1
|
Merlo G, Bachtel G, Sugden SG. Gut microbiota, nutrition, and mental health. Front Nutr 2024; 11:1337889. [PMID: 38406183 PMCID: PMC10884323 DOI: 10.3389/fnut.2024.1337889] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
The human brain remains one of the greatest challenges for modern medicine, yet it is one of the most integral and sometimes overlooked aspects of medicine. The human brain consists of roughly 100 billion neurons, 100 trillion neuronal connections and consumes about 20-25% of the body's energy. Emerging evidence highlights that insufficient or inadequate nutrition is linked to an increased risk of brain health, mental health, and psychological functioning compromise. A core component of this relationship includes the intricate dynamics of the brain-gut-microbiota (BGM) system, which is a progressively recognized factor in the sphere of mental/brain health. The bidirectional relationship between the brain, gut, and gut microbiota along the BGM system not only affects nutrient absorption and utilization, but also it exerts substantial influence on cognitive processes, mood regulation, neuroplasticity, and other indices of mental/brain health. Neuroplasticity is the brain's capacity for adaptation and neural regeneration in response to stimuli. Understanding neuroplasticity and considering interventions that enhance the remarkable ability of the brain to change through experience constitutes a burgeoning area of research that has substantial potential for improving well-being, resilience, and overall brain health through optimal nutrition and lifestyle interventions. The nexus of lifestyle interventions and both academic and clinical perspectives of nutritional neuroscience emerges as a potent tool to enhance patient outcomes, proactively mitigate mental/brain health challenges, and improve the management and treatment of existing mental/brain health conditions by championing health-promoting dietary patterns, rectifying nutritional deficiencies, and seamlessly integrating nutrition-centered strategies into clinical care.
Collapse
Affiliation(s)
- Gia Merlo
- Department of Psychiatry, New York University Grossman School of Medicine and Rory Meyers College of Nursing, New York, NY, United States
| | | | - Steven G. Sugden
- Department of Psychiatry, The University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
2
|
Grotheer M, Bloom D, Kruper J, Richie-Halford A, Zika S, Aguilera González VA, Yeatman JD, Grill-Spector K, Rokem A. Human white matter myelinates faster in utero than ex utero. Proc Natl Acad Sci U S A 2023; 120:e2303491120. [PMID: 37549280 PMCID: PMC10438384 DOI: 10.1073/pnas.2303491120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/27/2023] [Indexed: 08/09/2023] Open
Abstract
The formation of myelin, the fatty sheath that insulates nerve fibers, is critical for healthy brain function. A fundamental open question is what impact being born has on myelin growth. To address this, we evaluated a large (n = 300) cross-sectional sample of newborns from the Developing Human Connectome Project (dHCP). First, we developed software for the automated identification of 20 white matter bundles in individual newborns that is well suited for large samples. Next, we fit linear models that quantify how T1w/T2w (a myelin-sensitive imaging contrast) changes over time at each point along the bundles. We found faster growth of T1w/T2w along the lengths of all bundles before birth than right after birth. Further, in a separate longitudinal sample of preterm infants (N = 34), we found lower T1w/T2w than in full-term peers measured at the same age. By applying the linear models fit on the cross-section sample to the longitudinal sample of preterm infants, we find that their delay in T1w/T2w growth is well explained by the amount of time they spent developing in utero and ex utero. These results suggest that white matter myelinates faster in utero than ex utero. The reduced rate of myelin growth after birth, in turn, explains lower myelin content in individuals born preterm and could account for long-term cognitive, neurological, and developmental consequences of preterm birth. We hypothesize that closely matching the environment of infants born preterm to what they would have experienced in the womb may reduce delays in myelin growth and hence improve developmental outcomes.
