C. Exploring Novel Frontiers in Cancer Therapy. Biomedicines 2024; 12:1345. [PMID: 38927551 PMCID: PMC11202039 DOI: 10.3390/biomedicines12061345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer progression and initiation are sustained by a series of alterations in molecular pathways because of genetic errors, external stimuli and other factors, which lead to an abnormal cellular function that can be translated into uncontrolled cell growth and metastasis [...].
Collapse
Affiliation(s)
- Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400015 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Park SH, Ju JS, Woo H, Yun HJ, Lee SB, Kim SH, Győrffy B, Kim EJ, Kim H, Han HD, Eyun SI, Lee JH, Park YY. The m 6A writer RBM15 drives the growth of triple-negative breast cancer cells through the stimulation of serine and glycine metabolism. Exp Mol Med 2024; 56:1373-1387. [PMID: 38825643 PMCID: PMC11263342 DOI: 10.1038/s12276-024-01235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 06/04/2024] Open
Abstract
N6-adenosine methylation (m6A) is critical for controlling cancer cell growth and tumorigenesis. However, the function and detailed mechanism of how m6A methyltransferases modulate m6A levels on specific targets remain unknown. In the current study, we identified significantly elevated levels of RBM15, an m6A writer, in basal-like breast cancer (BC) patients compared to nonbasal-like BC patients and linked this increase to worse clinical outcomes. Gene expression profiling revealed correlations between RBM15 and serine and glycine metabolic genes, including PHGDH, PSAT1, PSPH, and SHMT2. RBM15 influences m6A levels and, specifically, the m6A levels of serine and glycine metabolic genes via direct binding to target RNA. The effects of RBM15 on cell growth were largely dependent on serine and glycine metabolism. Thus, RBM15 coordinates cancer cell growth through altered serine and glycine metabolism, suggesting that RBM15 is a new therapeutic target in BC.
Collapse
Affiliation(s)
- Su Hwan Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
| | - Jin-Sung Ju
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Hyunmin Woo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hye Jin Yun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
| | - Su Bin Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, Republic of Korea
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, H-1094, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, H-7624, Pecs, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, H-1117, Budapest, Hungary
| | - Eun-Jeong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ho Kim
- Division of Life Science and Chemistry, College of Natural Science, Daejin University, Pocheon, Republic of Korea
| | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungcheongbuk-Do, Republic of Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea.
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Yun-Yong Park
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Fulman-Levy H, Cohen-Harazi R, Levi B, Argaev-Frenkel L, Abramovich I, Gottlieb E, Hofmann S, Koman I, Nesher E. Metabolic alterations and cellular responses to β-Hydroxybutyrate treatment in breast cancer cells. Cancer Metab 2024; 12:16. [PMID: 38812058 PMCID: PMC11134656 DOI: 10.1186/s40170-024-00339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/18/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The ketogenic diet (KD), based on high fat (over 70% of daily calories), low carbohydrate, and adequate protein intake, has become popular due to its potential therapeutic benefits for several diseases including cancer. Under KD and starvation conditions, the lack of carbohydrates promotes the production of ketone bodies (KB) from fats by the liver as an alternative source of metabolic energy. KD and starvation may affect the metabolism in cancer cells, as well as tumor characteristics. The aim of this study is to evaluate the effect of KD conditions on a wide variety of aspects of breast cancer cells in vitro. METHODS Using two cancer and one non-cancer breast cell line, we evaluate the effect of β-hydroxybutyrate (βHb) treatment on cell growth, survival, proliferation, colony formation, and migration. We also assess the effect of KB on metabolic profile of the cells. Using RNAseq analysis, we elucidate the effect of βHb on the gene expression profile. RESULTS Significant effects were observed following treatment by βHb which include effects on viability, proliferation, and colony formation of MCF7 cells, and different effects on colony formation of MDA-MB-231 cells, with no such effects on non-cancer HB2 cells. We found no changes in glucose intake or lactate output following βHb treatment as measured by LC-MS, but an increase in reactive oxygen species (ROS) level was detected. RNAseq analysis demonstrated significant changes in genes involved in lipid metabolism, cancer, and oxidative phosphorylation. CONCLUSIONS Based on our results, we conclude that differential response of cancer cell lines to βHb treatment, as alternative energy source or signal to alter lipid metabolism and oncogenicity, supports the need for a personalized approach to breast cancer patient treatment.
Collapse
Affiliation(s)
- Hadas Fulman-Levy
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Raichel Cohen-Harazi
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Bar Levi
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel
| | - Lital Argaev-Frenkel
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Ifat Abramovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 3525422, Israel
| | - Eyal Gottlieb
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 3525422, Israel
| | - Sarah Hofmann
- Medical Faculty Mannheim, Heidelberg University, 68167 , Mannheim, Germany
| | - Igor Koman
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel.
