1
|
Barra A, Huerta-Gutierrez R, Annen J, Martens G, Laureys S, Llorens R, Kurth T, Thibaut A. Characterization of responders to transcranial direct current stimulation in disorders of consciousness: A retrospective study of 8 clinical trials. Neurotherapeutics 2025:e00587. [PMID: 40253244 DOI: 10.1016/j.neurot.2025.e00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025] Open
Abstract
The treatment for patients with disorders of consciousness challenges researchers and clinicians. The stimulation of the left dorsolateral prefrontal cortex with transcranial direct current stimulation (tDCS) may enhance behavioral responsiveness of a subset of patients in a minimally conscious state, while having limited effects in unresponsive patients. However, heterogeneity in responses raises questions about the effectiveness of tDCS. Our objective was to explore the characteristics of responders to tDCS based on previously published RCTs and investigate the heterogeneity of treatment effect to better direct future tDCS studies towards patient profiles that appear to be more responsive to the treatment. We explored clinical and demographical differences between responders (i.e., recovery of a new sign of consciousness after active stimulation) and non-responder and the predictors of treatment response with a LASSO logistic regression. We included 131 patients (44 women, 61 traumatic brain injury, 90 minimally conscious, mean age 46.13 years [SD = 16], median time since injury 12.84 months [IQR: 5.25-35.10]) of which 33 responded to tDCS. While 32 % of minimally conscious patients responded to tDCS (95%CI 0.24, 0.43), 10 % (95%CI 0.04, 0.25) of those unresponsive responded. The regression model, using diagnosis at baseline, Coma Recovery Scale-Revised Index at baseline, age, sex and time since injury correctly discriminated between tDCS responders and non-responders (area under the curve of 0.77). Our findings suggest that patients in minimally conscious state, with a better cognitive profile and longer TSI respond better to tDCS, making them better candidates for the treatment.
Collapse
Affiliation(s)
- Alice Barra
- NeuroRecovery Lab, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium; IRENEA - Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, València, Spain.
| | | | - Jitka Annen
- Department of Data Analysis, University of Ghent, B9000, Ghent, Belgium; Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
| | - Geraldine Martens
- NeuroRecovery Lab, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium; NeuroRehab & Consciousness Clinic, Neurology Department, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, U Laval, Canada; Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
| | - Roberto Llorens
- Neurorehabilitation and Brain Research Group, Institute for Human-Centered Technology Research, Universitat Politècnica de València, València, Spain
| | - Tobias Kurth
- Institute of Public Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Aurore Thibaut
- NeuroRecovery Lab, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium; NeuroRehab & Consciousness Clinic, Neurology Department, University Hospital of Liège, Liège, Belgium.
| |
Collapse
|
2
|
Dutta RR, Abdolmanafi S, Rabizadeh A, Baghbaninogourani R, Mansooridara S, Lopez A, Akbari Y, Paff M. Neuromodulation and Disorders of Consciousness: Systematic Review and Pathophysiology. Neuromodulation 2025; 28:380-400. [PMID: 39425733 DOI: 10.1016/j.neurom.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION Disorders of consciousness (DoC) represent a range of clinical states, affect hundreds of thousands of people in the United States, and have relatively poor outcomes. With few effective pharmacotherapies, neuromodulation has been investigated as an alternative for treating DoC. To summarize the available evidence, a systematic review of studies using various forms of neuromodulation to treat DoC was conducted. MATERIALS AND METHODS Adhering to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for systematic literature review, the PubMed, Scopus, and Web of Science databases were queried to identify articles published between 1990 and 2023 in which neuromodulation was used, usually in conjunction with pharmacologic intervention, to treat or reverse DoC in humans and animals. Records were excluded if DoC (eg, unresponsive wakefulness syndrome, minimally conscious state, etc) were not the primary clinical target. RESULTS A total of 69 studies (58 human, 11 animal) met the inclusion criteria for the systematic review, resulting in over 1000 patients and 150 animals studied in total. Most human studies investigated deep brain stimulation (n = 15), usually of the central thalamus, and transcranial magnetic stimulation (n = 18). Transcranial direct-current stimulation (n = 15) and spinal cord stimulation (n = 6) of the dorsal column also were represented. A few studies investigated low-intensity focused ultrasound (n = 2) and median nerve stimulation (n = 2). Animal studies included primate and murine models, with nine studies involving deep brain stimulation, one using ultrasound, and one using transcranial magnetic stimulation. DISCUSSION While clinical outcomes were mixed and possibly confounded by natural recovery or pharmacologic interventions, deep brain stimulation appeared to facilitate greater improvements in DoC than other modalities. However, repetitive transcranial magnetic stimulation also demonstrated clinical potential with much lower invasiveness.
Collapse
Affiliation(s)
- Rajeev R Dutta
- School of Medicine, University of California Irvine, Irvine, CA, USA.
| | | | | | | | | | - Alexander Lopez
- Department of Neurological Surgery, University of California Irvine, Orange, CA, USA
| | - Yama Akbari
- Department of Neurology, University of California Irvine, Orange, CA, USA; Department of Neurological Surgery, University of California Irvine, Orange, CA, USA; Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA; Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, CA, USA
| | - Michelle Paff
- Department of Neurological Surgery, University of California Irvine, Orange, CA, USA
| |
Collapse
|
3
|
Wang J, Shou F, Yu Q, Lu X, Wan Y, Huang W, Hu N, Jin Z, Shan X, Laureys S, Di H. Homeostatic plasticity in patients with disorders of consciousness detected by combined stimulation: a study protocol. Front Neurol 2025; 16:1503946. [PMID: 40134693 PMCID: PMC11932910 DOI: 10.3389/fneur.2025.1503946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Background Non-invasive neuromodulation (NIN) techniques have been widely utilized in treating patients with disorders of consciousness (DoC), but their therapeutic effects have been inconsistent. Given the reliance of NIN techniques on synaptic plasticity, and the potential impairment of synaptic plasticity (particularly homeostatic plasticity) resulting from severe brain injury, it is possible that the variation in therapeutic effects is due to alterations in homeostatic plasticity in patients with DoC. Therefore, this study will use preconditioning TMS to examine the retention of homeostatic plasticity in patients with DoC. Methods We will enroll 30 patients with DoC and 15 healthy controls and randomize the order of their sessions. According to the priming protocol, the trial was divided into three different sessions with a 2-day break between each session. The session will involve a 10-min duration of transcranial direct current stimulation (tDCS) priming, followed by a 192-s period of transcranial magnetic stimulation (TMS) test. Transcranial stimulation will be specifically targeted toward the left primary motor cortex. Measurements of motor evoked potentials will be taken at several time points: baseline, after tDCS, and after TMS. Coma Recovery Scale-Revised will be conducted both baseline and after TMS. Discussion Studying whether homeostatic plasticity is preserved in patients with DoC is beneficial for gaining a better understanding of their brain condition. If the homeostatic plasticity of patients with DoC is impaired, then NIN, which are based on altering synaptic plasticity in healthy individuals to achieve stimulating effects, may not be directly translatable to the therapeutic interventions for patients with DoC. Instead, the homeostatic plasticity of patients should be restored before implementing the intervention.
