1
|
Lu Y, Zhu X, Huo Y, Zhang H, Yang Z, Wang Z, Wu X, Jin Y. Glucose oxidase/copper‑carbon dots/hyaluronic acid self-assembly for self-supply hydrogen peroxide in a double-enzyme cascade to enhance anti-tumor therapy. Int J Biol Macromol 2025; 310:143286. [PMID: 40253041 DOI: 10.1016/j.ijbiomac.2025.143286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Although chemodynamic therapy (CDT) has proven to be a promising anti-tumor strategy, its efficacy is limited by the insufficient supply of H2O2 in tumor tissues. To solve the problem of insufficient H2O2, in this paper, a novel double-enzyme cascade nanoreactor hyaluronic-cinnamaldehyde Schiff base@glucose oxidase (GOx)/copper doped carbon dot (abbreviation HCFCTG), which constructed by co-assembly of copper doped carbon dot (CuFACDs-TPP), glucose oxidase (GOx) and hyaluronic-cinnamaldehyde Schiff base (HA-CA) was designed for the first time. The HCFCTG released GOx and CuFACDs-TPP under pH stimulation. GOx continues to supply H2O2 to CDT by consuming glucose, while cutting off the supply of nutrients to starve cancer cells to death (ST), ultimately amplifying the therapeutic effect of CDT. CuFACDs-TPP precisely anchors mitochondria to destroy mitochondria and induce apoptosis, while copper ions consume glutathione to amplify reactive oxygen species (ROS) levels. Self‑oxygenation of HCFCTG by Fenton-like reaction down-regulates hypoxia-inducible factor (HIF-1α) to consolidate CDT effect. The 808 nm laser activates the photothermal effect enhances CDT. In vitro and in vivo experiments proved that HCFCTG has good biocompatibility and excellent CDT effect. HCFCTG overcomes the problem of insufficient H2O2 in the CDT process.
Collapse
Affiliation(s)
- Yuting Lu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xu Zhu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yibo Huo
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Hui Zhang
- College of Public Health, Mudanjiang Medical University, Mudanjiang 157009, China
| | - Ziqing Yang
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
2
|
Bebesi T, Pálmai M, Szigyártó IC, Gaál A, Wacha A, Bóta A, Varga Z, Mihály J. Surface-enhanced infrared spectroscopic study of extracellular vesicles using plasmonic gold nanoparticles. Colloids Surf B Biointerfaces 2025; 246:114366. [PMID: 39531836 DOI: 10.1016/j.colsurfb.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs), sub-micrometer lipid-bound particles released by most cells, are considered a novel area in both biology and medicine. Among characterization methods, infrared (IR) spectroscopy, especially attenuated total reflection (ATR), is a rapidly emerging label-free tool for molecular characterization of EVs. The relatively low number of vesicles in biological fluids (∼1010 particle/mL), however, and the complex content of the EVs' milieu (protein aggregates, lipoproteins, buffer molecules) might result in poor signal-to-noise ratio in the IR analysis of EVs. Exploiting the increment of the electromagnetic field at the surface of plasmonic nanomaterials, surface-enhanced infrared spectroscopy (SEIRS) provides an amplification of characteristic IR signals of EV samples. Negatively charged citrate-capped and positively charged cysteamine-capped gold nanoparticles with around 10 nm diameter were synthesized and tested with blood-derived EVs. Both types of gold nanoparticles contributed to an enhancement of the EVs' IR spectroscopic signature. Joint evaluation of UV-Vis and IR spectroscopic results, supported by FF-TEM images, revealed that proper interaction of gold nanoparticles with EVs is crucial, and an aggregation or clustering of gold nanoparticles is necessary to obtain the SEIRS effect. Positively charged gold nanoparticles resulted in higher enhancement, probably due to electrostatic interaction with EVs, commonly negatively charged.
