1
|
Zheng B, Rao J, Bao L, Yu D, Yin B. Differential modulation of freezing and 22-kHz USVs by shock intensity, tone-duration matching, and anxiety levels in rodent fear-conditioning paradigms. Learn Behav 2025:10.3758/s13420-025-00671-6. [PMID: 40205078 DOI: 10.3758/s13420-025-00671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 04/11/2025]
Abstract
The concept of fear in animals, particularly its manifestation and measurement, remains a focal point in psychological research. This study builds on the systematic review and meta-analysis work of Bao et al. (Neuroscience & Biobehavioral Reviews, 157: 105537, 2024), which posits that freezing behavior and 22-kHz ultrasonic vocalizations (USVs) may represent objective and subjective fear states in rodents, respectively. We further investigated how these responses are modulated by shock intensity, tone-duration matching, and individual anxiety levels in rodent fear-conditioning paradigms. Experiment 1 manipulated shock intensity during fear learning and tone-duration matching between learning and cue tests, revealing that while freezing behavior was consistent across conditions, 22-kHz USVs varied significantly and appeared later than freezing. This divergence was more pronounced in fear generalization tests. Experiment 2 explored the response differences in rodents with high and low anxiety, demonstrating that highly anxious individuals exhibited more 22-kHz USVs but not increased freezing during cue tests. These findings suggest that while freezing may reflect automatic defensive reactions, 22-kHz USVs are more indicative of rodents' cognitive appraisal and their subjective experience of fear. This distinction provides valuable insights that could improve the translation of animal fear models to human psychiatric conditions related to fear and anxiety.
Collapse
Affiliation(s)
- Benhuiyuan Zheng
- Laboratory for Learning and Behavioral Sciences, School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jiaojiao Rao
- Laboratory for Learning and Behavioral Sciences, School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Lili Bao
- Laboratory for Learning and Behavioral Sciences, School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Delin Yu
- Laboratory for Learning and Behavioral Sciences, School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Bin Yin
- Laboratory for Learning and Behavioral Sciences, School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| |
Collapse
|
2
|
Olszyński KH, Polowy R, Wardak AD, Łaska IA, Grymanowska AW, Puławski W, Gawryś O, Koliński M, Filipkowski RK. Male rats emit aversive 44-kHz ultrasonic vocalizations during prolonged Pavlovian fear conditioning. eLife 2024; 12:RP88810. [PMID: 39656518 PMCID: PMC11630816 DOI: 10.7554/elife.88810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Rats are believed to communicate their emotional state by emitting two distinct types of ultrasonic vocalizations. The first is long '22-kHz' vocalizations (>300 ms, <32-kHz) with constant frequency, signaling aversive states, and the second is short '50-kHz' calls (<150 ms, >32 kHz), often frequency-modulated, in appetitive situations. Here, we describe aversive vocalizations emitted at a higher pitch by male Wistar and spontaneously hypertensive rats (SHR) in an intensified aversive state - prolonged fear conditioning. These calls, which we named '44-kHz' vocalizations, are long (>150 ms), generally at a constant frequency (usually within 35-50-kHz range) and have an overall spectrographic image similar to 22-kHz calls. Some 44-kHz vocalizations are comprised of both 22-kHz-like and 44-kHz-like elements. Furthermore, two separate clustering methods confirmed that these 44-kHz calls can be separated from other vocalizations. We observed 44-kHz calls to be associated with freezing behavior during fear conditioning training, during which they constituted up to 19.4% of all calls and most of them appeared next to each other forming uniform groups of vocalizations (bouts). We also show that some of rats' responses to the playback of 44-kHz calls were more akin to that of aversive calls, for example, heart rate changes, whereas other responses were at an intermediate level between aversive and appetitive calls. Our results suggest that rats have a wider vocal repertoire than previously believed, and current definitions of major call types may require reevaluation. We hope that future investigations of 44-kHz calls in rat models of human diseases will contribute to expanding our understanding and therapeutic strategies related to human psychiatric conditions.