Collapse
Affiliation(s)
- Jingwen Wang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Fangfang Shou
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Qiuyi Yu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xulan Lu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yuwen Wan
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
| | - Wangshan Huang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Nantu Hu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Zhenyi Jin
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xinru Shan
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Steven Laureys
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
- Canada Excellence Research Chair in Neuroplasticity, CERVO Brain Centre, Laval University, Quebec, QC, Canada
| | - Haibo Di
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
4
|
Toker D, Chiang JN, Vespa PM, Schnakers C, Monti MM. The Dipeptidyl Peptidase-4 Inhibitor Saxagliptin as a Candidate Treatment for Disorders of Consciousness: A Deep Learning and Retrospective Clinical Analysis. Neurocrit Care 2025:10.1007/s12028-025-02217-0. [PMID: 39904872 DOI: 10.1007/s12028-025-02217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Despite advancements in the neuroscience of consciousness, no new medications for disorders of consciousness (DOC) have been discovered in more than a decade. Repurposing existing US Food and Drug Administration (FDA)-approved drugs for DOC is crucial for improving clinical management and patient outcomes. METHODS To identify potential new treatments among existing FDA-approved drugs, we used a deep learning-based drug screening model to predict the efficacy of drugs as awakening agents based on their three-dimensional molecular structure. A retrospective cohort study from March 2012 to October 2024 tested the model's predictions, focusing on changes in Glasgow Coma Scale (GCS) scores in 4047 patients in a coma from traumatic, vascular, or anoxic brain injury. RESULTS Our deep learning drug screens identified saxagliptin, a dipeptidyl peptidase-4 inhibitor, as a promising awakening drug for both acute and prolonged DOC. The retrospective clinical analysis showed that saxagliptin was associated with the highest recovery rate from acute coma among diabetes medications. After matching patients by age, sex, initial GCS score, coma etiology, and glycemic status, brain-injured patients with diabetes on incretin-based therapies, including dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 analogues, recovered from coma at significantly higher rates compared to both brain-injured patients with diabetes on non-incretin-based diabetes medications (95% confidence interval of 1.8-14.1% higher recovery rate, P = 0.0331) and brain-injured patients without diabetes (95% confidence interval of 2-21% higher recovery rate, P = 0.0272). Post matching, brain-injured patients with diabetes on incretin-based therapies also recovered at a significantly higher rate than patients treated with amantadine (95% confidence interval for the difference 2.4-25.1.0%, P = 0.0364). A review of preclinical studies identified several pathways through which saxagliptin and other incretin-based medications may aid awakening from both acute and chronic DOC: restoring monoaminergic and GABAergic neurotransmission, reducing brain inflammation and oxidative damage, clearing hyperphosphorylated tau and amyloid-β, normalizing thalamocortical glucose metabolism, increasing neural plasticity, and mitigating excitotoxic brain damage. CONCLUSIONS Our findings suggest incretin-based medications in general, and saxagliptin in particular, as potential novel therapeutic agents for DOC. Further prospective clinical trials are needed to confirm their efficacy and safety in DOC.
Collapse
Affiliation(s)
- Daniel Toker
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey N Chiang
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul M Vespa
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Martin M Monti
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Vitello MM, Laureys S, Thibaut A, Gosseries O. Non-pharmacologic interventions in disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:197-216. [PMID: 39986722 DOI: 10.1016/b978-0-443-13408-1.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Severely brain-injured patients with disorders of consciousness pose significant challenges in terms of management, particularly due to the limited therapeutic options available. Despite the potential for some patients to benefit from interventions even years after the injury, clinicians often lack clear and reliable treatment strategies to promote patient recovery. In response to this clinical need, the field of neuromodulation has emerged as a promising alternative to traditional pharmacologic therapies. Both invasive and noninvasive brain stimulation techniques offer diverse possibilities for restoring physiologic neural activity and enhancing functional network integrity in these complex neurological disorders. This chapter offers a comprehensive overview of current neuromodulation techniques, exploring their potential applications and analyzing the existing evidence for their efficacy. Specifically, we describe transcranial electrical stimulation, transcranial magnetic stimulation, deep brain stimulation, low-intensity focused ultrasound, vagal nerve stimulation (including transcutaneous methods), spinal cord stimulation, and median nerve stimulation. While certain approaches show promise for patients with disorders of consciousness, there remains a pressing need for large-scale interventional clinical trials that will play an essential role for elucidating the underlying mechanisms of recovery and for refining stimulation parameters. This, together with the development of tailored individual interventions will move the field forward and optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Marie M Vitello
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| |
Collapse
|
6
|
De Koninck BP, Brazeau D, Deshaies AA, Briand MM, Maschke C, Williams V, Arbour C, Williamson D, Duclos C, Bernard F, Blain-Moraes S, De Beaumont L. Modulation of brain activity in brain-injured patients with a disorder of consciousness in intensive care with repeated 10-Hz transcranial alternating current stimulation (tACS): a randomised controlled trial protocol. BMJ Open 2024; 14:e078281. [PMID: 38991682 PMCID: PMC11243138 DOI: 10.1136/bmjopen-2023-078281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION Therapeutic interventions for disorders of consciousness lack consistency; evidence supports non-invasive brain stimulation, but few studies assess neuromodulation in acute-to-subacute brain-injured patients. This study aims to validate the feasibility and assess the effect of a multi-session transcranial alternating current stimulation (tACS) intervention in subacute brain-injured patients on recovery of consciousness, related brain oscillations and brain network dynamics. METHODS AND ANALYSES The study is comprised of two phases: a validation phase (n=12) and a randomised controlled trial (n=138). Both phases will be conducted in medically stable brain-injured adult patients (traumatic brain injury and hypoxic-ischaemic encephalopathy), with a Glasgow Coma Scale score ≤12 after continuous sedation withdrawal. Recruitment will occur at the intensive care unit of a Level 1 Trauma Centre in Montreal, Quebec, Canada. The intervention includes a 20 min 10 Hz tACS at 1 mA intensity or a sham session over parieto-occipital cortical sites, repeated over five consecutive days. The current's frequency targets alpha brain oscillations (8-13 Hz), known to be associated with consciousness. Resting-state electroencephalogram (EEG) will be recorded four times daily for five consecutive days: pre and post-intervention, at 60 and 120 min post-tACS. Two additional recordings will be included: 24 hours and 1-week post-protocol. Multimodal measures (blood samples, pupillometry, behavioural consciousness assessments (Coma Recovery Scale-revised), actigraphy measures) will be acquired from baseline up to 1 week after the stimulation. EEG signal analysis will focus on the alpha bandwidth (8-13 Hz) using spectral and functional network analyses. Phone assessments at 3, 6 and 12 months post-tACS, will measure long-term functional recovery, quality of life and caregivers' burden. ETHICS AND DISSEMINATION Ethical approval for this study has been granted by the Research Ethics Board of the CIUSSS du Nord-de-l'Île-de-Montréal (Project ID 2021-2279). The findings of this two-phase study will be submitted for publication in a peer-reviewed academic journal and submitted for presentation at conferences. The trial's results will be published on a public trial registry database (ClinicalTrials.gov). TRIAL REGISTRATION NUMBER NCT05833568.