Collapse
Affiliation(s)
- Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg35039, Germany
| | - David Bloom
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| | - John Kruper
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| | - Adam Richie-Halford
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| | - Stephanie Zika
- Department of Psychology, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg35039, Germany
| | - Vicente A. Aguilera González
- Department of Psychology, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg35039, Germany
| | - Jason D. Yeatman
- Department of Psychology, Stanford University, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
- Graduate School of Education, Stanford University, Stanford, CA94305
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA94305
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
| | - Ariel Rokem
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| |
Collapse
|
3
|
Núñez C, García-Alix A, Arca G, Agut T, Carreras N, Portella MJ, Stephan-Otto C. Breastfeeding duration is associated with larger cortical gray matter volumes in children from the ABCD study. J Child Psychol Psychiatry 2023. [PMID: 36946606 DOI: 10.1111/jcpp.13790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Despite the numerous studies in favor of breastfeeding for its benefits in cognition and mental health, the long-term effects of breastfeeding on brain structure are still largely unknown. Our main objective was to study the relationship between breastfeeding duration and cerebral gray matter volumes. We also explored the potential mediatory role of brain volumes on behavior. METHODS We analyzed 7,860 magnetic resonance images of children 9-11 years of age from the Adolescent Brain Cognitive Development (ABCD) dataset in order to study the relationship between breastfeeding duration and cerebral gray matter volumes. We also obtained several behavioral data (cognition, behavioral problems, prodromal psychotic experiences, prosociality, impulsivity) to explore the potential mediatory role of brain volumes on behavior. RESULTS In the 7,860 children analyzed (median age = 9 years and 11 months; 49.9% female), whole-brain voxel-based morphometry analyses revealed an association mainly between breastfeeding duration and larger bilateral volumes of the pars orbitalis and the lateral orbitofrontal cortex. In particular, the association with the left pars orbitalis and the left lateral orbitofrontal cortex proved to be very robust to the addition of potentially confounding covariates, random selection of siblings, and splitting the sample in two. The volume of the left pars orbitalis and the left lateral orbitofrontal cortex appeared to mediate the relationship between breastfeeding duration and the negative urgency dimension of the UPPS-P Impulsive Behavior Scale. Global gray matter volumes were also significant mediators for behavioral problems as measured with the Child Behavior Checklist. CONCLUSIONS Our findings suggest that breastfeeding is a relevant factor in the proper development of the brain, particularly for the pars orbitalis and lateral orbitofrontal cortex regions. This, in turn, may impact impulsive personality and mental health in early puberty.
Collapse
Affiliation(s)
- Christian Núñez
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alfredo García-Alix
- Neonatal Neurology, NeNe Foundation, Madrid, Spain
- Iberoamerican Society of Neonatology (SIBEN), NJ, United States
| | - Gemma Arca
- Neonatal Neurology, NeNe Foundation, Madrid, Spain
- Department of Neonatology, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Thais Agut
- Neonatal Neurology, NeNe Foundation, Madrid, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Department of Neonatology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Nuria Carreras
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Department of Neonatology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Maria J Portella
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Center on Mental Health (CIBERSAM), Madrid, Spain
| | - Christian Stephan-Otto
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Networking Research Center on Mental Health (CIBERSAM), Madrid, Spain
- Pediatric Computational Imaging Group (PeCIC), Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
4
|
Markovic A, Schoch SF, Huber R, Kohler M, Kurth S. The sleeping brain's connectivity and family environment: characterizing sleep EEG coherence in an infant cohort. Sci Rep 2023; 13:2055. [PMID: 36739318 PMCID: PMC9899221 DOI: 10.1038/s41598-023-29129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/31/2023] [Indexed: 02/06/2023] Open
Abstract
Brain connectivity closely reflects brain function and behavior. Sleep EEG coherence, a measure of brain's connectivity during sleep, undergoes pronounced changes across development under the influence of environmental factors. Yet, the determinants of the developing brain's sleep EEG coherence from the child's family environment remain unknown. After characterizing high-density sleep EEG coherence in 31 healthy 6-month-old infants by detecting strongly synchronized clusters through a data-driven approach, we examined the association of sleep EEG coherence from these clusters with factors from the infant's family environment. Clusters with greatest coherence were observed over the frontal lobe. Higher delta coherence over the left frontal cortex was found in infants sleeping in their parents' room, while infants sleeping in a room shared with their sibling(s) showed greater delta coherence over the central parts of the frontal cortex, suggesting a link between local brain connectivity and co-sleeping. Finally, lower occipital delta coherence was associated with maternal anxiety regarding their infant's sleep. These interesting links between sleep EEG coherence and family factors have the potential to serve in early health interventions as a new set of targets from the child's immediate environment.