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel.
| | - Elimelech Nesher
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel.
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel.
| |
Collapse
|
12
|
Yang J, Shay C, Saba NF, Teng Y. Cancer metabolism and carcinogenesis. Exp Hematol Oncol 2024; 13:10. [PMID: 38287402 PMCID: PMC10826200 DOI: 10.1186/s40164-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Metabolic reprogramming is an emerging hallmark of cancer cells, enabling them to meet increased nutrient and energy demands while withstanding the challenging microenvironment. Cancer cells can switch their metabolic pathways, allowing them to adapt to different microenvironments and therapeutic interventions. This refers to metabolic heterogeneity, in which different cell populations use different metabolic pathways to sustain their survival and proliferation and impact their response to conventional cancer therapies. Thus, targeting cancer metabolic heterogeneity represents an innovative therapeutic avenue with the potential to overcome treatment resistance and improve therapeutic outcomes. This review discusses the metabolic patterns of different cancer cell populations and developmental stages, summarizes the molecular mechanisms involved in the intricate interactions within cancer metabolism, and highlights the clinical potential of targeting metabolic vulnerabilities as a promising therapeutic regimen. We aim to unravel the complex of metabolic characteristics and develop personalized treatment approaches to address distinct metabolic traits, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Yeh YW, Hsu TW, Su YH, Wang CH, Liao PH, Chiu CF, Tseng PC, Chen TM, Lee WR, Tzeng YS. Silencing of Dicer enhances dacarbazine resistance in melanoma cells by inhibiting ADSL expression. Aging (Albany NY) 2023; 15:12873-12889. [PMID: 37976135 DOI: 10.18632/aging.205207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Dacarbazine (DTIC) is the primary first-line treatment for advanced-stage metastatic melanoma; thus, DTIC resistance is poses a major challenge. Therefore, investigating the mechanism underlying DTIC resistance must be investigated. Dicer, a type III cytoplasmic endoribonuclease, plays a pivotal role in the maturation of miRNAs. Aberrant Dicer expression may contribute to tumor progression, clinical aggressiveness, and poor prognosis in various tumors. Dicer inhibition led to a reduction in DTIC sensitivity and an augmentation in stemness in melanoma cells. Clinical analyses indicated a low Dicer expression level as a predictor of poor prognosis factor. Metabolic alterations in tumor cells may interfere with drug response. Adenylosuccinate lyase (ADSL) is a crucial enzyme in the purine metabolism pathway. An imbalance in ADSL may interfere with the therapeutic efficacy of drugs. We discovered that DTIC treatment enhanced ADSL expression and that Dicer silencing significantly reduced ADSL expression in melanoma cells. Furthermore, ADSL overexpression reversed Dicer silencing induced DTIC resistance and cancer stemness. These findings indicate that Dicer-mediated ADSL regulation influences DTIC sensitivity and stemness in melanoma cells.
Collapse
Affiliation(s)
- Yu-Wen Yeh
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Division of Dermatology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan
| | - Tung-Wei Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
| | - Yen-Hao Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Hsin Wang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Po-Hsiang Liao
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
| | - Ching-Feng Chiu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Chen Tseng
- Department of Ophthalmology, Taipei City Hospital, Renai Branch, Taipei 106, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tim-Mo Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yuan-Sheng Tzeng
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| |
Collapse
|
14
|
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H, Imanaka S. A comprehensive overview of recent developments on the mechanisms and pathways of ferroptosis in cancer: the potential implications for therapeutic strategies in ovarian cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:547-566. [PMID: 37842240 PMCID: PMC10571061 DOI: 10.20517/cdr.2023.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 08/07/2023] [Indexed: 10/17/2023]
Abstract
Cancer cells adapt to environmental changes and alter their metabolic pathways to promote survival and proliferation. Metabolic reprogramming not only allows tumor cells to maintain a reduction-oxidation balance by rewiring resources for survival, but also causes nutrient addiction or metabolic vulnerability. Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid peroxides. Excess iron in ovarian cancer amplifies free oxidative radicals and drives the Fenton reaction, thereby inducing ferroptosis. However, ovarian cancer is characterized by ferroptosis resistance. Therefore, the induction of ferroptosis is an exciting new targeted therapy for ovarian cancer. In this review, potential metabolic pathways targeting ferroptosis were summarized to promote anticancer effects, and current knowledge and future perspectives on ferroptosis for ovarian cancer therapy were discussed. Two therapeutic strategies were highlighted in this review: directly inducing the ferroptosis pathway and targeting metabolic vulnerabilities that affect ferroptosis. The overexpression of SLC7A11, a cystine/glutamate antiporter SLC7A11 (also known as xCT), is involved in the suppression of ferroptosis. xCT inhibition by ferroptosis inducers (e.g., erastin) can promote cell death when carbon as an energy source of glucose, glutamine, or fatty acids is abundant. On the contrary, xCT regulation has been reported to be highly dependent on the metabolic vulnerability. Drugs that target intrinsic metabolic vulnerabilities (e.g., GLUT1 inhibitors, PDK4 inhibitors, or glutaminase inhibitors) predispose cancer cells to death, which is triggered by decreased nicotinamide adenine dinucleotide phosphate generation or increased reactive oxygen species accumulation. Therefore, therapeutic approaches that either directly inhibit the xCT pathway or target metabolic vulnerabilities may be effective in overcoming ferroptosis resistance. Real-time monitoring of changes in metabolic pathways may aid in selecting personalized treatment modalities. Despite the rapid development of ferroptosis-inducing agents, therapeutic strategies targeting metabolic vulnerability remain in their infancy. Thus, further studies must be conducted to comprehensively understand the precise mechanism linking metabolic rewiring with ferroptosis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara 634-0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
| |
Collapse
|
15
|
Unraveling the Peculiar Features of Mitochondrial Metabolism and Dynamics in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15041192. [PMID: 36831534 PMCID: PMC9953833 DOI: 10.3390/cancers15041192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths among men in Western countries. Mitochondria, the "powerhouse" of cells, undergo distinctive metabolic and structural dynamics in different types of cancer. PCa cells experience peculiar metabolic changes during their progression from normal epithelial cells to early-stage and, progressively, to late-stage cancer cells. Specifically, healthy cells display a truncated tricarboxylic acid (TCA) cycle and inefficient oxidative phosphorylation (OXPHOS) due to the high accumulation of zinc that impairs the activity of m-aconitase, the enzyme of the TCA cycle responsible for the oxidation of citrate. During the early phase of cancer development, intracellular zinc levels decrease leading to the reactivation of m-aconitase, TCA cycle and OXPHOS. PCa cells change their metabolic features again when progressing to the late stage of cancer. In particular, the Warburg effect was consistently shown to be the main metabolic feature of late-stage PCa cells. However, accumulating evidence sustains that both the TCA cycle and the OXPHOS pathway are still present and active in these cells. The androgen receptor axis as well as mutations in mitochondrial genes involved in metabolic rewiring were shown to play a key role in PCa cell metabolic reprogramming. Mitochondrial structural dynamics, such as biogenesis, fusion/fission and mitophagy, were also observed in PCa cells. In this review, we focus on the mitochondrial metabolic and structural dynamics occurring in PCa during tumor development and progression; their role as effective molecular targets for novel therapeutic strategies in PCa patients is also discussed.
Collapse
|
16
|
Ciccarese F. Cancer Metabolism and Resistance to Cell Death: Novel Therapeutic Perspectives. Biomedicines 2022; 10:biomedicines10081828. [PMID: 36009375 PMCID: PMC9404809 DOI: 10.3390/biomedicines10081828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Deregulation of metabolism and resistance to cell death are two hallmarks of cancer [...]
Collapse
Affiliation(s)
- Francesco Ciccarese
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
17
|
Chimento A, D’Amico M, Pezzi V, De Amicis F. Notch Signaling in Breast Tumor Microenvironment as Mediator of Drug Resistance. Int J Mol Sci 2022; 23:6296. [PMID: 35682974 PMCID: PMC9181656 DOI: 10.3390/ijms23116296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
Notch signaling dysregulation encourages breast cancer progression through different mechanisms such as stem cell maintenance, cell proliferation and migration/invasion. Furthermore, Notch is a crucial driver regulating juxtracrine and paracrine communications between tumor and stroma. The complex interplay between the abnormal Notch pathway orchestrating the activation of other signals and cellular heterogeneity contribute towards remodeling of the tumor microenvironment. These changes, together with tumor evolution and treatment pressure, drive breast cancer drug resistance. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance, reducing or eliminating breast cancer stem cells. In the present review, we will summarize the current scientific evidence that highlights the involvement of Notch activation within the breast tumor microenvironment, angiogenesis, extracellular matrix remodeling, and tumor/stroma/immune system interplay and its involvement in mechanisms of therapy resistance.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Maria D’Amico
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Francesca De Amicis
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|