1
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Irisin prevents visceral hypersensitivity and colonic hyperpermeability in a rat model of irritable bowel syndrome. Peptides 2025; 188:171394. [PMID: 40154794 DOI: 10.1016/j.peptides.2025.171394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Visceral hypersensitivity and impaired gut barrier function, accompanied by minor inflammation, are crucial components of the pathophysiology of irritable bowel syndrome (IBS). Research has demonstrated that corticotropin-releasing factor (CRF) and toll-like receptor 4 (TLR4) signaling mutually activate to produce proinflammatory cytokines, which modulate these gastrointestinal changes. Irisin, a myokine, has been shown to inhibit TLR4-proinflammatory cytokine signaling, thereby improving inflammation driven by obesity and metabolic syndrome. Based on this, we hypothesized that irisin could improve visceral hypersensitivity and impaired gut barrier function induced by lipopolysaccharide (LPS) or CRF (IBS rat models), and tested this hypothesis. The visceral pain threshold, triggered by colonic balloon distention, was assessed by electrophysiologically monitoring abdominal muscle contractions in male Sprague-Dawley rats. Colonic permeability was evaluated by measuring the amount of Evans blue dye absorbed within the colonic tissue. Intraperitoneal irisin prevented LPS-induced visceral hypersensitivity and colonic hyperpermeability in a dose-dependent manner. Irisin also prevented CRF-induced gastrointestinal alterations. The beneficial effects of irisin in the LPS model were reversed by compound C, an AMP-activated protein kinase (AMPK) inhibitor; NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor; sulpiride or domperidone, a dopamine D2 receptor antagonist; atropine and intracisternal injection of SB-334867, a selective orexin 1 receptor antagonist. Overall, these findings suggest that irisin improves visceral sensation and colonic barrier function through AMPK, NO and dopamine D2, cholinergic and brain orexin signaling in IBS model. Thus, irisin may be a promising therapeutic agent for treating IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| |
Collapse
|
2
|
Somach RT, Lim MM, Cohen AS. Effects of Traumatic Brain Injury on the Orexin/Hypocretin System. Neurotrauma Rep 2025; 6:322-335. [PMID: 40309161 PMCID: PMC12040569 DOI: 10.1089/neur.2024.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Traumatic Brain Injuries (TBIs) are known to cause a myriad of symptoms in patients. One common symptom after injury is sleep disruptions. One neuropeptide system has been studied repeatedly as a potential cause of sleep disruptions after TBI- the orexin/hypocretin system. Orexin promotes wakefulness and arousal while disrupting the orexin system causes increased sleepiness and narcolepsy. Studies of TBI in human and animal subjects have shown that TBI affects the orexin system. This review serves as an overview of how TBI affects the orexin/hypocretin system, including structural and functional changes to the neurons after injury. This review is the first to include studies that examine how TBI affects orexin/hypocretin receptors. This review also examines how sex is accounted for in the studies of the orexin system after TBI.
Collapse
Affiliation(s)
| | - Miranda M. Lim
- Oregon Health and Science University, Portland, Oregon, USA
- VA Portland Health Care System, Portland, Oregon, USA
| | - Akiva S. Cohen
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Messore F, Narayanan Therpurakal R, Dufour JP, Hoerder-Suabedissen A, Guidi L, Korrell K, Mueller M, Abuelem M, Lak A, Bannerman DM, Mann EO, Molnár Z. An orexin-sensitive subpopulation of layer 6 neurons regulates cortical excitability and anxiety behaviour. Transl Psychiatry 2025; 15:147. [PMID: 40229262 PMCID: PMC11997144 DOI: 10.1038/s41398-025-03350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/26/2025] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
Cortical layer 6 neurons are the only projection neuron population in the cortical mantle known to electrophysiologically respond to orexin-a neuropeptide involved in cortical arousal and emotive behaviour. These neurons exhibit extensive intercortical and thalamic projections, yet the exact mechanisms underlying these responses are not fully understood. We hypothesize that cortical circuits activated by orexin sensitive L6 neurons in the medial prefrontal cortex (mPFC) are responsible for detecting salient features of sensory stimuli and are therefore involved in regulating emotional states. Here, we show that Drd1a-Cre+ neurons in the mPFC are selectively sensitive to orexin and gate the activation of the prefrontal network in vivo. Moreover, we demonstrated that chronically "silencing" this subpopulation of L6 neurons (Drd1a-Cre+/+:Snap25fl/fl) across the cortical mantle from birth abolishes the orexin-induced prefrontal activation. Consequently, the chronic silencing of these neurons had strong anxiolytic effects on several anxiety-related behavioural paradigms, indicating that orexin-responsive L6 neurons modulate emotional states and may be a substrate for anxiety regulation.