Collapse
Affiliation(s)
- Krzysztof Hubert Olszyński
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Agnieszka Diana Wardak
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Izabela Anna Łaska
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Aneta Wiktoria Grymanowska
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Wojciech Puławski
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Olga Gawryś
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Michał Koliński
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| | - Robert Kuba Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
3
|
Venkatraman A, Bretl M, Kim SI, Christensen L, Kelm-Nelson CA, Ciucci MR, Thibeault SL. Stress-Induced Ultrasonic Vocalization in Laboratory Rats and Mice: A Scoping Review. Brain Sci 2024; 14:1109. [PMID: 39595872 PMCID: PMC11591760 DOI: 10.3390/brainsci14111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Introduction: Ultrasonic vocalization (USV) can indicate affective states-including psychosocial stress-in mice and rats. However, stress-induced USV changes could be confounded by laboratory experimental variables such as the type of behavioral stress paradigm, the elicitation method, rodent strain, etc. We sought to provide a review of the current literature to delineate how psychosocial stress-altered rodent USVs may be affected by factors of age, sex, strain, species, elicitation paradigm, and stressor. Methods: We used PubMed, Scopus (Elsevier), PsycINFO (EBSCO), and the following Web of Science (Clarivate) databases: Biological Abstracts, CAB Abstracts, Science Citation Index-Expanded, and Emerging Sources Citation Index. The studies identified by our search strategy were independently screened by two authors with the following inclusion criteria: peer-reviewed, in English, reported original data, and described USV in response to stress in rats or mice. The data extracted included USV acoustic parameters (mean peak frequency and mean amplitude (loudness)), details of the stress and USV elicitation paradigms, rodent species, age, and sex variables. Results: The following screening of 5309 titles/abstracts and 687 full-text articles revealed 148 articles. Footshock (20%), cold exposure (14%), and maternal separation (23.5%) were the most commonly used stress paradigms (duration and type of stressor varied across studies), with the total number of USV calls being the most commonly reported acoustic outcome. In rats, 121 articles described stress-altered USVs, while 25 studies reported the same in mice, and two reported multiple rodent species (rats and mice, alongside other rodent species such as gerbils). With respect to stress-altered USV changes with age, mice and rats increase USV rates after birth, with a peak around 6 to 10 days, and decrease USVs until weanling age. Of the five studies that reported sex-related differences in stress-induced USVs, females had an increased number of calls and lower average peak frequency in response to stress when compared to males. Only two to four studies reported strain-related differences in stress-induced vocalizations in rats and mice, respectively. Conclusions: The data from this review lay the groundwork for better understanding rodent USVs in response to psychosocial stress with effects of elicitation paradigm, stressor, age, and sex.
Collapse
Affiliation(s)
- Anumitha Venkatraman
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Michelle Bretl
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Se-in Kim
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Leslie Christensen
- Ebling Library for the Health Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Cynthia A. Kelm-Nelson
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Michelle R. Ciucci
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Susan L. Thibeault
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| |
Collapse
|
4
|
Wardak AD, Olszyński KH, Polowy R, Matysiak J, Filipkowski RK. Rats that learn to vocalize for food reward emit longer and louder appetitive calls and fewer short aversive calls. PLoS One 2024; 19:e0297174. [PMID: 38335191 PMCID: PMC10857575 DOI: 10.1371/journal.pone.0297174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/31/2023] [Indexed: 02/12/2024] Open
Abstract
Rats are social animals that use ultrasonic vocalizations (USV) in their intraspecific communication. Several types of USV have been previously described, e.g., appetitive 50-kHz USV and aversive short 22-kHz USV. It is not fully understood which aspects of the USV repertoire play important functions during rat ultrasonic exchange. Here, we investigated features of USV emitted by rats trained in operant conditioning, is a form of associative learning between behavior and its consequences, to reinforce the production/emission of 50-kHz USV. Twenty percent of the trained rats learned to vocalize to receive a reward according to an arbitrarily set criterion, i.e., reaching the maximum number of proper responses by the end of each of the last three USV-training sessions, as well as according to a set of measurements independent from the criterion (e.g., shortening of training sessions). Over the training days, these rats also exhibited: an increasing percentage of rewarded 50-kHz calls, lengthening and amplitude-increasing of 50-kHz calls, and decreasing number of short 22-kHz calls. As a result, the potentially learning rats, when compared to non-learning rats, displayed shorter training sessions and different USV structure, i.e. higher call rates, more rewarded 50-kHz calls, longer and louder 50-kHz calls and fewer short 22-kHz calls. Finally, we reviewed the current literature knowledge regarding different lengths of 50-kHz calls in different behavioral contexts, the potential function of short 22-kHz calls as well as speculate that USV may not easily become an operant response due to their primary biological role, i.e., communication of emotional state between conspecifics.