Collapse
Affiliation(s)
- Béatrice P De Koninck
- Psychology, University of Montreal, Montreal, Quebec, Canada
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
| | - Daphnee Brazeau
- Psychology, University of Montreal, Montreal, Quebec, Canada
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
| | | | - Marie-Michele Briand
- CIUSSS du Nord-de-l'Ile-de-Montreal, Montreal, Quebec, Canada
- IRDPQ, Montreal, Quebec, Canada
| | - Charlotte Maschke
- McGill University, Montreal, Quebec, Canada
- Montreal General Hospital, Montreal, Quebec, Canada
| | - Virginie Williams
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
| | - Caroline Arbour
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
- University of Montreal, Montreal, Quebec, Canada
| | | | - Catherine Duclos
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
- Anesthesiology and Pain Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Francis Bernard
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
- Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Stefanie Blain-Moraes
- Montreal General Hospital, Montreal, Quebec, Canada
- Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
- Surgery, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Wan X, Zhang Y, Li Y, Song W. An update on noninvasive neuromodulation in the treatment of patients with prolonged disorders of consciousness. CNS Neurosci Ther 2024; 30:e14757. [PMID: 38747078 PMCID: PMC11094579 DOI: 10.1111/cns.14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND With the improvement of emergency techniques, the survival rate of patients with severe brain injury has increased. However, this has also led to an annual increase in the number of patients with prolonged disorders of consciousness (pDoC). Hence, recovery of consciousness is an important part of treatment. With advancing techniques, noninvasive neuromodulation seems a promising intervention. The objective of this review was to summarize the latest techniques and provide the basis for protocols of noninvasive neuromodulations in pDoC. METHODS This review summarized the advances in noninvasive neuromodulation in the treatment of pDoC in the last 5 years. RESULTS Variable techniques of neuromodulation are used in pDoC. Transcranial ultrasonic stimulation (TUS) and transcutaneous auricular vagus nerve stimulation (taVNS) are very new techniques, while transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are still the hotspots in pDoC. Median nerve electrical stimulation (MNS) has received little attention in the last 5 years. CONCLUSIONS Noninvasive neuromodulation is a valuable and promising technique to treat pDoC. Further studies are needed to determine a unified stimulus protocol to achieve optimal effects as well as safety.
Collapse
Affiliation(s)
- Xiaoping Wan
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Ye Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Yanhua Li
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Kumar S, Agarwal N, Sanal TS. Effectiveness of coma arousal therapy on patients with disorders of consciousness - A systematic review and meta-analysis. Brain Circ 2024; 10:119-133. [PMID: 39036297 PMCID: PMC11259325 DOI: 10.4103/bc.bc_112_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Disorders of consciousness (DOC) incorporate stages of awareness and arousal. Through coma arousal therapy sensory deprivation experienced by patients with DOC can be mitigated. Nevertheless, consensus concerning its effectiveness on these patients is still fractional. PURPOSE This review aims to investigate the effectiveness of coma arousal therapies on patients with DOC. METHODS A meta-analysis was performed by searching electronic databases using search terms, the studies investigating the effect of coma arousal therapy in patients with DOC using the Coma Recovery Scale-Revised and Glasgow Coma Scale as outcome measures were included. The risk of bias was assessed, using Cochrane and Joanna Briggs Institute critical appraisal tools. Further, analysis was conducted for the included studies. RESULTS Out of 260 studies, 45 trials were reviewed and assessed for bias, with 31 studies included for analysis. The analysis demonstrates a significant difference in pre- and post - sensory stimulation, vagus nerve stimulation, transcranial magnetic stimulation, and transcranial direct current stimulation. Sensory stimulation showed the greatest mean difference of -4.96; 95% CI = -5.76 to - 4.15. The patients who underwent intervention after 3 months of illness showed significant improvement. CONCLUSION The result shows that sensory stimulation, transcranial magnetic stimulation, and transcranial direct stimulation can improve behavioral outcomes of patients with DOC, wherein sensory stimulation is found to be more effective.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Department of Neurophysiotherapy, KAHER Institute of Physiotherapy, Belagavi, Karnataka, India
| | - Nupur Agarwal
- Department of Neurophysiotherapy, KAHER Institute of Physiotherapy, Belagavi, Karnataka, India
| | | |
Collapse
|
9
|
Li Y, Gao J, Yang Y, Zhuang Y, Kang Q, Li X, Tian M, Lv H, He J. Temporal and spatial variability of dynamic microstate brain network in disorders of consciousness. CNS Neurosci Ther 2024; 30:e14641. [PMID: 38385681 PMCID: PMC10883110 DOI: 10.1111/cns.14641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Accurately diagnosing patients with the vegetative state (VS) and the minimally conscious state (MCS) reached a misdiagnosis of approximately 40%. METHODS A method combined microstate and dynamic functional connectivity (dFC) to study the spatiotemporal variability of the brain in disorders of consciousness (DOC) patients was proposed. Resting-state EEG data were obtained from 16 patients with MCS and 16 patients with VS. Mutual information (MI) was used to assess the EEG connectivity in each microstate. MI-based features with statistical differences were selected as the total feature subset (TFS), then the TFS was utilized to feature selection and fed into the classifier, obtaining the optimal feature subsets (OFS) in each microstate. Subsequently, an OFS-based MI functional connectivity network (MIFCN) was constructed in the cortex. RESULTS The group-average MI connectivity matrix focused on all channels revealed that all five microstates exhibited stronger information interaction in the MCS when comparing with the VS. While OFS-based MIFCN, which only focused on a few channels, revealed greater MI flow in VS patients than in MCS patients under microstates A, B, C, and E, except for microstate D. Additionally, the average classification accuracy of OFS in the five microstates was 96.2%. CONCLUSION Constructing features based on microstates to distinguish between two categories of DOC patients had effectiveness.