Collapse
Affiliation(s)
- Tímea Bebesi
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary; Hevesy György PhD School of Chemistry, Eötvös Lóránd University, Pázmány Péter sétány 1/A, Budapest 1117, Hungary
| | - Marcell Pálmai
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Imola Csilla Szigyártó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Anikó Gaál
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - András Wacha
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Attila Bóta
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary; Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary; Department of Chemistry, Eszterházy Károly Catholic University, Leányka u. 6, Eger 3300, Hungary.
| |
Collapse
|
3
|
Yang S, Zhu J, Yang L, Fa H, Wang Y, Huo D, Hou C, Zhong D, Yang M. Pop-Up Paper-Based Biosensor for a Dual-Mode Lung Cancer ctDNA Assay Based on Novel CoB Nanosheets with Dual-Enzyme Activities and a Portable Smartphone/Barometer for Readout. ACS Sens 2025; 10:133-147. [PMID: 39692882 DOI: 10.1021/acssensors.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Timely monitoring of circulating tumor DNA (ctDNA) in serum is meaningful for personalized diagnosis and treatment for lung cancer. Cheap and efficient point-of-care testing (POCT) has emerged as a promising method, especially in a low-resource setting. Herein, (i) a 3D pop-up paper-based POCT device was designed and manufactured via a cheap method; it was used for saving time and efficiently building a biosensor; (ii) a novel cobalt boride nanosheet (CoB NS) nanozyme with abundant groups was used for POCT dual-mode signal transduction and then a portable smartphone/pressure meter to readout; (iii) a user-friendly smartphone app was fabricated for achieving more convenient POCT. Detailly, the dual-mode signal generated was based on the CoB NS with peroxidase activity to catalyze a chromogenic agent to develop color and with catalase activity to catalyze decomposition of H2O2 to O2. Density functional theory (DFT) and experimental results showed a good catalysis performance of the CoB NS via studying its five possible catalytic pathways, in which the metal Co is the catalytic active site center that acts as the electron donor and promotes electron transfer between the CoB NS and the adsorbed substrates. Benefiting from that, the proposed method showed good analytical ability in detecting ctDNA. Besides, its accuracy was valued by comparing it with the standard qPCR method to detect real samples from tumor cells and tumor-bearing mice, which showed a consistent result and potential practical applicability of the proposed method for POCT ctDNA. In general, this work not only provided a dual-mode POCT platform that could also be applied for other analytes but also first revealed the nanozyme properties of the CoB NS and inspired its new application from electrocatalysis, energy, etc. to biomedicine.
Collapse
Affiliation(s)
- Siyi Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Jiajia Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Liyu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yongzhong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Daidi Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
4
|
Ren Y, He Y, Li P. Handgrip-Ring Structure Sensing Probe Assisted Multiple Signal Amplification Strategy for Sensitive and Label-Free Single-Stranded Nucleic Acid Analysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:6832856. [PMID: 39464380 PMCID: PMC11511596 DOI: 10.1155/2024/6832856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Precise and efficient identification of single-stranded nucleic acids is crucial for both pathological research and early diagnosis of diseases, such as cancers. Therefore, we have devised a novel biosensor that utilizes an elegantly designed handgrip-ring structure sensing probe to enhance the detection sensitivity and reduce background signals. The handgrip-ring structure sensing probe combines ring padlock-based target recognition and hairpin structure probe-based signal amplification. The target sequences form a binding interaction with the ring padlock in the sensing probe, leading to the elongation of the single-stranded chain with the assistance of polymerase. This elongation step results in the release of the hairpin probe, triggering a signal amplification process. This design significantly minimized the potential discrepancies that may occur during the signal amplification process, hence bestowing the approach with a low level of background signals. By utilizing this innovative design, the current biosensor demonstrates a remarkable ability to detect miRNA with a limit as low as 376 aM and single-stranded DNA sequences with a limit as low as 45.3 aM. In addition, it possesses exceptional discrimination capabilities. The efficacy of this approach in diagnosing targets was also effectively proved by the rational redesign of the ring padlock.
