1
|
Remon A, Mascheretti S, Voronin I, Feng B, Ouellet-Morin I, Brendgen M, Vitaro F, Robaey P, Boivin M, Dionne G. The mediation role of reading-related endophenotypes in the gene-to-reading pathway. BRAIN AND LANGUAGE 2025; 264:105552. [PMID: 39983636 DOI: 10.1016/j.bandl.2025.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Although individual differences in reading-related skills are largely influenced by genetic variation, the molecular basis of the heritability of this phenotype is far from understood. Functional single-nucleotide polymorphisms spanning reading-candidate genes and genome-wide significant top hits were identified. By using a multiple-predictor/multiple-mediator framework, we investigated whether relationships between functional genetic variants (DYX1C1-rs3743205, DYX1C1-rs57809907, KIAA0319-rs9461045, and KIAA0319-Haplotype) and genome-wide significant top hits (rs11208009 on chromosome 1) and reading skills could be explained by reading-related cognitive and sensory endophenotypes in a sample of 328 8-year-old twins. The association between rs3743205 and rs57809907 with reading skills is partially mediated by phonological awareness (PA). Specifically, the rs3743205-C/C genotype and carrying the minor 'A' allele of rs57809907 were associated with lower PA scores which in turn was correlated with poorer reading skills. These findings reveal insights into the sequential gene-behavior cascade in reading acquisition and contribute to the growing literature on the neurogenetic machinery of reading development.
Collapse
Affiliation(s)
- Alexandra Remon
- GRIP, School of Psychology, Université Laval, Québec City, Quebec, Canada
| | - Sara Mascheretti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy.
| | - Ivan Voronin
- GRIP, School of Psychology, Université Laval, Québec City, Quebec, Canada
| | - Bei Feng
- GRIP, School of Psychology, Université Laval, Québec City, Quebec, Canada
| | - Isabelle Ouellet-Morin
- School of Criminology, University of Montreal, Montreal, Canada; Centre for Studies on Human Stress, Research Centre, Montreal Mental Health Institute, Montreal, Canada
| | - Mara Brendgen
- Department of Psychology, University of Québec at Montreal, Montréal, Canada; Ste-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Frank Vitaro
- Ste-Justine Hospital Research Center, Montreal, Quebec, Canada; School of Psychoeducation, University of Montreal, Montreal, Canada
| | - Philippe Robaey
- Deptartment of Psychiatry, Faculty of Medicine, University of Ottawa, Canada
| | - Michel Boivin
- GRIP, School of Psychology, Université Laval, Québec City, Quebec, Canada; Institute of Genetic, Neurobiological and Social Foundations of Child Development, Tomsk State University, Tomsk, Russia
| | - Ginette Dionne
- GRIP, School of Psychology, Université Laval, Québec City, Quebec, Canada.
| |
Collapse
|
2
|
Bayyurt B, Şahin NÖ, Işık CM. Investigation of Association Between Expression of DYX1C1, KIAA0319, and ROBO1 Genes and Specific Learning Disorder in Children and Adolescents. J Mol Neurosci 2024; 74:109. [PMID: 39542997 DOI: 10.1007/s12031-024-02288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Specific learning disorder (SLD) is prevalent worldwide and is a complex disorder with variable symptoms and significant differences among individuals. Epigenetic markers may alter susceptibility to neurodevelopmental disorders (NDDs). Aberrant expression of protein-coding (mRNA) genes in this pathology shows that the detection of epigenetic molecular biomarkers is of increasing importance in the diagnosis and treatment of individuals with SLD. We compared gene expression level of dyslexia susceptibility 1 candidate gene 1 (DYX1C1), dyslexia-associated protein KIAA0319 (KIAA0319), and roundabout guidance receptor 1 (ROBO1) between children with SLD and healthy children by performing quantitative polymerase chain reaction (qPCR). In addition, we evaluated these gene expressions of severe children with SLD compared to non-severe and male SLD children compared to females. The expression of the DYX1C1, KIAA0319, and ROBO1 genes was statistically significantly upregulated in children with SLD (P < 0.05*). DYX1C1 was also upregulated in severe SLD children (P = 0.03*). In addition, KIAA0319 and ROBO1 genes were differentially expressed in male SLD children compared to females (P < 0.05*). Furthermore, we found that DYX1C1 and ROBO1 genes significantly affect the likelihood of the SLD (respectively, P < 0.001** and P = 0.007*). We expect that the findings provided from this study may contribute to the determination expression level of the relevant genes in the diagnosis, prognosis, and treatment of SLD. In addition, our findings could be a guide for future epigenetics studies on the use of the DYX1C1, KIAA0319, and ROBO1 in therapeutic applications in the SLD.