Collapse
Affiliation(s)
- Yaqian Li
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical EngineeringSouth‐Central Minzu UniversityWuhanChina
| | - Junfeng Gao
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical EngineeringSouth‐Central Minzu UniversityWuhanChina
| | - Ying Yang
- College of Foreign LanguagesWuhan University of TechnologyWuhanChina
| | - Yvtong Zhuang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qianruo Kang
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical EngineeringSouth‐Central Minzu UniversityWuhanChina
| | - Xiang Li
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical EngineeringSouth‐Central Minzu UniversityWuhanChina
| | - Min Tian
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical EngineeringSouth‐Central Minzu UniversityWuhanChina
| | - Haoan Lv
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical EngineeringSouth‐Central Minzu UniversityWuhanChina
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
10
|
Wan X, Wang Y, Zhang Y, Song W. A Comparison of the Neuromodulation Effects of Frontal and Parietal Transcranial Direct Current Stimulation on Disorders of Consciousness. Brain Sci 2023; 13:1295. [PMID: 37759896 PMCID: PMC10527338 DOI: 10.3390/brainsci13091295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Frontal transcranial direct current stimulation (tDCS) and parietal tDCS are effective for treating disorders of consciousness (DoC); however, the relative efficacies of these techniques have yet to be determined. This paper compares the neuromodulation effects of frontal and parietal tDCS on DoC. Twenty patients with DoC were recruited and randomly assigned to two groups. One group received single-session frontal tDCS and single-session sham tDCS. The other group received single-session parietal tDCS and single-session sham tDCS. Before and after every tDCS session, we recorded coma recovery scale-revised (CRS-R) values and an electroencephalogram. CRS-R was also used to evaluate the state of consciousness at 9-12-month follow-up. Both single-session frontal and parietal tDCS caused significant changes in the genuine permutation cross-mutual information (G_PCMI) of local frontal and across brain regions (p < 0.05). Furthermore, the changes in G_PCMI values were significantly correlated to the CRS-R scores at 9-12-month follow-up after frontal and parietal tDCS (p < 0.05). The changes in G_PCMI and CRS-R scores were also correlated (p < 0.05). Both frontal tDCS and parietal tDCS exert neuromodulatory effects in DoC and induce significant changes in electrophysiology. G_PCMI can be used to evaluate the neuromodulation effects of tDCS.
Collapse
Affiliation(s)
- Xiaoping Wan
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, No. 45 Chang Chun Street, Beijing 100053, China; (X.W.); (Y.Z.)
| | - Yong Wang
- Zhuhai UM Science & Technology Research Institute, No. 1889 Huandao East Road, Zhuhai 519031, China;
| | - Ye Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, No. 45 Chang Chun Street, Beijing 100053, China; (X.W.); (Y.Z.)
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, No. 45 Chang Chun Street, Beijing 100053, China; (X.W.); (Y.Z.)
| |
Collapse
|
11
|
Vatrano M, Nemirovsky IE, Tonin P, Riganello F. Assessing Consciousness through Neurofeedback and Neuromodulation: Possibilities and Challenges. Life (Basel) 2023; 13:1675. [PMID: 37629532 PMCID: PMC10455583 DOI: 10.3390/life13081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Neurofeedback is a non-invasive therapeutic approach that has gained traction in recent years, showing promising results for various neurological and psychiatric conditions. It involves real-time monitoring of brain activity, allowing individuals to gain control over their own brainwaves and improve cognitive performance or alleviate symptoms. The use of electroencephalography (EEG), such as brain-computer interface (BCI), transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS), has been instrumental in developing neurofeedback techniques. However, the application of these tools in patients with disorders of consciousness (DoC) presents unique challenges. In this narrative review, we explore the use of neurofeedback in treating patients with DoC. More specifically, we discuss the advantages and challenges of using tools such as EEG neurofeedback, tDCS, TMS, and BCI for these conditions. Ultimately, we hope to provide the neuroscientific community with a comprehensive overview of neurofeedback and emphasize its potential therapeutic applications in severe cases of impaired consciousness levels.
Collapse
Affiliation(s)
- Martina Vatrano
- S. Anna Institute, Research in Advanced Neurorehabilitation, Via Siris, 11, 88900 Crotone, Italy;
| | - Idan Efim Nemirovsky
- Department of Physics and Astronomy, Brain and Mind Institute, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Paolo Tonin
- S. Anna Institute, Research in Advanced Neurorehabilitation, Via Siris, 11, 88900 Crotone, Italy;
| | - Francesco Riganello
- S. Anna Institute, Research in Advanced Neurorehabilitation, Via Siris, 11, 88900 Crotone, Italy;
| |
Collapse
|
12
|
Plosnić G, Raguž M, Deletis V, Chudy D. Dysfunctional connectivity as a neurophysiologic mechanism of disorders of consciousness: a systematic review. Front Neurosci 2023; 17:1166187. [PMID: 37539385 PMCID: PMC10394244 DOI: 10.3389/fnins.2023.1166187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Disorders of consciousness (DOC) has been an object of numbers of research regarding the diagnosis, treatment and prognosis in last few decades. We believe that the DOC could be considered as a disconnection syndrome, although the exact mechanisms are not entirely understood. Moreover, different conceptual frameworks highly influence results interpretation. The aim of this systematic review is to assess the current knowledge regarding neurophysiological mechanisms of DOC and to establish possible influence on future clinical implications and usage. Methods We have conducted a systematic review according to PRISMA guidelines through PubMed and Cochrane databases, with studies being selected for inclusion via a set inclusion and exclusion criteria. Results Eighty-nine studies were included in this systematic review according to the selected criteria. This includes case studies, randomized controlled trials, controlled clinical trials, and observational studies with no control arms. The total number of DOC patients encompassed in the studies cited in this review is 1,533. Conclusion Connectomics and network neuroscience offer quantitative frameworks for analysing dynamic brain connectivity. Functional MRI studies show evidence of abnormal connectivity patterns and whole-brain topological reorganization, primarily affecting sensory-related resting state networks (RSNs), confirmed by EEG studies. As previously described, DOC patients are identified by diminished global information processing, i.e., network integration and increased local information processing, i.e., network segregation. Further studies using effective connectivity measurement tools instead of functional connectivity as well as the standardization of the study process are needed.
