1
|
Okunuki T, Wakamiya K, Yamaguchi R, Maemichi T, Liu Z, Ogawa Y, Kobayashi Y, Nagamoto H, Hoshiba T, Kumai T. Immediate effects of electronic stimulation to the plantar foot on foot function and postural stability during landing. J Sports Med Phys Fitness 2025; 65:109-116. [PMID: 39360985 DOI: 10.23736/s0022-4707.24.16091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND Sports injuries often occur during landing, necessitating postural stability for injury prevention. Electrical stimulation of the plantar foot induces activities of the intrinsic foot muscles and improves somatosensory and postural stability during landing. However, this effect remains unclear. Therefore, the aim of this study was to investigate the immediate effects of electrical stimulation on the activities of the intrinsic foot muscles, plantar somatosensory system, and postural stability during landing. METHODS Twenty-two college athletes were divided into an electrical stimulation group and a control group. Electrical stimulation was applied to the plantar foot using a commercial device. The toe function and plantar tactile sensations were evaluated. The activities of the intrinsic muscles and the parameters of the ground reaction force were measured and calculated. We compared pre- and postintervention outcomes. RESULTS In the electrical stimulation group, two subjects showed improvement in toe function, and plantar tactile sensation improved significantly postintervention. The control group exhibited no significant change in plantar tactile sensation. A significant interaction was observed in anteroposterior postural stability during landing, notably improving in the electrical stimulation group. CONCLUSIONS Electrical stimulation of the plantar foot immediately improved toe function, plantar tactile sensation, and postural stability during landing. Such stimulation would be beneficial in preventing sports injuries.
Collapse
Affiliation(s)
- Takumi Okunuki
- Research Organization of Science and Technology, Japan Society for the Promotion of Science, Ritsumeikan University, Tokyo, Japan
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
- Institute of Life Innovation Studies, Toyo University, Tokyo, Japan
| | - Kazuki Wakamiya
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Ryusei Yamaguchi
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Toshihiro Maemichi
- Institute of Life Innovation Studies, Toyo University, Tokyo, Japan
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Zijian Liu
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Yuki Ogawa
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Yusuke Kobayashi
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | | | | | - Tsukasa Kumai
- Faculty of Sport Sciences, Waseda University, Saitama, Japan -
| |
Collapse
|
2
|
Yasui Y, Kato H, Ogura S, Kimura M, Kato A, Hirano Y, Morita H, Yasukawa T, Kurachi A, Takeda S, Morita A. Electrical stimulation of the lower eyelid orbicularis oculi muscle improves periocular dark circles. Skin Res Technol 2024; 30:e13678. [PMID: 38616507 PMCID: PMC11016813 DOI: 10.1111/srt.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND We developed and tested the safety and efficacy of a cosmetic device to improve dark circles using electrical muscle stimulation of the orbicularis oculi muscle. METHODS Overall, 18 participants (36 eyes) were studied. The following five items were evaluated before and after the intervention:(1) the Clinical Dark Circle Score using clinical findings and photographs, (2) transcutaneous oxygen partial pressure (TcPO2) on the lower eyelid, (3) thermography, (4) two-dimensional laser blood flowmetry, and (5) spectrophotometry. RESULTS The mean score at baseline was 2.0 ± 0.90 (mean ± standard deviation), and that at the end of the study was 1.2 ± 1.0 (Wilcoxon signed-rank sum test, p < 0.0001), indicating a significant reduction. The spectrophotometer showed a significant decrease in a* and L* values before and after use (Wilcoxon signed-rank sum test, p < 0.0001). There was also a weak negative correlation between the change in score and the change in blood flow and TcPO2 measured using a laser perfusion device (Spearman's rank correlation coefficient, r = -0.32 and -0.39, respectively). Stratified analysis of the baseline score showed a strong negative correlation between the change in score and the change in spectrophotometric a* in the subjects/group with mild periocular dark circles (Spearman's rank correlation coefficient, r = -0.46). Contrastingly, no correlation was observed for any of the measurements in the subjects/group with severe periocular dark circles. After 1 month, no device-related ophthalmic adverse events were observed in any of the participants. CONCLUSION Electrical muscle stimulation could improve periocular dark circles, especially in the subjects/group with mild periocular dark circles, and was safe.