Collapse
Affiliation(s)
- Burcu Bayyurt
- Department of Medical Biology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Nil Özbilüm Şahin
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Cansu Mercan Işık
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
3
|
Mascheretti S, Arrigoni F, Toraldo A, Giubergia A, Andreola C, Villa M, Lampis V, Giorda R, Villa M, Peruzzo D. Alterations in neural activation in the ventral frontoparietal network during complex magnocellular stimuli in developmental dyslexia associated with READ1 deletion. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:16. [PMID: 38926731 PMCID: PMC11210179 DOI: 10.1186/s12993-024-00241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND An intronic deletion within intron 2 of the DCDC2 gene encompassing the entire READ1 (hereafter, READ1d) has been associated in both children with developmental dyslexia (DD) and typical readers (TRs), with interindividual variation in reading performance and motion perception as well as with structural and functional brain alterations. Visual motion perception -- specifically processed by the magnocellular (M) stream -- has been reported to be a solid and reliable endophenotype of DD. Hence, we predicted that READ1d should affect neural activations in brain regions sensitive to M stream demands as reading proficiency changes. METHODS We investigated neural activations during two M-eliciting fMRI visual tasks (full-field sinusoidal gratings controlled for spatial and temporal frequencies and luminance contrast, and sensitivity to motion coherence at 6%, 15% and 40% dot coherence levels) in four subject groups: children with DD with/without READ1d, and TRs with/without READ1d. RESULTS At the Bonferroni-corrected level of significance, reading skills showed a significant effect in the right polar frontal cortex during the full-field sinusoidal gratings-M task. Regardless of the presence/absence of the READ1d, subjects with poor reading proficiency showed hyperactivation in this region of interest (ROI) compared to subjects with better reading scores. Moreover, a significant interaction was found between READ1d and reading performance in the left frontal opercular area 4 during the 15% coherent motion sensitivity task. Among subjects with poor reading performance, neural activation in this ROI during this specific task was higher for subjects without READ1d than for READ1d carriers. The difference vanished as reading skills increased. CONCLUSIONS Our findings showed a READ1d-moderated genetic vulnerability to alterations in neural activation in the ventral attentive and salient networks during the processing of relevant stimuli in subjects with poor reading proficiency.
Collapse
Affiliation(s)
- Sara Mascheretti
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy.
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy.