Collapse
Affiliation(s)
- Gabriela Plosnić
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Vedran Deletis
- Albert Einstein College of Medicine, New York, NY, United States
| | - Darko Chudy
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
13
|
Dong L, Li H, Dang H, Zhang X, Yue S, Zhang H. Efficacy of non-invasive brain stimulation for disorders of consciousness: a systematic review and meta-analysis. Front Neurosci 2023; 17:1219043. [PMID: 37496734 PMCID: PMC10366382 DOI: 10.3389/fnins.2023.1219043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Objective The aim of this study is to evaluate the efficacy of non-invasive brain stimulation (NIBS) in patients with disorders of consciousness (DoC) and compare differences in efficacy between different stimulation modalities. Methods We searched the PubMed, Cochrane Library, Web of Science, and EMBASE databases for all studies published in English from inception to April 2023. Literature screening and quality assessment were performed independently by two investigators. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were used to evaluate the therapeutic effects of NIBS. The Cochrane Q test and I2 statistic were used to evaluate heterogeneity between studies. Subgroup analysis was performed to identify the source of heterogeneity, and differences in efficacy between different stimulation modalities were compared by Bayesian analysis. Results A total of 17 studies with 377 DoC patients were included. NIBS significantly improved the state of consciousness in DoC patients when compared to sham stimulation (WMD: 0.81; 95% CI: 0.46, 1.17; I2 = 78.2%, p = 0.000). When divided into subgroups according to stimulation modalities, the heterogeneity of each subgroup was significantly lower than before (I2: 0.00-30.4%, p >0.05); different stimulation modalities may be the main source of such heterogeneity. Bayesian analysis, based on different stimulation modalities, indicated that a patient's state of consciousness improved most significantly after repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC). Diagnosis-based subgroup analysis showed that NIBS significantly improved the state of consciousness in patients with a minimal consciousness state (WMD: 1.11; 95% CI: 0.37, 1.86) but not in patients with unresponsive wakefulness syndrome or a vegetative state (WMD: 0.31; 95% CI: -0.09, 0.71). Subgroup analysis based on observation time showed that single treatment did not improve the state of consciousness in DoC patients (WMD: 0.28; 95% CI: -0.27, 0.82) while multiple treatments could (WMD: 1.05; 95% CI: 0.49, 1.61). Furthermore, NIBS had long-term effects on DoC patients (WMD: 0.79; 95% CI: 0.08-1.49). Conclusion Available evidence suggests that the use of NIBS on patients with DoC is more effective than sham stimulation, and that rTMS of the left DLPFC may be the most prominent stimulation modality.
Collapse
Affiliation(s)
- Linghui Dong
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hui Li
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hui Dang
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | | | - Shouwei Yue
- Shandong University, Jinan, Shandong, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hao Zhang
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
14
|
Yoon MJ, Oh HM, Kim T, Choi SJ, Choi WH, Jung HS, Lim SC, Yoo YJ, Park HJ, Hong BY, Park GY, Kim D, Kim TW, Im S, Lim SH. Safety and therapeutic effects of personalized transcranial direct current stimulation based on electrical field simulation for prolonged disorders of consciousness: study protocol for a multi-center, double-blind, randomized controlled trial. Front Neurol 2023; 14:1184998. [PMID: 37456633 PMCID: PMC10344463 DOI: 10.3389/fneur.2023.1184998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Background Disorders of consciousness (DOC) resulting from acquired brain injury (ABI) increase the mortality rate of patients, complicate rehabilitation, and increase the physical and economic burden that DOC imposes on patients and their families. Thus, treatment to promote early awakening from DOC is vital. Transcranial direct current stimulation (tDCS) has shown great potential for promoting neuro-electrochemical activity. However, previous tDCS studies did not consider structural damage or head and brain lesions, so the applicability of the results to all DOC patients was limited. In this study, to establish a patient-specific tDCS treatment plan considering the brain lesions of and damage sustained by DOC patients, we considered the electric field calculated by a the "finite electric" three-dimensional brain model based on magnetic resonance images. This protocol was developed to aid tDCS treatment of actual patients, and to verify its safety and effectiveness. Methods/design Twenty-four patients with DOC after ABI will be enrolled in this cross-over trial. All participants will receive typical rehabilitation combined with sham tDCS and typical rehabilitation plus personalized tDCS (P-tDCS). Each interventional period will last 2 weeks (30 min/day, 5 days/week). The primary outcome [score on the Korean version of the Coma Recovery Scale-Revised (K-CRS-R)] will be assessed at baseline and the end of the first day of the intervention. Secondary outcomes (K-CRS-R at 1 week and 2 weeks after experimental session and quantitative EEG changes quantitative electroencephalography changes) will be measured at baseline and the end of week 4. Adverse events will be recorded during each treatment session. Discussion For patients with neurological disorders, tDCS has served as a painless, non-invasive, easily applied, and effective therapy for several decades, and there is some evidence that it can improve the level of consciousness of patients with DOC. However, variability in the effects on consciousness among subjects have been reported and personalized strategies are lacking. This protocol is for a randomized controlled trial designed to validate the effectiveness and safety of P-tDCS combined with typical rehabilitation for DOC. Clinical trial registration https://cris.nih.go.kr, identifier KCT0007157.
Collapse
Affiliation(s)
- Mi-Jeong Yoon
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Mi Oh
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Gyeongki-do, Republic of Korea
| | - TaeYeong Kim
- Research Institute, NEUROPHET Inc, Seoul, Republic of Korea
| | - Soo-Jin Choi
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo Hee Choi
- Division of Nuclear Medicine, Department of Radiology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Soo Jung
- Department of Anesthesiology and Pain Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Chul Lim
- Department of Neurology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun Jie Yoo
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Jung Park
- Department of Rehabilitation Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bo Young Hong
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Geun-Young Park
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc, Seoul, Republic of Korea
| | - Tae-Woo Kim
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Gyeongki-do, Republic of Korea
| | - Sun Im
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
15
|
Xu Z, Zheng R, Xia T, Qi Z, Zang D, Wang Z, Wu X. Behavioral effects in disorders of consciousness following transcranial direct current stimulation: A systematic review and individual patient data meta-analysis of randomized clinical trials. Front Neurol 2022; 13:940361. [PMID: 36247787 PMCID: PMC9558708 DOI: 10.3389/fneur.2022.940361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background In patients with Disorders of Consciousness (DoC), recent evidence suggests that transcranial direct current stimulation (tDCS) can be a promising intervention for them. However, there has been little agreement on the treatment effect and the optimal treatment strategy for the tDCS in patients with DoC. Objective In this meta-analysis of individual patient data (IPD), we assess whether tDCS could improve DoC patients' behavioral performance. We also determine whether these treatment effects could be modified by patient characteristics or tDCS protocol. Methods We searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials until 7 April 2022 using the terms “persistent vegetative state,” “minimally conscious state,” “disorder of consciousness,” or “unresponsive wakefulness syndrome,” and “transcranial direct current stimulation” to identify Randomized Controlled Trials (RCTs) in English-language publications. Studies were eligible for inclusion if they reported pre- and post-tDCS Coma Recovery Scale-Revised (CRS-R) scores. From the included studies, patients who had incomplete data were excluded. We performed a meta-analysis to assess the treatment effect of the tDCS compared with sham control. Additionally, various subgroup analyses were performed to determine whether specific patient characteristics could modify the treatment effect and to find out the optimal tDCS protocol. Results We identified 145 papers, but eventually eight trials (including 181 patients) were included in the analysis, and one individual data were excluded because of incomplete data. Our meta-analysis demonstrated a mean difference change in the CRS-R score of 0.89 (95% CI, 0.17–1.61) between tDCS and sham-control, favoring tDCS. The subgroup analysis showed that patients who were male or with a minimally conscious state (MCS) diagnosis were associated with a greater improvement in CRS-R score. We also found that patients who underwent five or more sessions of tDCS protocol had a better treatment effect than just one session. Conclusion The result shows that tDCS can improve the behavioral performance of DoC patients. The heterogeneity of the treatment effect existed within the patients' baseline conditions and the stimulation protocol. More explorative studies on the optimal tDCS protocol and the most beneficial patient group based on the mechanism of tDCS are required in the future. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42022331241.