Collapse
Affiliation(s)
- Agnieszka D. Wardak
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof H. Olszyński
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Matysiak
- Institute of Psychology, University of Economics and Human Sciences in Warsaw, Warsaw, Poland
| | - Robert K. Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Schwarting RKW. Behavioral analysis in laboratory rats: Challenges and usefulness of 50-kHz ultrasonic vocalizations. Neurosci Biobehav Rev 2023; 152:105260. [PMID: 37268181 DOI: 10.1016/j.neubiorev.2023.105260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Many rodent species emit and detect vocalizations in the ultrasonic range. Rats use three classes of ultrasonic vocalizations depending on developmental stage, experience and the behavioral situation. Calls from one class emitted by juvenile and adult rats, the so-called 50-kHz calls, are typical for appetitive and social situations. This review provides a brief historical account on the introduction of 50-kHz calls in behavioral research followed by a survey of their scientific applications focusing on the last five years, where 50-kHz publications reached a climax. Then, specific methodological challenges will be addressed, like how to measure and report 50-kHz USV, the problem of assignment of acoustic signals to a specific sender in a social situation, and individual variability in call propensity. Finally, the intricacy of interpreting 50-kHz results will be discussed focusing on the most prevalent ones, namely as communicative signals and/or readouts of the sender's emotional status.
Collapse
Affiliation(s)
- Rainer K W Schwarting
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstrasse 18, 35032 Marburg, Germany; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| |
Collapse
|
6
|
Spontaneously hypertensive rats manifest deficits in emotional response to 22-kHz and 50-kHz ultrasonic playback. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110615. [PMID: 36007820 DOI: 10.1016/j.pnpbp.2022.110615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
Many symptoms used routinely for human psychiatric diagnosis cannot be directly observed in animals which cannot describe their internal states. However, the ultrasonic vocalizations (USV) rodents use to communicate their emotional states can be measured. USV have therefore become a particularly useful tool in brain disease models. Spontaneously hypertensive rats (SHR) are considered an animal model of attention deficit hyperactivity disorder (ADHD) and schizophrenia. However, the specifics of SHR's behavior have not been fully described and there is very little data on their USV. Recently, we developed a communication model, in which Wistar rats are exposed to pre-recorded playbacks of aversive (22-kHz) or appetitive (50-kHz) USV, and their vocal responses depend on the extent of prior fear conditioning (0, 1, 6 or 10 shocks). Here, we investigated SHR's behavior and heart rate (HR) in our communication model, in comparison to Wistar rats employed as controls. In general, SHR emitted typical USV categories, however, they contained more short 22-kHz and less 50-kHz USV overall. Moreover, fewer SHR, in comparison with Wistar rats, emitted long 22-kHz USV after fear conditioning. SHR did not show a 50-kHz playback-induced HR increase, while they showed a profound 22-kHz playback-induced HR decrease. Finally, the number of previously delivered conditioning shocks appeared to have no effect on the investigated vocal, locomotor and HR responses of SHR. The phenomena observed in SHR are potentially attributable to deficits in emotional perception and processing. A lower number of 50-kHz USV emitted by SHR may reflect observations of speech impairments in human patients and further supports the usefulness of SHR to model ADHD and schizophrenia.