| | - Filippo Arrigoni
- Radiology and Neuroradiology Department, Children's Hospital V. Buzzi, Milan, Italy
| | - Alessio Toraldo
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy
- Milan Centre for Neuroscience (NeuroMI), Milan, Italy
| | - Alice Giubergia
- Neuroimaging Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | | | - Martina Villa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- The Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Yale Child Study Center Language Sciences Consortium, New Haven, CT, USA
| | - Valentina Lampis
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Denis Peruzzo
- Neuroimaging Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
4
|
Bertoni S, Andreola C, Mascheretti S, Franceschini S, Ruffino M, Trezzi V, Molteni M, Sali ME, Salandi A, Gaggi O, Palazzi C, Gori S, Facoetti A. Action video games normalise the phonemic awareness in pre-readers at risk for developmental dyslexia. NPJ SCIENCE OF LEARNING 2024; 9:25. [PMID: 38514689 PMCID: PMC10957868 DOI: 10.1038/s41539-024-00230-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Action video-games (AVGs) could improve reading efficiency, enhancing not only visual attention but also phonological processing. Here we tested the AVG effects upon three consolidated language-based predictors of reading development in a sample of 79 pre-readers at-risk and 41 non-at-risk for developmental dyslexia. At-risk children were impaired in either phonemic awareness (i.e., phoneme discrimination task), phonological working memory (i.e., pseudoword repetition task) or rapid automatized naming (i.e., RAN of colours task). At-risk children were assigned to different groups by using an unequal allocation randomization: (1) AVG (n = 43), (2) Serious Non-Action Video Game (n = 11), (3) treatment-as-usual (i.e., speech therapy, n = 11), and (4) waiting list (n = 14). Pre- and post-training comparisons show that only phonemic awareness has a significantly higher improvement in the AVG group compared to the waiting list, the non-AVG, and the treatment-as-usual groups, as well as the combined active groups (n = 22). This cross-modal plastic change: (i) leads to a recovery in phonemic awareness when compared to the not-at-risk pre-readers; (ii) is present in more than 80% of AVG at-risk pre-readers, and; (iii) is maintained at a 6-months follow-up. The present findings indicate that this specific multisensory attentional training positively affects how phonemic awareness develops in pre-readers at risk for developmental dyslexia, paving the way for innovative prevention programs.
Collapse
Affiliation(s)
- Sara Bertoni
- Università di Bergamo, Department of Human and Social Sciences, Bergamo, Italy.
- Università di Padova, Developmental Cognitive Neuroscience Lab, Department of General Psychology, Padova, Italy.
| | - Chiara Andreola
- Université Paris Cité, Laboratoire de Psychologie de Développement et de l'Éducation de l'Enfant (LaPsyDÉ), UMR CNRS 8240, Paris, France
| | - Sara Mascheretti
- Università di Pavia, Department of Brain and Behavioral Sciences, Pavia, Italy
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Child Psychopathology Unit, Lecco, Italy
| | | | - Milena Ruffino
- ASST Valle Olona, Neuropsychiatric Unit, Saronno, Varese, Italy
| | - Vittoria Trezzi
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Child Psychopathology Unit, Lecco, Italy
| | - Massimo Molteni
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Child Psychopathology Unit, Lecco, Italy
| | - Maria Enrica Sali
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Child Psychopathology Unit, Lecco, Italy
| | - Antonio Salandi
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Child Psychopathology Unit, Lecco, Italy
| | | | | | - Simone Gori
- Università di Bergamo, Department of Human and Social Sciences, Bergamo, Italy
| | - Andrea Facoetti
- Università di Padova, Developmental Cognitive Neuroscience Lab, Department of General Psychology, Padova, Italy.
- Sigmund Freud University, Milano, Italy.
| |
Collapse
|
5
|
Lasnick OHM, Hoeft F. Sensory temporal sampling in time: an integrated model of the TSF and neural noise hypothesis as an etiological pathway for dyslexia. Front Hum Neurosci 2024; 17:1294941. [PMID: 38234592 PMCID: PMC10792016 DOI: 10.3389/fnhum.2023.1294941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Much progress has been made in research on the causal mechanisms of developmental dyslexia. In recent years, the "temporal sampling" account of dyslexia has evolved considerably, with contributions from neurogenetics and novel imaging methods resulting in a much more complex etiological view of the disorder. The original temporal sampling framework implicates disrupted neural entrainment to speech as a causal factor for atypical phonological representations. Yet, empirical findings have not provided clear evidence of a low-level etiology for this endophenotype. In contrast, the neural noise hypothesis presents a theoretical view of the manifestation of dyslexia from the level of genes to behavior. However, its relative novelty (published in 2017) means that empirical research focused on specific predictions is sparse. The current paper reviews dyslexia research using a dual framework from the temporal sampling and neural noise hypotheses and discusses the complementary nature of these two views of dyslexia. We present an argument for an integrated model of sensory temporal sampling as an etiological pathway for dyslexia. Finally, we conclude with a brief discussion of outstanding questions.