Collapse
Affiliation(s)
- Ying Ren
- Department of Pathology, Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu He
- Department of Pathology, Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Ping Li
- Department of Pathology, Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| |
Collapse
|
5
|
He M, Hou Z, Yin F, Cheng W, Xiang Y, Wang Z. Simultaneous detection of breast cancer biomarkers HER2 and miRNA-21 based on duplex-specific nuclease signal amplification. J Mater Chem B 2024; 12:9930-9937. [PMID: 39263860 DOI: 10.1039/d4tb01845a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The detection of a single biomarker is prone to false negative or false positive results. Simultaneous analysis of two biomarkers can greatly improve the accuracy of diagnosis. In this work, we designed a new method for coinstantaneous detection of two breast cancer biomarkers miRNA-21 and HER2 using the properties of duplex-specific nuclease (DSN). Cy5-labeled DNA1 and FAM-labeled DNA2 are used as signal probes to distinguish the two signals. When the sample contains the targets HER2 and miRNA-21, HER2 binds to the HER2 aptamer on the double-stranded DNA2, while miRNA-21 binds to the complementary DNA1. Then, DSN enzyme is added to cut the DNA probes adsorbed on the HER2 aptamer and miRNA-21, releasing the fluorescent groups, which can be readsorbed to the empty sites, thus repeating the cutting of the probes and producing an exponential signal amplification with two distinct fluorescent signals. The detection limits of miRNA-21 and HER2 are 1.12 pM and 0.36 ng mL-1, respectively, with linear ranges of 5 pM to 50 pM and 1 ng mL-1 to 15 ng mL-1. The method was validated in real biological samples, providing a new approach for synchronous analysis of important markers in breast cancer.
Collapse
Affiliation(s)
- Miao He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhiqiang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Feifan Yin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| | - Zhongyun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China.
| |
Collapse
|
6
|
Yang S, Zhao L, Yang X, Yang L, Fa H, Wang Y, Huo D, Hou C, Zhong D, Yang M. A portable smartphone detection of ctDNA using MnB 2 nanozyme and paper-based analytical device. Talanta 2024; 278:126523. [PMID: 38981155 DOI: 10.1016/j.talanta.2024.126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
The development of point-of-care testing (POCT) for circulating tumor DNA (ctDNA) is meaningful for the non-invasive cancers screening and diagnosis, particularly in resource-limited settings. The microfluidic paper-based analytical device (μPAD) provides an ideal platform, its application in ctDNA assays remains underexplored. In this work, a multifunctional μPAD was manufactured, which can enhance the efficiency and reduce the cost of ctDNA sensing. Additionally, a smartphone-based application analysis was fabricated for convenient, portable detection and colorimetric signal readout. Moreover, the novel oxidase-like MnB2 nanozyme was introduced in the sandwiches sensing strategy, utilizing its catalytic properties to effectively generate a colorimetric signal. The use of MnB2 nanozyme in sensing application is relatively novel, and its catalytic performance and mechanism was thoroughly evaluated via experiment and density functional theory (DFT) calculations. After optimizing the detection conditions, the proposed biosensor exhibited satisfactory results. Furthermore, the method was successfully used to detect ctDNA in tumor cell lysates and peripheral blood samples from tumor-bearing mice. The results were consistent with standard qPCR method, affirming the reliability of our POCT analysis device in ctDNA detection. Thus, this work not only provides a paper-based POCT device and intelligent analysis tool for portable cancers diagnosis, but it also paves a new application path for MnB2 nanozyme in the sensing filed.