Collapse
Affiliation(s)
- Yukiko Yasui
- Department of Geriatric and Environmental DermatologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hiroshi Kato
- Department of Geriatric and Environmental DermatologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Shuntaro Ogura
- Department of Ophthalmology and Visual ScienceNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Masayo Kimura
- Department of Ophthalmology and Visual ScienceNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Aki Kato
- Department of Ophthalmology and Visual ScienceNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yoshio Hirano
- Department of Ophthalmology and Visual ScienceNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hiroshi Morita
- Department of Ophthalmology and Visual ScienceNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Tsutomu Yasukawa
- Department of Ophthalmology and Visual ScienceNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | | | | | - Akimichi Morita
- Department of Geriatric and Environmental DermatologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| |
Collapse
|
3
|
Liu C, Wong PY, Chow SKH, Cheung WH, Wong RMY. Does the regulation of skeletal muscle influence cognitive function? A scoping review of pre-clinical evidence. J Orthop Translat 2023; 38:76-83. [PMID: 36381246 PMCID: PMC9619139 DOI: 10.1016/j.jot.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Cognitive impairment is a major challenge for elderlies, as it can progress in a rapid manner and effective treatments are limited. Sarcopenic elderlies have a higher risk of dementia. This scoping review aims to reveal whether muscle is a mediator of cognitive function from pre-clinical evidence. Methods PubMed, Embase, and Web of Science were searched to Feb 2nd, 2022, using the keywords (muscle) AND (cognition OR dementia OR Alzheimer) AND (mouse OR rat OR animal). The PRISMA guideline was used in this study. Results A total of 17 pre-clinical studies were selected from 7638 studies. 4 studies reported that muscle atrophy and injury harmed memory, functional factors, and neurons in the brain for rodents with or without Alzheimer's disease (AD). 3 studies observed exercise induced muscle to secrete factors, including lactate, fibronectin type III domain-containing protein 5 (FNDC5), and cathepsin B, which plays essential roles in the elevation of cognitive functions and brain-derived neurotrophic factor (BDNF) levels. Muscle-targeted treatments including electrical stimulation and intramuscular injections had effective remote effects on the hippocampus. 6 studies showed that muscle-specific overexpression of scFv59 and Neprilysin, or myostatin knockdown alleviated AD symptoms. 1 study showed that muscle insulin resistance also led to deficient hippocampal neurogenesis in MKR mice. Conclusions The skeletal muscle is involved in the mediation of cognitive function. The evidence was established by the response in the brain (altered number of neurons, functional factors, and other AD pathological characteristics) with muscle atrophy or injury, muscle secretory factors, and muscle-targeted treatments. The translational potential of this paper This study summarizes the current evidence in how muscle affects cognition in molecular levels, which supports muscle-specific treatments as potential clinical strategies to prevent cognitive dysfunction.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Yan Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Amirova L, Avdeeva M, Shishkin N, Gudkova A, Guekht A, Tomilovskaya E. Effect of Modulated Electromyostimulation on the Motor System of Elderly Neurological Patients. Pilot Study of Russian Currents Also Known as Kotz Currents. Front Physiol 2022; 13:921434. [PMID: 35923241 PMCID: PMC9339608 DOI: 10.3389/fphys.2022.921434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
In this brief report, we present preliminary findings from a study of the use of electromyostimulation (EMS) in neurological patients. Assuming the approach to be sufficiently effective, we decided to investigate the motor system of elderly neurological patients before and after a course of Russian currents EMS, which were developed for Soviet athletes and cosmonauts. To this point, 19 patients—EMS (n = 11) and control (n = 8)—have successfully completed the study. The study included patients aged 60–90 years with confirmed walking and balance disorders with a history of chronic cerebral ischemia. Patients in the experimental group underwent a course of modulated EMS of the hip and shin muscles from 3 to 9 procedures. Preliminary results of the study showed good patient acceptance of EMS. After the course, the EMS group showed a significant improvement from baseline in the Tinetti Test (+1.4 points, p = 0.0045), Rivermead Mobility Index (+0.5 points, p = 0.0022), and Timed Up and Go Test (−1.2 s, p = 0.0053). There was also a significant improvement in balance quality of 8.6% (p = 0.04). Shin muscle strength, although trending positively, did not change significantly. There was also no change in hip and shin muscles’ tone. No significant changes were observed in the control group in the same tests. It can be concluded that stimulation of the hip and shin muscles with Russian (Kotz) currents has a positive effect on the motor system of elderly neurological patients. Significant effects with a course of short duration indicate that this EMS regimen is promising.