Collapse
Affiliation(s)
- Zeyu Xu
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Ruizhe Zheng
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Tiantong Xia
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Zengxin Qi
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Di Zang
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhe Wang
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Xuehai Wu
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- *Correspondence: Xuehai Wu
| |
Collapse
|
16
|
Liu S, Gao Q, Guan M, Chen Y, Cheng S, Yang L, Meng W, Lu C, Li B. Effectiveness of transcranial direct current stimulation over dorsolateral prefrontal cortex in patients with prolonged disorders of consciousness: A systematic review and meta-analysis. Front Neurol 2022; 13:998953. [PMID: 36226076 PMCID: PMC9549167 DOI: 10.3389/fneur.2022.998953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) has been widely studied for treatment of patients with prolonged disorders of consciousness (PDOC). The dorsolateral prefrontal cortex (DLPFC) is a hot target for intervention, but some controversies remain. Purpose This review aimed to systematically investigate the therapeutic effects of DLPFC-anodal-tDCS for patients with PDOC through a meta-analysis approach. Data sources Searches for relevant articles available in English were conducted using EMBASE, Medline, Web of Science, EBSCO, and Cochrane Central Register of Controlled Trials from inception until March 26, 2022. Study selection All randomized parallel or cross-over controlled trials comparing the effect of intervention with active-tDCS and Sham-tDCS on Coma Recovery Scale Revised (CRS-R) score in individuals with PDOC were included. Data extraction Two authors independently extracted data, assessed the methodological quality, and rated each study. Data synthesis Ten randomized parallel or cross-over controlled trials were eligible for systematic review, and eight of the studies involving 165 individuals were identified as eligible for meta-analysis. Compared with Sham-tDCS, the use of anode-tDCS over DLPFC improved the CRS-R score (SMD = 0.71; 95% CI: 0.47–0.95, I2 = 10%). Patients with PDOC classified as MCS and clinically diagnosed as CVA or TBI may benefit from anode-tDCS. Limitations Failure to evaluate the long-term effects and lack of quantitative analysis of neurological examination are the main limitations for the application of anode-tDCS. Conclusions Anodal-tDCS over the left DLPFC may be advantageous to the recovery of patients with MCS and clinically diagnosed with CVA or TBI. There is a lack of evidence to support the duration of the disease course will limit the performance of the treatment. Further studies are needed to explore the diversity of stimulation targets and help to improve the mesocircuit model. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=279391, identifier: CRD42022279391.
Collapse
|
17
|
Barra A, Monti M, Thibaut A. Noninvasive Brain Stimulation Therapies to Promote Recovery of Consciousness: Where We Are and Where We Should Go. Semin Neurol 2022; 42:348-362. [PMID: 36100229 DOI: 10.1055/s-0042-1755562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Therapeutic options for patients with disorders of consciousness (DoC) are still underexplored. Noninvasive brain stimulation (NIBS) techniques modulate neural activity of targeted brain areas and hold promise for the treatment of patients with DoC. In this review, we provide a summary of published research using NIBS as therapeutic intervention for DoC patients, with a focus on (but not limited to) randomized controlled trials (RCT). We aim to identify current challenges and knowledge gaps specific to NIBS research in DoC. Furthermore, we propose possible solutions and perspectives for this field. Thus far, the most studied technique remains transcranial electrical stimulation; however, its effect remains moderate. The identified key points that NIBS researchers should focus on in future studies are (1) the lack of large-scale RCTs; (2) the importance of identifying the endotypes of responders; and (3) the optimization of stimulation parameters to maximize the benefits of NIBS.
Collapse
Affiliation(s)
- Alice Barra
- Coma Science Group, GIGA Consciousness - GIGA Research, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Martin Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, California.,Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness - GIGA Research, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
18
|
Barra A, Rosenfelder M, Mortaheb S, Carrière M, Martens G, Bodien YG, Morales-Quezada L, Bender A, Laureys S, Thibaut A, Fregni F. Transcranial Pulsed-Current Stimulation versus Transcranial Direct Current Stimulation in Patients with Disorders of Consciousness: A Pilot, Sham-Controlled Cross-Over Double-Blind Study. Brain Sci 2022; 12:429. [PMID: 35447961 PMCID: PMC9031379 DOI: 10.3390/brainsci12040429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Transcranial direct-current stimulation (tDCS) over the prefrontal cortex can improve signs of consciousness in patients in a minimally conscious state. Transcranial pulsed-current stimulation (tPCS) over the mastoids can modulate brain activity and connectivity in healthy controls. This study investigated the feasibility of tPCS as a therapeutic tool in patients with disorders of consciousness (DoC) and compared its neurophysiological and behavioral effects with prefrontal tDCS. This pilot study was a randomized, double-blind sham-controlled clinical trial with three sessions: bi-mastoid tPCS, prefrontal tDCS, and sham. Electroencephalography (EEG) and behavioral assessments were collected before and after each stimulation session. Post minus pre differences were compared using Kruskal-Wallis and Wilcoxon signed-rank tests. Twelve patients with DoC were included in the study (eight females, four traumatic brain injury, 50.3 ± 14 y.o., 8.8 ± 10.5 months post-injury). We did not observe any side-effects following tPCS, nor tDCS, and confirmed their feasibility and safety. We did not find a significant effect of the stimulation on EEG nor behavioral outcomes for tPCS. However, consistent with prior findings, our exploratory analyses suggest that tDCS induces behavioral improvements and an increase in theta frontal functional connectivity.
Collapse
Affiliation(s)
- Alice Barra
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
| | - Martin Rosenfelder
- Department of Neurology, Therapiezentrum Burgau, Kapuzinerstrasse 34, 89331 Burgau, Germany; (M.R.); (A.B.)