Collapse
Affiliation(s)
- Siyi Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Liangyi Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Xiao Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Liyu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Yongzhong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Daidi Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
7
|
Xu X, Zhang P, Tao S. Modular probe-based colorimetric miRNA detection via polymerase/endonuclease assisted chain displacement. Biotechniques 2024; 76:371-379. [PMID: 39041678 DOI: 10.1080/07366205.2024.2368394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Methods for sequence-specific microRNA (miRNA) analysis are crucial for miRNA research and guiding nursing strategies. We have devised a colorimetric technique for detecting miRNA using a dumbbell probe-based polymerase/endonuclease assisted chain displacement, along with silver ions (Ag+) aptamer assisted color reaction. The suggested approach enables precise measurement of miRNA-21 within the concentration range of 100 fM-5 nM, with a low detection limit of 45.32 fM. Additionally, it exhibits exceptional capability in distinguishing variations at the level of individual nucleotides. Furthermore, the detection technique may be utilized to precisely measure the amount of miRNA-21 in serum samples, demonstrating a high level of concordance with the findings obtained from a commercially available miRNA detection kit.
Collapse
Affiliation(s)
- Xialing Xu
- Department of Gastroenterology, People's Hospital Of Chongqing Liang Jiang New Area, Chongqing, 401147, China
| | - Ping Zhang
- Department of Gastroenterology, People's Hospital Of Chongqing Liang Jiang New Area, Chongqing, 401147, China
| | - Siyu Tao
- Department of Gastroenterology, People's Hospital Of Chongqing Liang Jiang New Area, Chongqing, 401147, China
| |
Collapse
|
8
|
El Aamri M, Baachaoui S, Mohammadi H, Raouafi N, Amine A. Smartphone-based device for rapid and single-step detection of piRNA-651 using anti-DNA:RNA hybrid antibody and enzymatic signal amplification. Anal Chim Acta 2024; 1305:342583. [PMID: 38677845 DOI: 10.1016/j.aca.2024.342583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs/piRs) are a class of small noncoding RNAs that play a crucial role in regulating various biological processes, including carcinogenesis. One specific piRNA, piR-651, has been reported to be overexpressed in both human blood serum and solid cancer tissues, that can be used a viable biomarker in cancer diagnosis. Early diagnosis of cancer can help reduce the burden of the disease and improve survival rates. In the present work, we report for the first time a smartphone-based colorimetric biosensor for highly sensitive and specific detection of piR-651 thanks to an enzymatic signal amplification, which yielded high colorimetric intensities. Indeed, a heteroduplex DNA:RNA was formed in the presence of piR-651 with the capture DNA probe immobilized on the magnetic beads for easy magnetic separation. Then, a HRP tethered to anti-DNA:RNA (S9.6) was used to reveal the DNA-RNA heteroduplex formed by catalyzing the oxidation of TMB substrate into colorimetric TMBox, which absorbs at 630 nm. The absorbance is positively proportional to the piR-651 concentrations. On the other hand, the colorimetric product of the assay can be photographed with a smartphone camera and analyzed using ImageJ software. Using a smartphone and under optimal conditions, the biosensor responded linearly to the logarithm of piRNA-651 from 8 fM to 100 pM with a detection limit of 2.3 fM and discriminates against other piRNAs. It was also successfully applied to the determination of piRNA-651 levels in spiked human serum.
Collapse
Affiliation(s)
- Maliana El Aamri
- Hassan II University of Casablanca, Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, P.A 146, Mohammedia, Morocco
| | - Sabrine Baachaoui
- University of Tunis El Manar, Faculty of Science, Chemistry Department, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Sensors and Biosensors Group, Tunis El Manar, 2092, Tunisia
| | - Hasna Mohammadi
- Hassan II University of Casablanca, Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, P.A 146, Mohammedia, Morocco
| | - Noureddine Raouafi
- University of Tunis El Manar, Faculty of Science, Chemistry Department, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Sensors and Biosensors Group, Tunis El Manar, 2092, Tunisia.
| | - Aziz Amine
- Hassan II University of Casablanca, Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, P.A 146, Mohammedia, Morocco.
