1
|
Gürcan D, Baysoy E, Kaleli-Can G. Anti-IgG Doped Melanin Nanoparticles Functionalized Quartz Tuning Fork Immunosensors for Immunoglobulin G Detection: In Vitro and In Silico Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:4319. [PMID: 39001098 PMCID: PMC11243786 DOI: 10.3390/s24134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
The quartz tuning fork (QTF) is a promising instrument for biosensor applications due to its advanced properties such as high sensitivity to physical quantities, cost-effectiveness, frequency stability, and high-quality factor. Nevertheless, the fork's small size and difficulty in modifying the prongs' surfaces limit its wide use in experimental research. Our study presents the development of a QTF immunosensor composed of three active layers: biocompatible natural melanin nanoparticles (MNPs), glutaraldehyde (GLU), and anti-IgG layers, for the detection of immunoglobulin G (IgG). Frequency shifts of QTFs after MNP functionalization, GLU activation, and anti-IgG immobilization were measured with an Asensis QTF F-master device. Using QTF immunosensors that had been modified under optimum conditions, the performance of QTF immunosensors for IgG detection was evaluated. Accordingly, a finite element method (FEM)-based model was produced using the COMSOL Multiphysics software program (COMSOL License No. 2102058) to simulate the effect of deposited layers on the QTF resonance frequency. The experimental results, which demonstrated shifts in frequency with each layer during QTF surface functionalization, corroborated the simulation model predictions. A modelling error of 0.05% was observed for the MNP-functionalized QTF biosensor compared to experimental findings. This study validated a simulation model that demonstrates the advantages of a simulation-based approach to optimize QTF biosensors, thereby reducing the need for extensive laboratory work.
Collapse
Affiliation(s)
- Dilhan Gürcan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Engin Baysoy
- Department of Biomedical Engineering, Bahçeşehir University, İstanbul 34353, Türkiye
| | - Gizem Kaleli-Can
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| |
Collapse
|
2
|
Garcia-Rodriguez W, Saavedra-Ruiz A, Resto-Irizarry PJ. Label-Free Classification of L-Histidine Vs Artificial Human Sweat Using Laser Scribed Electrodes and a Multi-Layer Perceptron Neural Network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039476 DOI: 10.1109/embc53108.2024.10781841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
A challenge in wearable technology lies in the realtime monitoring of molecular biomarkers associated with human health. Electrochemical sensors are one of the most useful tools for this purpose and are commonly used in health monitoring devices. Electrochemical biosensing is particularly convenient when used in user-friendly, low-cost devices for testing noninvasive body fluids such as sweat and saliva. However, achieving high selectivity and specificity in measurements depends on the complexity of the biomarker and the stability of the biomarker capture molecule. In this study, laser-scribed electrodes (LSEs) were manufactured using a CO2 laser cutter on Polyimide for the label-free classification of sweat components. Cyclic voltammetry experiments were performed on artificial human sweat and the sweat component L-Histidine. The resulting voltammogram data served as input to train a Multi-Layer Perceptron Neural Network (MLP-NN) algorithm capable of classifying L-Histidine and artificial sweat.
Collapse
|
3
|
Bonini A, Carota AG, Poma N, Vivaldi FM, Biagini D, Bottai D, Lenzi A, Tavanti A, Di Francesco F, Lomonaco T. Emerging Biosensing Technologies towards Early Sepsis Diagnosis and Management. BIOSENSORS 2022; 12:894. [PMID: 36291031 PMCID: PMC9599348 DOI: 10.3390/bios12100894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Sepsis is defined as a systemic inflammatory dysfunction strictly associated with infectious diseases, which represents an important health issue whose incidence is continuously increasing worldwide. Nowadays, sepsis is considered as one of the main causes of death that mainly affects critically ill patients in clinical settings, with a higher prevalence in low-income countries. Currently, sepsis management still represents an important challenge, since the use of traditional techniques for the diagnosis does not provide a rapid response, which is crucial for an effective infection management. Biosensing systems represent a valid alternative due to their characteristics such as low cost, portability, low response time, ease of use and suitability for point of care/need applications. This review provides an overview of the infectious agents associated with the development of sepsis and the host biomarkers suitable for diagnosis and prognosis. Special focus is given to the new emerging biosensing technologies using electrochemical and optical transduction techniques for sepsis diagnosis and management.
Collapse
Affiliation(s)
- Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Angela Gilda Carota
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Noemi Poma
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Federico Maria Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Daria Bottai
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Arianna Tavanti
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
4
|
A Molecular Study of Aspirin and Tenofovir Using Gold/Dextran Nanocomposites and Surface-Enhanced Raman Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082554. [PMID: 35458752 PMCID: PMC9029789 DOI: 10.3390/molecules27082554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/20/2022]
Abstract
In this study, we show how surface enhanced Raman spectroscopy (SERS) can be used to monitor the molecular behaviour of aspirin and tenofovir as a means of screening medication for quality control purposes. Gold-coated slides combined with gold/dextran nanoaggregates were used to provide signal enhancement of the drugs using SERS. Aspirin (10% w/v) and tenofovir (20% v/v) were analysed in the presence of the nanomaterials to determine trends in molecular response to changes in gold/dextran concentrations. Qualitative analysis of the functional groups showed specific trends where the peak area increased with polarizability, electron density and decreased atomic radii. Steric hinderance effects also affected the trends in peak area due to the amount of gold/dextran nanoparticles in solution. Statistical analysis provided accurate and precise linear relationships (R2 = 0.99) for the ester and adenine functional groups of aspirin and tenofovir, respectively. From the above findings, the combined use of gold nano-scaffolds and gold/dextran nanomaterials amplified the Raman signal from the drugs to allow for systematic evaluation of their molecular properties. Although more experiments to correlate the findings are still needed, this SERS approach shows great potential as a screening method in the quality control of medications.
Collapse
|
5
|
Pasternak G, Pentoś K, Łuczycka D, Kaźmierowska-Niemczuk M, Lewandowicz-Uszyńska A. Serum Impedance in Children with Recurrent Respiratory Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1375:47-54. [DOI: 10.1007/5584_2021_689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Halima HB, Errachid A, Jaffrezic‐Renault N. Electrochemical Affinity Sensors Using Field Effect Transducer Devices for Chemical Analysis. ELECTROANAL 2021. [DOI: 10.1002/elan.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hamdi Ben Halima
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | - Abdelhamid Errachid
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | | |
Collapse
|