Collapse
|
7
|
Hunt ABG, Flint HE, Logan DW, King T. A single dose of cannabidiol (CBD) positively influences measures of stress in dogs during separation and car travel. Front Vet Sci 2023; 10:1112604. [PMID: 36908527 PMCID: PMC9992179 DOI: 10.3389/fvets.2023.1112604] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Many dogs experience stress when separated from their caregivers, as well as when traveling in vehicles. Pet owners employ various approaches to managing these issues, from training, to giving medications and supplements, often with mixed results. Cannabidiol (CBD) can alleviate stress and anxiety in humans but the effect it has on canine stress is less well-documented. The present study aimed to understand the impact of being left alone and traveling in a car on measures of canine stress, and establish whether a single dose of a tetrahydrocannabinol (THC)-free CBD distillate could positively influence any measures of stress. In a blinded, parallel design study, a population of dogs were either left alone in a familiar room (n = 21) or underwent a short car journey (n = 19). A range of physiological and behavioral measures were collected pre, during and post-test. Significant changes in several stress-related measures (serum cortisol, mean ear temperature, heart rate, heart rate variability, whining and a stressed/anxious behavioral factor) were observed from baseline to test, with the car journey test paradigm eliciting a more pronounced stress response overall. The mitigating effect of CBD treatment varied by measure and test, with some indicating a significant reduction in canine stress compared to the placebo group. Additional research is required to fully understand the complex effect of CBD on canine wellbeing.
Collapse
Affiliation(s)
- Alysia B G Hunt
- Waltham Petcare Science Institute, Waltham on the Wolds, United Kingdom
| | - Hannah E Flint
- Waltham Petcare Science Institute, Waltham on the Wolds, United Kingdom
| | - Darren W Logan
- Waltham Petcare Science Institute, Waltham on the Wolds, United Kingdom
| | - Tammie King
- Waltham Petcare Science Institute, Waltham on the Wolds, United Kingdom
| |
Collapse
|
8
|
Wilson EN, Mabry S, Bradshaw JL, Gardner JJ, Rybalchenko N, Engelland R, Fadeyibi O, Osikoya O, Cushen SC, Goulopoulou S, Cunningham RL. Gestational hypoxia in late pregnancy differentially programs subcortical brain maturation in male and female rat offspring. Biol Sex Differ 2022; 13:54. [PMID: 36175941 PMCID: PMC9524087 DOI: 10.1186/s13293-022-00463-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Hypoxia is associated with pregnancy complications, such as preeclampsia, placental abruption, and gestational sleep apnea. Hypoxic insults during gestation can impact the brain maturation of cortical and subcortical pathways, such as the nigrostriatal pathway. However, the long-term effects of in utero hypoxic stress exposure on brain maturation in offspring are unclear, especially exposure during late gestation. The purpose of this study was to determine the impact of gestational hypoxia in late pregnancy on developmental programming of subcortical brain maturation by focusing on the nigrostriatal pathway. METHODS Timed pregnant Long-Evans rats were exposed to chronic intermittent hypoxia or room air normoxia from gestational day (GD) 15-19 (term 22-23 days). Male and female offspring were assessed during two critical periods: puberty from postnatal day (PND) 40-45 or young adulthood (PND 60-65). Brain maturation was quantified by examining (1) the structural development of the nigrostriatal pathway via analysis of locomotor behaviors and the substantia nigra dopaminergic neuronal cell bodies and (2) the refinement of the nigrostriatal pathway by quantifying ultrasonic vocalizations (USVs). RESULTS The major findings of this study are gestational hypoxia has age- and sex-dependent effects on subcortical brain maturation in offspring by adversely impacting the refinement of the nigrostriatal pathway in the absence of any effects on the structural development of the pathway. During puberty, female offspring were impacted more than male offspring, as evidenced by decreased USV call frequency, chirp USV call duration, and simple call frequency. In contrast, male offspring were impacted more than female offspring during young adulthood, as evidenced by increased latency to first USV, decreased simple USV call intensity, and increased harmonic USV call bandwidth. No effects of gestational hypoxia on the structural development of the nigrostriatal pathway were observed. CONCLUSIONS These novel findings demonstrate hypoxic insults during pregnancy mediate developmental programming of the cortical and subcortical pathways, in which male offspring exhibit long-term adverse effects compared to female offspring. Impairment of cortical and subcortical pathways maturation, such as the nigrostriatal pathway, may increase risk for neuropsychiatric disorders (e.g., mood disorders, cognitive dysfunction, brain connectivity dysfunction).