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, 89081 Ulm, Germany
| | - Sepehr Mortaheb
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Physiology of Cognition Lab, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium
| | - Manon Carrière
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
| | - Geraldine Martens
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
| | - Yelena G. Bodien
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leon Morales-Quezada
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Andreas Bender
- Department of Neurology, Therapiezentrum Burgau, Kapuzinerstrasse 34, 89331 Burgau, Germany; (M.R.); (A.B.)
- Department of Neurology, Ludwig-Maximilians University (LMU), 81377 Munich, Germany
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre CIUSS, University Laval, Quebec, QC G1E1T2, Canada
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
19
|
Peng Y, Zhao J, Lu X, Dong J, Zhang S, Zhang J, Liu H, Zheng X, Wang X, Lan Y, Yan T. Efficacy of Transcranial Direct Current Stimulation Over Dorsolateral Prefrontal Cortex in Patients With Minimally Conscious State. Front Neurol 2022; 13:821286. [PMID: 35250824 PMCID: PMC8894202 DOI: 10.3389/fneur.2022.821286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe treatment of patients in a minimally conscious state (MCS) remains challenging. Transcranial direct current stimulation (tDCS) is a non-invasive therapeutic method in treating neurologic diseases by regulating the cortical excitability. The aim is to investigate the effect of tDCS in patients with MCS in this study.MethodsEleven patients in MCS were enrolled in the study. All the patients received 5 daily sessions of 20-min sham tDCS, followed by 10 sessions of 20-min real tDCS. The anodal electrode and cathodal electrodes were placed over the left dorsolateral prefrontal cortex (DLPFC) and the right eyebrow, respectively. Assessment of Coma Recovery Scale-Revised (CRS-R) scores and resting-state functional MRI (rs-fMRI) scans was conducted three times in each patient: before tDCS (baseline, T0), post-sham tDCS at week 1 (T1), and post-real tDCS at week 2 (T2). The whole-brain functional connectivity (FC) was obtained by bilaterally computing FC from six seed regions: precuneus, middle frontal gyrus, supplemental motor area, angular gyrus, superior temporal gyrus, and occipital lobe. One-way repeated measure ANOVA was used to compare the differences of CRS-R scores and FC at T0, T1, and T2. The false discovery rate correction of p < 0.001 was adopted for controlling multiple comparisons in FC analysis.ResultsFive patients with MCS showed obvious clinical improvement represented by increased CRS-R scores post- 2-week real tDCS. The CRS-R scores did not change post- 1-week sham treatment. No side effects were reported during the study. The FC of the bilateral supplementary motor area, right angular gyrus, and right superior temporal gyrus were significantly enhanced after 2-week real tDCS compared with that after 1-week sham-tDCS. In addition, FC of bilateral occipital lobe and right precuneus were significantly enhanced post- 2-week real tDCS compared with the baseline.ConclusionOur findings indicated that tDCS over DLPFC could serve as a potentially effective therapy for improving the consciousness state in patients with MCS. The FC in rs-fMRI can be modulated by tDCS at both the stimulation site (left DLPFC) and the distant regions.
Collapse
Affiliation(s)
- Yuan Peng
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jingpu Zhao
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Juntao Dong
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shunxi Zhang
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jin Zhang
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huihua Liu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuyuan Zheng
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
- *Correspondence: Xin Wang
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Yue Lan
| | - Tiebin Yan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Tiebin Yan
| |
Collapse
|
20
|
Irzan H, Pozzi M, Chikhladze N, Cebanu S, Tadevosyan A, Calcii C, Tsiskaridze A, Melbourne A, Strazzer S, Modat M, Molteni E. Emerging Treatments for Disorders of Consciousness in Paediatric Age. Brain Sci 2022; 12:198. [PMID: 35203961 PMCID: PMC8870410 DOI: 10.3390/brainsci12020198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
The number of paediatric patients living with a prolonged Disorder of Consciousness (DoC) is growing in high-income countries, thanks to substantial improvement in intensive care. Life expectancy is extending due to the clinical and nursing management achievements of chronic phase needs, including infections. However, long-known pharmacological therapies such as amantadine and zolpidem, as well as novel instrumental approaches using direct current stimulation and, more recently, stem cell transplantation, are applied in the absence of large paediatric clinical trials and rigorous age-balanced and dose-escalated validations. With evidence building up mainly through case reports and observational studies, there is a need for well-designed paediatric clinical trials and specific research on 0-4-year-old children. At such an early age, assessing residual and recovered abilities is most challenging due to the early developmental stage, incompletely learnt motor and cognitive skills, and unreliable communication; treatment options are also less explored in early age. In middle-income countries, the lack of rehabilitation services and professionals focusing on paediatric age hampers the overall good assistance provision. Young and fast-evolving health insurance systems prevent universal access to chronic care in some countries. In low-income countries, rescue networks are often inadequate, and there is a lack of specialised and intensive care, difficulty in providing specific pharmaceuticals, and lower compliance to intensive care hygiene standards. Despite this, paediatric cases with DoC are reported, albeit in fewer numbers than in countries with better-resourced healthcare systems. For patients with a poor prospect of recovery, withdrawal of care is inhomogeneous across countries and still heavily conditioned by treatment costs as well as ethical and cultural factors, rather than reliant on protocols for assessment and standardised treatments. In summary, there is a strong call for multicentric, international, and global health initiatives on DoC to devote resources to the paediatric age, as there is now scope for funders to invest in themes specific to DoC affecting the early years of the life course.
Collapse
Affiliation(s)
- Hassna Irzan
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 7JE, UK
| | - Marco Pozzi
- Scientific Institute IRCCS E. Medea, Acquired Brain Injury Unit, 22040 Bosisio Parini, Italy; (M.P.); (S.S.)
| | - Nino Chikhladze
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia; (N.C.); (A.T.)
| | - Serghei Cebanu
- Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, MD-2004 Chišināu, Moldova; (S.C.); (C.C.)
| | - Artashes Tadevosyan
- Department of Public Health and Healthcare Organization, Yerevan State Medical University, Yerevan 0025, Armenia;
| | - Cornelia Calcii
- Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, MD-2004 Chišināu, Moldova; (S.C.); (C.C.)
| | - Alexander Tsiskaridze
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia; (N.C.); (A.T.)
| | - Andrew Melbourne
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 7JE, UK
| | - Sandra Strazzer
- Scientific Institute IRCCS E. Medea, Acquired Brain Injury Unit, 22040 Bosisio Parini, Italy; (M.P.); (S.S.)