Collapse
Affiliation(s)
- Oliver H. M. Lasnick
- brainLENS Laboratory, Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
6
|
Alibutud R, Hansali S, Cao X, Zhou A, Mahaganapathy V, Azaro M, Gwin C, Wilson S, Buyske S, Bartlett CW, Flax JF, Brzustowicz LM, Xing J. Structural Variations Contribute to the Genetic Etiology of Autism Spectrum Disorder and Language Impairments. Int J Mol Sci 2023; 24:13248. [PMID: 37686052 PMCID: PMC10487745 DOI: 10.3390/ijms241713248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restrictive interests and/or repetitive behaviors and deficits in social interaction and communication. ASD is a multifactorial disease with a complex polygenic genetic architecture. Its genetic contributing factors are not yet fully understood, especially large structural variations (SVs). In this study, we aimed to assess the contribution of SVs, including copy number variants (CNVs), insertions, deletions, duplications, and mobile element insertions, to ASD and related language impairments in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Within the cohort, ~77% of the families contain SVs that followed expected segregation or de novo patterns and passed our filtering criteria. These SVs affected 344 brain-expressed genes and can potentially contribute to the genetic etiology of the disorders. Gene Ontology and protein-protein interaction network analysis suggested several clusters of genes in different functional categories, such as neuronal development and histone modification machinery. Genes and biological processes identified in this study contribute to the understanding of ASD and related neurodevelopment disorders.
Collapse
Affiliation(s)
- Rohan Alibutud
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sammy Hansali
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Anbo Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Vaidhyanathan Mahaganapathy
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Marco Azaro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Christine Gwin
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sherri Wilson
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Christopher W. Bartlett
- The Steve Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Judy F. Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Linda M. Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Zhao J, Yang Q, Cheng C, Wang Z. Cumulative genetic score of KIAA0319 affects reading ability in Chinese children: moderation by parental education and mediation by rapid automatized naming. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:10. [PMID: 37259151 DOI: 10.1186/s12993-023-00212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
KIAA0319, a well-studied candidate gene, has been shown to be associated with reading ability and developmental dyslexia. In the present study, we investigated whether KIAA0319 affects reading ability by interacting with the parental education level and whether rapid automatized naming (RAN), phonological awareness and morphological awareness mediate the relationship between KIAA0319 and reading ability. A total of 2284 Chinese children from primary school grades 3 and 6 participated in this study. Chinese character reading accuracy and word reading fluency were used as measures of reading abilities. The cumulative genetic risk score (CGS) of 13 SNPs in KIAA0319 was calculated. Results revealed interaction effect between CGS of KIAA0319 and parental education level on reading fluency. The interaction effect suggested that individuals with a low CGS of KIAA0319 were better at reading fluency in a positive environment (higher parental educational level) than individuals with a high CGS. Moreover, the interaction effect coincided with the differential susceptibility model. The results of the multiple mediator model revealed that RAN mediates the impact of the genetic cumulative effect of KIAA0319 on reading abilities. These findings provide evidence that KIAA0319 is a risk vulnerability gene that interacts with environmental factor to impact reading abilities and demonstrate the reliability of RAN as an endophenotype between genes and reading associations.