Collapse
Affiliation(s)
- E Nicole Wilson
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Steve Mabry
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jennifer J Gardner
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Nataliya Rybalchenko
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Rachel Engelland
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Oluwadarasimi Fadeyibi
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Department of Basic Sciences, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
9
|
Bogacki-Rychlik W, Wrona A, Bialy M. A Protocol for the Non-invasive Method of Ultrasound Separation During the Sociosexual Vocal-Non-contact Model in Rats. Front Behav Neurosci 2022; 16:910591. [PMID: 35692382 PMCID: PMC9176391 DOI: 10.3389/fnbeh.2022.910591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Ultrasonic vocalization (USV) is one of the measurable behavioral parameters of sociosexual interactions in rats. To precisely and accurately describe the neurobehavioral properties of USV and the potentially related specific emotional responsiveness of animals, we need to know which animals vocalize and what is their exact behavioral and physiological response. To this end, we modified the non-contact cage [non-contact erection model (NCE)] by adding a modification [vocalization-non-contact erection (VOC-NCE)] that makes it possible to assign emitted ultrasonic signals to a particular animal. Typically, the NCE cage consists of two compartments separated by perforated baffles. A male is placed in one section, and a receptive female is placed in the other section. This makes possible the accurate description of sexual parameters related to the cues controlled by the experimenter. In VOC-NCE, we completely separated the male USV from the female USV by three appropriately perforated baffles and located microphones combined with ultrasonic screening. We recorded emission in both typical bands, the so-called 22- and 50-kHz bands, with various subtypes, thus highlighting the utility of our protocol to investigate the sexual dimorphism of vocalization. Similar to the anticipatory model, we showed that emission can occur without acoustic feedback from concomitants during the VOC-NCE test. Therefore, we propose a relatively simple method for assigning individual vocalization. We discuss its usefulness and limitations in assessing vocal differentiation related to sexual parameters, adaptive changes during conditioning procedures, and further applications.
Collapse
|
10
|
Berz AC, Wöhr M, Schwarting RKW. Response Calls Evoked by Playback of Natural 50-kHz Ultrasonic Vocalizations in Rats. Front Behav Neurosci 2022; 15:812142. [PMID: 35095442 PMCID: PMC8797927 DOI: 10.3389/fnbeh.2021.812142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Rats are highly social animals known to communicate with ultrasonic vocalizations (USV) of different frequencies. Calls around 50 kHz are thought to represent a positive affective state, whereas calls around 22 kHz are believed to serve as alarm or distress calls. During playback of natural 50-kHz USV, rats show a reliable and strong social approach response toward the sound source. While this response has been studied in great detail in numerous publications, little is known about the emission of USV in response to natural 50-kHz USV playback. To close this gap, we capitalized on three data sets previously obtained and analyzed USV evoked by natural 50-kHz USV playback in male juvenile rats. We compared different rat stocks, namely Wistar (WI) and Sprague-Dawley (SD) and investigated the pharmacological treatment with the dopaminergic D2 receptor antagonist haloperidol. These response calls were found to vary broadly inter-individually in numbers, mean peak frequencies, durations and frequency modulations. Despite the large variability, the results showed no major differences between experimental conditions regarding call likelihood or call parameters, representing a robust phenomenon. However, most response calls had clearly lower frequencies and were longer than typical 50-kHz calls, i.e., around 30 kHz and lasting generally around 0.3 s. These calls resemble aversive 22-kHz USV of adult rats but were of higher frequencies and shorter durations. Moreover, blockade of dopamine D2 receptors did not substantially affect the emission of response calls suggesting that they are not dependent on the D2 receptor function. Taken together, this study provides a detailed analysis of response calls toward playback of 50-kHz USV in juvenile WI and SD rats. This includes calls representing 50-kHz USV, but mostly calls with lower frequencies that are not clearly categorizable within the so far known two main groups of USV in adult rats. We discuss the possible functions of these response calls addressing their communicative functions like contact or appeasing calls, and whether they may reflect a state of frustration. In future studies, response calls might also serve as a new read-out in rat models for neuropsychiatric disorders, where acoustic communication is impaired, such as autism spectrum disorder.
Collapse
Affiliation(s)
- Annuska C. Berz
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
- *Correspondence: Annuska C. Berz,
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
- Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|