| |
Collapse
|
9
|
Wang P, Wei X, Shen L, Xu K, Wen Z, Gao N, Fan T, Xun S, Zhu Q, Qu X, Zhu Y. Amplification-Free Analysis of Bladder Cancer MicroRNAs on Wrinkled Silica Nanoparticles with DNA-Functionalized Quantum Dots. Anal Chem 2024; 96:4860-4867. [PMID: 38478499 DOI: 10.1021/acs.analchem.3c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bladder cancer (BC) occurrence and progression are accompanied by alterations in microRNAs (miRNAs) expression levels. Simultaneous detection of multiple miRNAs contributes to the accuracy and reliability of the BC diagnosis. In this work, wrinkled silica nanoparticles (WSNs) were applied as the microreactor for multiplex miRNAs analysis without enzymes or nucleic acid amplification. Conjugated on the surface of WSNs, the S9.6 antibody was adopted as the universal module for binding DNA/miRNA duplexes, regardless of their sequence. Furthermore, single-stranded DNA (ssDNA) was labeled with quantum dots (QDs) for identifying a given miRNA to form QDs-ssDNA/miRNA, which enabled the specific capture of the corresponding QDs on the wrinkled surface of WSNs. Based on the detection of fluorescence signals that were ultimately focused on WSNs, target miRNAs could be sensitively identified to a femtomolar level (5 fM) with a wide dynamic range of up to 6 orders of magnitude. The proposed strategy achieved high specificity to obviously distinguish single-base mutation sequences and possessed multiplex assay capability. Moreover, the assay exhibited excellent practicability in the multiplex detection of miRNAs in clinical serum specimens.
Collapse
Affiliation(s)
- Pei Wang
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Xiaowei Wei
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Luming Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Kexin Xu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Zhongting Wen
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Nengjiao Gao
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Ting Fan
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Shenmei Xun
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Qingyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Xiaojun Qu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Yefei Zhu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
10
|
Hilda L, Mutlaq MS, Waleed I, Althomali RH, Mahdi MH, Abdullaev SS, Singh R, Nasser HA, Mustafa YF, Alawadi AHR. Genosensor on-chip paper for point of care detection: A review of biomedical analysis and food safety application. Talanta 2024; 268:125274. [PMID: 37839324 DOI: 10.1016/j.talanta.2023.125274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Over the last decade, paper-based biosensing has attracted considerable attention in numerous fields due to several advantages of them. To elaborate, using paper as a substrate of sensing approaches can be considered an affordable sensing approach owing to low cost of paper, and alongside that, the ability to operate without requiring external equipment. In many cases, cost-effective fabrication techniques such as screen printed and drop casting can be supposed as other benefits of these platforms. Despite the portability and affordability of paper-based assay, two important limitations including sensitivity and selectivity can decrease the application of these sensing approaches. Initially, decoration of paper substrate with nanomaterials (NMs) can improve the properties of paper due to high surface area and conductivity of them. Secondly, the presence of bioreceptors can provide a selective detection platform. Among different bioreceptors, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) can play a significant role. From this perspective, paper-based biosensors can be used for the detection of various gens which related to biomedical or food safety. In this review, we attempted to summarize recent trends and applications of paper-based genosensor, along with critical arguments in terms of NMs role in signal amplification. Furthermore, the lack of paper-based genosensors in field the of biomedical and food safety will be discussed in the following.
Collapse
Affiliation(s)
- Lelya Hilda
- Department of Chemistry, Universitas Islam Negeri Syekh Ali Hasan Ahmad Addary Padangsidimpuan, Padangsidimpuan, Indonesia.