Collapse
Affiliation(s)
- Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China.
| | - Qing Yang
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China
| | - Chen Cheng
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China
| | - Zhengjun Wang
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China.
| |
Collapse
|
8
|
Stein J. The visual basis of reading and reading difficulties. Front Neurosci 2022; 16:1004027. [PMID: 36507333 PMCID: PMC9728103 DOI: 10.3389/fnins.2022.1004027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Most of our knowledge about the neural networks mediating reading has derived from studies of developmental dyslexia (DD). For much of the 20th C. this was diagnosed on the basis of finding a discrepancy between children's unexpectedly low reading and spelling scores compared with their normal or high oral and non-verbal reasoning ability. This discrepancy criterion has now been replaced by the claim that the main feature of dyslexia is a phonological deficit, and it is now argued that we should test for this to identify dyslexia. However, grasping the phonological principle is essential for all learning to read; so every poor reader will show a phonological deficit. The phonological theory does not explain why dyslexic people, in particular, fail; so this phonological criterion makes it impossible to distinguish DD from any of the many other causes of reading failure. Currently therefore, there is no agreement about precisely how we should identify it. Yet, if we understood the specific neural pathways that underlie failure to acquire phonological skills specifically in people with dyslexia, we should be able to develop reliable means of identifying it. An important, though not the only, cause in people with dyslexia is impaired development of the brain's rapid visual temporal processing systems; these are required for sequencing the order of the letters in a word accurately. Such temporal, "transient," processing is carried out primarily by a distinct set of "magnocellular" (M-) neurones in the visual system; and the development of these has been found to be impaired in many people with dyslexia. Likewise, auditory sequencing of the sounds in a word is mediated by the auditory temporal processing system whose development is impaired in many dyslexics. Together these two deficits can therefore explain their problems with acquiring the phonological principle. Assessing poor readers' visual and auditory temporal processing skills should enable dyslexia to be reliably distinguished from other causes of reading failure and this will suggest principled ways of helping these children to learn to read, such as sensory training, yellow or blue filters or omega 3 fatty acid supplements. This will enable us to diagnose DD with confidence, and thus to develop educational plans targeted to exploit each individual child's strengths and compensate for his weaknesses.
Collapse
Affiliation(s)
- John Stein
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Galaburda AM. Animal models of developmental dyslexia. Front Neurosci 2022; 16:981801. [PMID: 36452335 PMCID: PMC9702821 DOI: 10.3389/fnins.2022.981801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
As some critics have stated, the term "developmental dyslexia" refers to a strictly human disorder, relating to a strictly human capacity - reading - so it cannot be modeled in experimental animals, much less so in lowly rodents. However, two endophenotypes associated with developmental dyslexia are eminently suitable for animal modeling: Cerebral Lateralization, as illustrated by the association between dyslexia and non-righthandedness, and Cerebrocortical Dysfunction, as illustrated by the described abnormal structural anatomy and/or physiology and functional imaging of the dyslexic cerebral cortex. This paper will provide a brief review of these two endophenotypes in human beings with developmental dyslexia and will describe the animal work done in my laboratory and that of others to try to shed light on the etiology of and neural mechanisms underlying developmental dyslexia. Some thought will also be given to future directions of the research.
Collapse
Affiliation(s)
- Albert M. Galaburda
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Animal models of developmental dyslexia: Where we are and what we are missing. Neurosci Biobehav Rev 2021; 131:1180-1197. [PMID: 34699847 DOI: 10.1016/j.neubiorev.2021.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental disorder and the most common learning disability among both school-aged children and across languages. Recently, sensory and cognitive mechanisms have been reported to be potential endophenotypes (EPs) for DD, and nine DD-candidate genes have been identified. Animal models have been used to investigate the etiopathological pathways that underlie the development of complex traits, as they enable the effects of genetic and/or environmental manipulations to be evaluated. Animal research designs have also been linked to cutting-edge clinical research questions by capitalizing on the use of EPs. For the present scoping review, we reviewed previous studies of murine models investigating the effects of DD-candidate genes. Moreover, we highlighted the use of animal models as an innovative way to unravel new insights behind the pathophysiology of reading (dis)ability and to assess cutting-edge preclinical models.
Collapse
|