- Rehabilitation Service, “Usratuna” Health and Rehabilitation Centre, Juba, South Sudan
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
| | - Erika Molteni
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
| |
Collapse
|
21
|
Sarasso S, Casali AG, Casarotto S, Rosanova M, Sinigaglia C, Massimini M. Consciousness and complexity: a consilience of evidence. Neurosci Conscious 2021; 2021:niab023. [PMID: 38496724 PMCID: PMC10941977 DOI: 10.1093/nc/niab023] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/19/2021] [Accepted: 07/29/2021] [Indexed: 03/19/2024] Open
Abstract
Over the last years, a surge of empirical studies converged on complexity-related measures as reliable markers of consciousness across many different conditions, such as sleep, anesthesia, hallucinatory states, coma, and related disorders. Most of these measures were independently proposed by researchers endorsing disparate frameworks and employing different methods and techniques. Since this body of evidence has not been systematically reviewed and coherently organized so far, this positive trend has remained somewhat below the radar. The aim of this paper is to make this consilience of evidence in the science of consciousness explicit. We start with a systematic assessment of the growing literature on complexity-related measures and identify their common denominator, tracing it back to core theoretical principles and predictions put forward more than 20 years ago. In doing this, we highlight a consistent trajectory spanning two decades of consciousness research and provide a provisional taxonomy of the present literature. Finally, we consider all of the above as a positive ground to approach new questions and devise future experiments that may help consolidate and further develop a promising field where empirical research on consciousness appears to have, so far, naturally converged.
Collapse
Affiliation(s)
- Simone Sarasso
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | - Adenauer Girardi Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Sao Jose dos Campos, 12247-014, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | | | - Marcello Massimini
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| |
Collapse
|
22
|
Martens G, Ibáñez-Soria D, Barra A, Soria-Frisch A, Piarulli A, Gosseries O, Salvador R, Rojas A, Nitsche MA, Kroupi E, Laureys S, Ruffini G, Thibaut A. A novel closed-loop EEG-tDCS approach to promote responsiveness of patients in minimally conscious state: A study protocol. Behav Brain Res 2021; 409:113311. [PMID: 33878429 DOI: 10.1016/j.bbr.2021.113311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/10/2021] [Accepted: 04/15/2021] [Indexed: 01/28/2023]
Abstract
Transcranial direct current stimulation (tDCS) applied over the prefrontal cortex has been shown to improve behavioral responsiveness in patients with disorders of consciousness following severe brain injury, especially those in minimally conscious state (MCS). However, one potential barrier of clinical response to tDCS is the timing of stimulation with regard to the fluctuations of vigilance that characterize this population. Indeed, a previous study showed that the vigilance of MCS patients has periodic average cycles of 70 min (range 57-80 min), potentially preventing them to be in an optimal neural state to benefit from tDCS when applied randomly. To tackle this issue, we propose a new protocol to optimize the application of tDCS by selectively stimulating at high and low vigilance states. Electroencephalography (EEG) real-time spectral entropy will be used as a marker of vigilance and to trigger tDCS, in a closed-loop fashion. We will conduct a randomized controlled crossover clinical trial on 16 patients in prolonged MCS who will undergo three EEG-tDCS sessions 5 days apart (1. tDCS applied at high vigilance; 2. tDCS applied at low vigilance; 3. tDCS applied at a random moment). Behavioral effects will be assessed using the Coma Recovery Scale-Revised at baseline and right after the stimulations. EEG will be recorded throughout the session and for 30 min after the end of the stimulation. This unique and novel approach will provide patients' tailored treatment options, currently lacking in the field of disorders of consciousness.
Collapse
Affiliation(s)
- Géraldine Martens
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du cerveau², University Hospital of Liège, Liège, Belgium.
| | | | - Alice Barra
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du cerveau², University Hospital of Liège, Liège, Belgium
| | | | - Andrea Piarulli
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Italy
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du cerveau², University Hospital of Liège, Liège, Belgium
| | | | | | - Michael A Nitsche
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Dept. Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | | | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du cerveau², University Hospital of Liège, Liège, Belgium
| | | | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du cerveau², University Hospital of Liège, Liège, Belgium
| |
Collapse
|
23
|
Aloi D, della Rocchetta AI, Ditchfield A, Coulborn S, Fernández-Espejo D. Therapeutic Use of Transcranial Direct Current Stimulation in the Rehabilitation of Prolonged Disorders of Consciousness. Front Neurol 2021; 12:632572. [PMID: 33897592 PMCID: PMC8058460 DOI: 10.3389/fneur.2021.632572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Patients with Prolonged Disorders of Consciousness (PDOC) have catastrophic disabilities and very complex needs for care. Therapeutic options are very limited, and patients often show little functional improvement over time. Neuroimaging studies have demonstrated that a significant number of PDOC patients retain a high level of cognitive functioning, and in some cases even awareness, and are simply unable to show this with their external behavior - a condition known as cognitive-motor dissociation (CMD). Despite vast implications for diagnosis, the discovery of covert cognition in PDOC patients is not typically associated with a more favorable prognosis, and the majority of patients will remain in a permanent state of low responsiveness. Recently, transcranial direct current stimulation (tDCS) has attracted attention as a potential therapeutic tool in PDOC. Research to date suggests that tDCS can lead to clinical improvements in patients with a minimally conscious state (MCS), especially when administered over multiple sessions. While promising, the outcomes of these studies have been highly inconsistent, partially due to small sample sizes, heterogeneous methodologies (in terms of both tDCS parameters and outcome measures), and limitations related to electrode placement and heterogeneity of brain damage inherent to PDOC. In addition, we argue that neuroimaging and electrophysiological assessments may serve as more sensitive biomarkers to identify changes after tDCS that are not yet apparent behaviorally. Finally, given the evidence that concurrent brain stimulation and physical therapy can enhance motor rehabilitation, we argue that future studies should focus on the integration of tDCS with conventional rehabilitation programmes from the subacute phase of care onwards, to ascertain whether any synergies exist.
Collapse
Affiliation(s)
- Davide Aloi
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | | | - Alice Ditchfield
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Sean Coulborn
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Davinia Fernández-Espejo
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
24
|
Li Y, He J, Yang B, Zhang H, Yang Z, Fu J, Huang L, Chen H, Yang X, Bao Y. Clinical diagnosis guidelines and neurorestorative treatment for chronic disorders of consciousness (2021 China version). JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chronic disorders of consciousness (DOC) include the vegetative state and the minimally consciousness state. The DOC diagnosis mainly relies on the evaluation of clinical behavioral scales, electrophysiological testing, and neuroimaging examinations. No specifically effective neurorestorative methods for chronic DOC currently exist. Any valuable exploration therapies of being able to repair functions and/or structures in the consciousness loop (e.g., drugs, hyperbaric medicines, noninvasive neurostimulation, sensory and environmental stimulation, invasive neuromodulation therapy, and cell transplantation) may become effective neurorestorative strategies for chronic DOC. In the viewpoint of Neurorestoratology, this guideline proposes the diagnostic and neurorestorative therapeutic suggestions and future exploration direction for this disease following the review of the existing treatment exploration achievements for chronic DOC.
Collapse
|