| | - Maysam Salih Mutlaq
- Department of Radiology & Sonar Techniques, AlNoor University College, Nineveh, Iraq
| | | | - Raed H Althomali
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir, 11991, Saudi Arabia
| | | | - Sherzod Shukhratovich Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Department of Chemical Engineering, Central Asian University, Tashkent, Uzbekistan; Scientific and Innovation Department, Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan
| | - Rajesh Singh
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed H R Alawadi
- Building and Construction Technical Engineering Department, College of Technical Engineering, The Islamic university, Najaf, Iraq
| |
Collapse
|
11
|
El Aamri M, Mohammadi H, Amine A. A highly sensitive colorimetric DNA sensor for MicroRNA-155 detection: leveraging the peroxidase-like activity of copper nanoparticles in a double amplification strategy. Mikrochim Acta 2023; 191:32. [PMID: 38102528 DOI: 10.1007/s00604-023-06087-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
A novel and highly sensitive colorimetric DNA sensor for determination of miRNA-155 at attomolar levelsis presented that combines the peroxidase-like activity of copper nanoparticles (CuNPs) with the hybridization chain reaction (HCR) . The utilization of CuNPs offers advantages such as strong interaction with double-stranded DNA, excellent molecular recognition, and mimic catalytic activity. Herein, a capture probe DNA (P1) was immobilized on carboxylated magnetic beads (MBs), allowing for amplified immobilization due to the 3D surface. Subsequently, the presence of the target microRNA-155 led to the formation of a sandwich structure (P2/microRNA-155/P1/MBs) when P2 was introduced to the modified P1/MBs. The HCR reaction was then triggered by adding H1 and H2 to create a super sandwich (H1/H2)n. Following this, Cu2+ ions were attracted to the negatively charged phosphate groups of the (H1/H2)n and reduced by ascorbic acid, resulting in the formation of CuNPs, which were embedded into the grooves of the (H1/H2)n. The peroxidase-like activity of CuNPs catalyzed the oxidation reaction of 3,3',5,5'-Tetramethylbenzidine (TMB), resulting in a distinct blue color measured at 630 nm. Under optimal conditions, the colorimetric biosensor exhibited a linear response to microRNA-155 concentrations ranging from 80 to 500 aM, with a detection limit of 22 aM, and discriminate against other microRNAs. It was also successfully applied to the determination of microRNA-155 levels in spiked human serum.
Collapse
Affiliation(s)
- Maliana El Aamri
- Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, Hassan II University of Casablanca, P.A 146, Mohammedia, Morocco
| | - Hasna Mohammadi
- Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, Hassan II University of Casablanca, P.A 146, Mohammedia, Morocco
| | - Aziz Amine
- Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, Hassan II University of Casablanca, P.A 146, Mohammedia, Morocco.
| |
Collapse
|
12
|
El Aamri M, Khalki Y, Mohammadi H, Amine A. Development of an Innovative Colorimetric DNA Biosensor Based on Sugar Measurement. BIOSENSORS 2023; 13:853. [PMID: 37754087 PMCID: PMC10526849 DOI: 10.3390/bios13090853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
The development of biosensors for target detection plays a crucial role in advancing various fields of bioscience. This work presents the development of a genosensor that exploits the colorimetric phenol-sulfuric acid sugar reaction for the detection of DNA, and RNA as specific targets, and DNA intercalator molecules. The biosensor combines simplicity and reliability to create a novel bioassay for accurate and rapid analysis. A 96-well microplate based on a polystyrene polymer was used as the platform for an unmodified capture DNA immobilization via a silanization process and with (3-Aminopropyl) triethoxysilane (APTES). After that, a hybridization step was carried out to catch the target molecule, followed by adding phenol and sulfuric acid to quantify the amount of DNA or RNA sugar backbone. This reaction generated a yellow-orange color on the wells measured at 490 nm, which was proportional to the target concentration. Under the optimum conditions, a calibration curve was obtained for each target. The developed biosensor demonstrated high sensitivity, good selectivity, and linear response over a wide concentration range for DNA and RNA targets. Additionally, the biosensor was successfully employed for the detection of DNA intercalator agents that inhibited the hybridization of DNA complementary to the immobilized capture DNA. The developed biosensor offers a potential tool for sensitive and selective detection in various applications, including virus diagnosis, genetic analysis, pathogenic bacteria monitoring, and drug discovery.