Collapse
Affiliation(s)
- Liubov Amirova
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Liubov Amirova,
| | - Maria Avdeeva
- Consultative and Diagnostic Department, Solovyov Scientific and Practical Psychoneurological Center of the Moscow Department of Health, Moscow, Russia
| | - Nikita Shishkin
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Anna Gudkova
- Consultative and Diagnostic Department, Solovyov Scientific and Practical Psychoneurological Center of the Moscow Department of Health, Moscow, Russia
| | - Alla Guekht
- Consultative and Diagnostic Department, Solovyov Scientific and Practical Psychoneurological Center of the Moscow Department of Health, Moscow, Russia
| | - Elena Tomilovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Combined Use of Transcutaneous Electrical Nerve Stimulation and Short Foot Exercise Improves Navicular Height, Muscle Size, Function Mobility, and Risk of Falls in Healthy Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127196. [PMID: 35742445 PMCID: PMC9223504 DOI: 10.3390/ijerph19127196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023]
Abstract
Electrical stimulation is an established method that is used to improve muscle strength. The present study compared changes in the navicular drop test (NDT), muscle size, the five times sit to stand (5TSTS) test, the timed up and go (TUG) test, and the risk of falls in response to transcutaneous electrical nerve stimulation (TENS) plus short foot exercise (SFE) and SFE alone in 68 healthy elderly participants aged 65−75 years. Participants were randomly assigned to two groups: TENS plus SFE and SFE alone (with sham TENS). Measurements of NDT, muscle size, 5TSTS, TUG, and risk of falls were made before and after 4 weeks of training. The NDT was significantly improved by a median of 0.31 mm in the TENS plus SFE group and 0.64 mm in the SFE alone group (p < 0.001). Similarly, there was a significant improvement in Falls Efficacy Scale International (FES-I), 5TSTS, and TUG for both groups (p < 0.001). The abductor hallucis muscle size increased by 0.23 cm2 in the TENS plus SFE group and 0.26 cm2 in the SFE alone group (p < 0.001). There were no significant differences between the two groups for any variables (p > 0.05) except TUG, which showed a greater improvement in the TENS plus SFE group (p = 0.008). Our findings demonstrated that TENS plus SFE and SFE alone improved intrinsic foot muscle size. However, TENS plus SFE tended to improve NDT more than SFE alone, particularly in cases of severe muscle weakness. Thus, the combined use of TENS plus SFE could be recommended for muscle strengthening and balance programs for fall prevention in older adults.
Collapse
|
6
|
Kilroy EA, Ignacz AC, Brann KL, Schaffer CE, Varney D, Alrowaished SS, Silknitter KJ, Miner JN, Almaghasilah A, Spellen TL, Lewis AD, Tilbury K, King BL, Kelley JB, Henry CA. Beneficial impacts of neuromuscular electrical stimulation on muscle structure and function in the zebrafish model of Duchenne muscular dystrophy. eLife 2022; 11:62760. [PMID: 35324428 PMCID: PMC8947762 DOI: 10.7554/elife.62760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/10/2022] [Indexed: 12/20/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) allows activation of muscle fibers in the absence of voluntary force generation. NMES could have the potential to promote muscle homeostasis in the context of muscle disease, but the impacts of NMES on diseased muscle are not well understood. We used the zebrafish Duchenne muscular dystrophy (dmd) mutant and a longitudinal design to elucidate the consequences of NMES on muscle health. We designed four neuromuscular stimulation paradigms loosely based on weightlifting regimens. Each paradigm differentially affected neuromuscular structure, function, and survival. Only endurance neuromuscular stimulation (eNMES) improved all outcome measures. We found that eNMES improves muscle and neuromuscular junction morphology, swimming, and survival. Heme oxygenase and integrin alpha7 are required for eNMES-mediated improvement. Our data indicate that neuromuscular stimulation can be beneficial, suggesting that the right type of activity may benefit patients with muscle disease.
