1
|
Zhang W, Wang C, Ren K, Song X, Wang Q, Shi P. From signal-off to signal-on: polyT linker alters signal response mode and enhances signal change of aptamer beacon probe. Anal Bioanal Chem 2025; 417:1105-1112. [PMID: 39753899 DOI: 10.1007/s00216-024-05704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 02/07/2025]
Abstract
A molecular beacon is an oligonucleotide hybridization probe that can report the presence of specific nucleic acids in homogeneous solutions. Using an aptamer has allowed an aptamer-based molecular beacon-aptamer beacon to be developed, which has shown advantages of simplicity, rapidity, and sensitivity in imaging and sensing non-nucleic acid substances. However, due to requirement for a deliberate DNA hairpin structure for the preparation of a molecular beacon, not any given aptamer is suitable for designing an aptamer beacon probe. This paper provides a general design strategy for the preparation of an aptamer beacon probe, which theoretically can be used for any given aptamer. Through coupling an aptamer and a short complementary DNA into one DNA molecule via a rational poly thymidine (T) linker, novel molecular beacon probes are successfully prepared and used for the detection of targets (aflatoxin B1 and ochratoxin A). The working mechanism of this aptamer beacon probe is based on intramolecular hybridization/dehybridization, which is more efficient than commonly aptasensor strategies based on intermolecular reactions. This aptamer beacon probe shows advantages of low background, a signal-on response, a large signal change, as well as simplicity and rapidity of analysis, which have promising application potential.
Collapse
Affiliation(s)
- Wenhan Zhang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Chao Wang
- College of Medicine, Linyi University, Linyi, 276000, China.
| | - Kangci Ren
- College of Medicine, Linyi University, Linyi, 276000, China
| | - Xiaoyu Song
- College of Medicine, Linyi University, Linyi, 276000, China
| | - Qing Wang
- College of Medicine, Linyi University, Linyi, 276000, China.
| | - Pengfei Shi
- College of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China.
- College of Medicine, Linyi University, Linyi, 276000, China.
| |
Collapse
|
2
|
Zhang Y, Bi S, Xu Q, Liu Y. Trends and Perspectives in Biosensing and Diagnosis. BIOSENSORS 2024; 14:499. [PMID: 39451711 PMCID: PMC11505935 DOI: 10.3390/bios14100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Biosensors are attractive tools for detecting molecules and small particles, as they can produce rapid, sensitive, and specific signals [...].
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, China
| | - Qin Xu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yingju Liu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Deng X, Ma B, Gong Y, Li J, Zhou Y, Xu T, Hao P, Sun K, Lv Z, Yu X, Zhang M. Advances in Aptamer-Based Conjugate Recognition Techniques for the Detection of Small Molecules in Food. Foods 2024; 13:1749. [PMID: 38890976 PMCID: PMC11172347 DOI: 10.3390/foods13111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Small molecules are significant risk factors for causing food safety issues, posing serious threats to human health. Sensitive screening for hazards is beneficial for enhancing public security. However, traditional detection methods are unable to meet the requirements for the field screening of small molecules. Therefore, it is necessary to develop applicable methods with high levels of sensitivity and specificity to identify the small molecules. Aptamers are short-chain nucleic acids that can specifically bind to small molecules. By utilizing aptamers to enhance the performance of recognition technology, it is possible to achieve high selectivity and sensitivity levels when detecting small molecules. There have been several varieties of aptamer target recognition techniques developed to improve the ability to detect small molecules in recent years. This review focuses on the principles of detection platforms, classifies the conjugating methods between small molecules and aptamers, summarizes advancements in aptamer-based conjugate recognition techniques for the detection of small molecules in food, and seeks to provide emerging powerful tools in the field of point-of-care diagnostics.
Collapse
Affiliation(s)
- Xin Deng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Yunfei Gong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou 310018, China;
| | - Yuxin Zhou
- College of Life Science, China Jiliang University, Hangzhou 310018, China; (Y.Z.); (T.X.)
| | - Tianran Xu
- College of Life Science, China Jiliang University, Hangzhou 310018, China; (Y.Z.); (T.X.)
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Zhiyong Lv
- Dept Qual Managemet, Inner Mongolia Yili Grp. Co., Ltd., Hohhot 151100, China;
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| |
Collapse
|
4
|
Serebrennikova KV, Samokhvalov AV, Zherdev AV, Dzantiev BB. A Fluorescence Resonance Energy Transfer Aptasensor for Aflatoxin B1 Based on Ligand-Induced ssDNA Displacement. Molecules 2023; 28:7889. [PMID: 38067619 PMCID: PMC10707992 DOI: 10.3390/molecules28237889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, a fluorescence resonance energy transfer (FRET)-based aptasensor for the detection of aflatoxin B1 (AFB1) was designed using a carboxyfluorescein (FAM)-labeled aptamer and short complementary DNA (cDNA) labeled with low molecular quencher RTQ1. The sensing principle was based on the detection of restored FAM-aptamer fluorescence due to the ligand-induced displacement of cDNA in the presence of AFB1, leading to the destruction of the aptamer/cDNA duplex and preventing the convergence of FAM and RTQ1 at the effective FRET distance. Under optimal sensing conditions, a linear correlation was obtained between the fluorescence intensity of the FAM-aptamer and the AFB1 concentration in the range of 2.5-208.3 ng/mL with the detection limit of the assay equal to 0.2 ng/mL. The assay time was 30 min. The proposed FRET aptasensor has been successfully validated by analyzing white wine and corn flour samples, with recovery ranging from 76.7% to 91.9% and 84.0% to 86.5%, respectively. This work demonstrates the possibilities of labeled cDNA as an effective and easily accessible tool for sensitive AFB1 detection. The homogeneous FRET aptasensor is an appropriate choice for contaminant screening in complex matrices.
Collapse
Affiliation(s)
| | | | | | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia; (K.V.S.); (A.V.S.); (A.V.Z.)
| |
Collapse
|
5
|
Majer-Baranyi K, Adányi N, Székács A. Current Trends in Mycotoxin Detection with Various Types of Biosensors. Toxins (Basel) 2023; 15:645. [PMID: 37999508 PMCID: PMC10675009 DOI: 10.3390/toxins15110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
One of the most important tasks in food safety is to properly manage the investigation of mycotoxin contamination in agricultural products and foods made from them, as well as to prevent its occurrence. Monitoring requires a wide range of analytical methods, from expensive analytical procedures with high-tech instrumentation to significantly cheaper biosensor developments or even single-use assays suitable for on-site monitoring. This review provides a summary of the development directions over approximately a decade and a half, grouped according to the biologically sensitive components used. We provide an overview of the use of antibodies, molecularly imprinted polymers, and aptamers, as well as the diversity of biosensors and their applications within the food industry. We also mention the possibility of determining multiple toxins side by side, which would significantly reduce the time required for the analyses.
Collapse
Affiliation(s)
- Krisztina Majer-Baranyi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - Nóra Adányi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary;
| |
Collapse
|