Collapse
Affiliation(s)
| | | | | | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (Y.K.); (H.M.)
| |
Collapse
|
13
|
Chahri I, Karrat A, Mohammadi H, Amine A. Development of a New Route for the Immobilization of Unmodified Single-Stranded DNA on Chitosan Beads and Detection of Released Guanine after Hydrolysis. Molecules 2023; 28:molecules28052088. [PMID: 36903335 PMCID: PMC10004340 DOI: 10.3390/molecules28052088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
In this work, chitosan beads were used as a cost-effective platform for the covalent immobilization of unmodified single-stranded DNA, using glutaraldehyde as a cross-linking agent. The immobilized DNA capture probe was hybridized in the presence of miRNA-222 as a complementary sequence. The target was evaluated based on the electrochemical response of the released guanine, using hydrochloride acid as a hydrolysis agent. Differential pulse voltammetry technique and screen-printed electrodes modified with COOH-functionalized carbon black were used to monitor the released guanine response before and after hybridization. The functionalized carbon black provided an important signal amplification of guanine compared to the other studied nanomaterials. Under optimal conditions (6 M HCl at 65 °C for 90 min), an electrochemical-based label-free genosensor assay exhibited a linear range between 1 nM and 1 µM of miRNA-222, with a detection limit of 0.2 nM of miRNA-222. The developed sensor was successfully used to quantify miRNA-222 in a human serum sample.
Collapse
|
14
|
Baachaoui S, Mastouri M, Meftah M, Yaacoubi-Loueslati B, Raouafi N. A Magnetoelectrochemical Bioassay for Highly Sensitive Sensing of Point Mutations in Interleukin-6 Gene Using TMB as a Hybridization Intercalation Indicator. BIOSENSORS 2023; 13:240. [PMID: 36832006 PMCID: PMC9954083 DOI: 10.3390/bios13020240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Point mutations are common in the human DNA genome and are closely related to higher susceptibility to cancer diseases. Therefore, suitable methods for their sensing are of general interest. In this work, we report on a magnetic electrochemical bioassay using DNA probes tethered to streptavidin magnetic beads (strep-MBs) to detect T > G single nucleotide polymorphism (SNP) within the inteleukin-6 (IL6) gene in human genomic DNA. In the presence of the target DNA fragment and tetramethylbenzidine (TMB), the electrochemical signal related to the oxidation of TMB is observed, which is much higher than the one obtained in the absence of the target. The key parameters affecting the analytical signal, such as the concentration of the biotinylated probe, its incubation time with strep-MBs, DNA hybridization time, and TMB loading, were optimized using the electrochemical signal intensity and signal-to-blank (S/B) ratio as selection criteria. Using spiked buffer solutions, the bioassay can detect the mutated allele in a wide range of concentrations (over six decades) with a low detection limit (7.3 fM). Furthermore, the bioassay displays a high specificity with high concentrations of the major allele (one mismatched), and two mismatched and non-complementary DNA. More importantly, the bioassay can detect the variation in scarcely diluted human DNA, collected from 23 donors, and can reliably distinguish between heterozygous (TG genotype) and homozygous (GG genotype) in respect to the control subjects (TT genotype), where the differences are statistically highly significant (p-value < 0.001). Thus, the bioassay is useful for cohort studies targeting one or more mutations in human DNA.
Collapse
Affiliation(s)
- Sabrine Baachaoui
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Chemistry Department, Faculty of Science, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Mohamed Mastouri
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Chemistry Department, Faculty of Science, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Maroua Meftah
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Chemistry Department, Faculty of Science, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Basma Yaacoubi-Loueslati
- Laboratory of Mycology, Pathologies and Biomarkers (LR16ES15), Biology Department, Faculty of Science, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Chemistry Department, Faculty of Science, University of Tunis El Manar, Tunis 2092, Tunisia
| |
Collapse
|