Collapse
Affiliation(s)
- Elisabeth A Kilroy
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Amanda C Ignacz
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Kaylee L Brann
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Claire E Schaffer
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Devon Varney
- School of Biology and Ecology, University of Maine, Orono, United States
| | | | - Kodey J Silknitter
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Jordan N Miner
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Ahmed Almaghasilah
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Tashawna L Spellen
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Alexandra D Lewis
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Karissa Tilbury
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Benjamin L King
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Joshua B Kelley
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Clarissa A Henry
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,School of Biology and Ecology, University of Maine, Orono, United States
| |
Collapse
|
7
|
Vasenina E, Kataoka R, Hammert WB, Ibrahim AH, Buckner SL. The acute muscular response following a novel form of pulsed direct current stimulation (Neubie) or traditional resistance exercise. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2022; 22:336-345. [PMID: 36046989 PMCID: PMC9438512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To examine changes in muscle thickness (MT), soreness (SOR), and isometric torque (ISO) following exercise with pulsed direct current (Neubie) or traditional high-load (TRAD) exercise. METHODS Thirty-two participants had SOR, MT, and ISO measured before, immediately after, and 24 and 48h following TRAD and Neubie. Rating of perceived exertion (RPE) and discomfort were also measured. Results are displayed as means(SD). RESULTS For MT, there was a condition x time interaction (p<0.001). For Neubie, MT increased pre [3.7(0.7)cm] to post [3.9(0.8) cm, p<0.001] and remained elevated at 24h. For TRAD, MT increased pre [3.7(0.6)cm] to post [4.0 (0.7)cm, p<0.001] and remained up to 48h. Greater values were observed for TRAD post-exercise. For ISO, both conditions decreased up to 48h. TRAD demonstrated a greater change post exercise (p<0.001). For SOR, both conditions increased up to 48h. Neubie demonstrated greater SOR at 48h (p=0.007). RPE was higher for all sets in TRAD [Mean across sets=16.0(1.9) vs. 13.5(2), p<0.001]. Discomfort was higher in all sets for Neubie [Mean across sets=5.8(1.5)vs. 4.5(2.0), p<0.05]. CONCLUSIONS Both conditions showed increased SOR, and decreased ISO for up to 48h, with MT increased for up to 24h. MT remained elevated in TRAD at 48h. Neubie training might be effective for individuals who are looking to experience lower RPE responses during exercise.
Collapse
Affiliation(s)
- Ecaterina Vasenina
- USF Muscle Lab, Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - Ryo Kataoka
- USF Muscle Lab, Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - William B. Hammert
- USF Muscle Lab, Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - Adam H. Ibrahim
- USF Muscle Lab, Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - Samuel L. Buckner
- USF Muscle Lab, Exercise Science Program, University of South Florida, Tampa, FL, USA,Corresponding author: Samuel L. Buckner, PhD, 4202 E. Fowler Ave. PED 214, Tampa, Florida, 33620-8600, USA E-mail:
| |
Collapse
|
8
|
The Effects of Electrical Stimulation Program on Navicular Height, Balance, and Fear of Falling in Community-Dwelling Elderly. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179351. [PMID: 34501940 PMCID: PMC8430807 DOI: 10.3390/ijerph18179351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Intrinsic foot muscle weakness is a crucial cause of balance deficit in the elderly, which leads to a limited range of motion from the fear of falling and subsequently decreases the quality of life. Muscle strengthening via transcutaneous electrical stimulation (TENS) is an effective intervention; however, its effects on elderly people have rarely been reported. This study was conducted to investigate the effects of TENS on navicular height, balance, and fear of falling. METHOD In this study, forty-eight participants aged 65-75 years were included and were randomly divided into two groups: the TENS and control groups. Before and after 4 weeks of training, navicular height, balance, and fear of falling were measured. RESULT After 4 weeks of training, navicular height significantly increased in both groups (p < 0.05); however, the increase was higher in the TENS group (p = 0.035). The TENS group had a better improvement in balance in all four directions-front, back, left, and right (p < 0.05). However, postural balance improvements in the control group were observed in three directions only-front, back, and left (p < 0.05)-without any significant difference between the two groups. Furthermore, the TENS group decreased the scale of fear of falling after 4 weeks of training (p = 0.039). CONCLUSION In summary, the results of this study can be used as part of the muscle strengthening via ES for decreasing the risk of falls or fear of falling in the elderly.
Collapse
|