Collapse
Affiliation(s)
- Andjela Markovic
- Department of Psychology, University of Fribourg, Fribourg, Switzerland. .,Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland. .,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Sarah F Schoch
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Reto Huber
- Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland.,Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Vaher K, Bogaert D, Richardson H, Boardman JP. Microbiome-gut-brain axis in brain development, cognition and behavior during infancy and early childhood. DEVELOPMENTAL REVIEW 2022. [DOI: 10.1016/j.dr.2022.101038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Nieto-Ruiz A, García-Santos JA, Verdejo-Román J, Diéguez E, Sepúlveda-Valbuena N, Herrmann F, Cerdó T, De-Castellar R, Jiménez J, Bermúdez MG, Pérez-García M, Miranda MT, López-Sabater MC, Catena A, Campoy C. Infant Formula Supplemented With Milk Fat Globule Membrane, Long-Chain Polyunsaturated Fatty Acids, and Synbiotics Is Associated With Neurocognitive Function and Brain Structure of Healthy Children Aged 6 Years: The COGNIS Study. Front Nutr 2022; 9:820224. [PMID: 35356726 PMCID: PMC8959863 DOI: 10.3389/fnut.2022.820224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/01/2022] [Indexed: 12/25/2022] Open
Abstract
Background Adequate nutrient intake during the first few months of life plays a critical role on brain structure and function development. Objectives To analyze the long-term effects of an experimental infant formula (EF) on neurocognitive function and brain structure in healthy children aged 6 years compared to those fed with a standard infant formula or breastfed. Methods The current study involved 108 healthy children aged 6 years and participating in the COGNIS Study. At 0-2 months, infants were randomized to receive up to 18 months of life a standard infant formula (SF) or EF enriched with milk fat globule membrane (MFGM), long-chain polyunsaturated fatty acids (LC-PUFAs) and synbiotics. Furthermore, a reference group of breastfed (BF) infants were also recruited. Children were assessed using neurocognitive tests and structural Magnetic Resonance Imaging (MRI) at 6 years old. Results Experimental infant formula (EF) children showed greater volumes in the left orbital cortex, higher vocabulary scores and IQ, and better performance in an attention task than BF children. EF children also presented greater volumes in parietal regions than SF kids. Additionally, greater cortical thickness in the insular, parietal, and temporal areas were found in children from the EF group than those fed with SF or BF groups. Further correlation analyses suggest that higher volumes and cortical thickness of different parietal and frontal regions are associated with better cognitive development in terms of language (verbal comprehension) and executive function (working memory). Finally, arachidonic acid (ARA), adrenic acid (AdA), docosahexaenoic acid (DHA) levels in cheek cell glycerophospholipids, ARA/DHA ratio, and protein, fatty acid, and mineral intake during the first 18 months of life seem to be associated with changes in the brain structures at 6 years old. Conclusions Supplemented infant formula with MFGM components, LC-PUFAs, and synbiotics seems to be associated to long-term effects on neurocognitive development and brain structure in children at 6 years old. Clinical Trial Registration https://www.clinicaltrials.gov/, identifier: NCT02094547.
Collapse
Affiliation(s)
- Ana Nieto-Ruiz
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - José A. García-Santos
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Juan Verdejo-Román
- Department of Personality, Assessment & Psychological Treatment, School of Psychology, University of Granada, Granada, Spain
| | - Estefanía Diéguez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Natalia Sepúlveda-Valbuena
- Nutrition and Biochemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Florian Herrmann
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Tomás Cerdó
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
- Carlos III Health Institute, Madrid, Spain
| | | | | | - Mercedes G. Bermúdez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Miguel Pérez-García
- Department of Personality, Assessment & Psychological Treatment, School of Psychology, University of Granada, Granada, Spain
- Mind, Brain and Behavior Research Centre—CIMCYC, University of Granada, Granada, Spain
| | - M. Teresa Miranda
- Department of Biostatistics, School of Medicine, University of Granada, Granada, Spain
| | - M. Carmen López-Sabater
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària de la UB (INSA-UB), Barcelona, Spain
- National Network of Research in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (Barcelona's Node), Madrid, Spain
| | - Andrés Catena
- Mind, Brain and Behavior Research Centre—CIMCYC, University of Granada, Granada, Spain
- Department of Experimental Psychology, School of Psychology, University of Granada, Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
- National Network of Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III (Granada's Node), Madrid, Spain
| |
Collapse
|
7
|
Solis-Urra P, Esteban-Cornejo I, Rodriguez-Ayllon M, Verdejo-Román J, Labayen I, Catena A, Ortega FB. Early life factors and white matter microstructure in children with overweight and obesity: The ActiveBrains project. Clin Nutr 2021; 41:40-48. [PMID: 34864454 DOI: 10.1016/j.clnu.2021.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND & AIMS Exposure to a suboptimal environment during the fetal and early infancy period's results in long-term consequences for brain morphology and function. We investigated the associations of early life factors such as anthropometric neonatal data (i.e., birth length, birth weight and birth head circumference) and breastfeeding practices (i.e., exclusive and any breastfeeding) with white matter (WM) microstructure, and ii) we tested whether WM tracts related to early life factors are associated with academic performance in children with overweight/obesity. METHODS 96 overweight/obese children (10.03 ± 1.16 years; 38.7% girls) were included from the ActiveBrains Project. WM microstructure indicators used were fractional anisotropy (FA) and mean diffusivity (MD), derived from Diffusion Tensor Imaging. Academic performance was evaluated with the Battery III Woodcock-Muñoz Tests of Achievement. Regression models were used to examine the associations of the early life factors with tract-specific FA and MD, as well as its association with academic performance. RESULTS Head circumference at birth was positively associated with FA of the inferior fronto-occipital fasciculus tract (0.441; p = 0.005), as well as negatively associated with MD of the cingulate gyrus part of cingulum (-0.470; p = 0.006), corticospinal (-0.457; p = 0.005) and superior thalamic radiation tract (-0.476; p = 0.001). Association of birth weight, birth length and exclusive breastfeeding with WM microstructure did not remain significant after false discovery rate correction. None tract related to birth head circumference was associated with academic performance (all p > 0.05). CONCLUSIONS Our results highlighted the importance of the perinatal growth in WM microstructure later in life, although its possible academic implications remain inconclusive.
Collapse
Affiliation(s)
- Patricio Solis-Urra
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain; Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile.
| | - Irene Esteban-Cornejo
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - María Rodriguez-Ayllon
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - Juan Verdejo-Román
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain; Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Madrid, Spain
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Pamplona, Spain
| | - Andrés Catena
- Department of Experimental Psychology, Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
| | - Francisco B Ortega
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
8
|
Dimitriadis SI. Latest Advances in Human Brain Dynamics. Brain Sci 2021; 11:brainsci11111476. [PMID: 34827475 PMCID: PMC8615593 DOI: 10.3390/brainsci11111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
It is paramount for every neuroscientist to understand the nature of emerging technologies and approaches in investigating functional brain dynamics [...].
Collapse
Affiliation(s)
- Stavros I. Dimitriadis
- Integrative Neuroimaging Lab, 55133 Thessaloniki, Greece; or
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF24 4HQ, UK
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff CF24 4HQ, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF24 4HQ, UK
- Neuroscience and Mental Health Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|