Collapse
Affiliation(s)
- Fernando Messore
- Department of Physiology, Anatomy and Genetics University of Oxford, Oxford, USA
| | - Rajeevan Narayanan Therpurakal
- Department of Physiology, Anatomy and Genetics University of Oxford, Oxford, USA
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Jean-Philippe Dufour
- Department of Physiology, Anatomy and Genetics University of Oxford, Oxford, USA
| | | | - Luiz Guidi
- Department of Physiology, Anatomy and Genetics University of Oxford, Oxford, USA
| | - Kim Korrell
- Department of Physiology, Anatomy and Genetics University of Oxford, Oxford, USA
| | - Marissa Mueller
- Department of Physiology, Anatomy and Genetics University of Oxford, Oxford, USA
| | - Mohammed Abuelem
- Department of Physiology, Anatomy and Genetics University of Oxford, Oxford, USA
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Armin Lak
- Department of Physiology, Anatomy and Genetics University of Oxford, Oxford, USA
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics University of Oxford, Oxford, USA.
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics University of Oxford, Oxford, USA.
| |
Collapse
|
4
|
Di Nicola M, Pepe M, Bonomo L, Milintenda M, Panaccione I, Brugnoli R, Sani G. A Preliminary Report on the Effects of Daridorexant in Patients with Comorbid Insomnia and Substance Use Disorders. Pharmaceuticals (Basel) 2025; 18:378. [PMID: 40143154 PMCID: PMC11946062 DOI: 10.3390/ph18030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Background. Sleep disturbances are frequent in patients with substance use disorders (SUDs) and are associated with craving and addiction relapses, leading to increased clinical severity and detrimental outcomes. Daridorexant, a selective dual orexin receptor antagonist, has been approved for persistent insomnia disorder (ID), but specific insights on patients with SUDs are lacking. Methods. This observational, retrospective study investigated the effects of a three-month treatment with daridorexant (50 mg/day) in 41 outpatients with comorbid IDs and SUDs. Improvement in subjective sleep measures, assessed with the Insomnia Severity Index (ISI) and subjective total sleep time, was the primary outcome measure. Changes in anxiety and depression symptoms, quality of life, clinical global severity, and craving were also investigated through the following: Hamilton Anxiety and Depression Rating Scale; Five-item World Health Organization Well-Being Index; Clinical Global Impression Severity Scale; Visual Analog Scale for Craving. Results. All sleep outcomes significantly improved throughout treatment, which was generally safe and well tolerated, with mild and transient drowsiness and sluggishness reported in 21.1% of patients. Similar improvements were observed in psychopathology, quality of life, and craving, and positive correlations were found among ISI scores and anxiety/depression symptoms and craving. An abstinence rate (i.e., absence of any substance use, regardless of the amount, throughout treatment) of 65.8% was also detected at the endpoint. Conclusions. These preliminary findings suggest that daridorexant might represent a promising tool for treating insomnia in patients with SUDs. Identifying interventions effectively targeting insomnia with a good safety/tolerability profile in SUDs is crucial to achieve remission and full functional recovery.
Collapse
Affiliation(s)
- Marco Di Nicola
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
| | - Maria Pepe
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
| | - Lorenzo Bonomo
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
| | - Miriam Milintenda
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy
| | - Isabella Panaccione
- Department of Mental Health, ASL Roma 1, Piazza Santa Maria della Pietà 5, 00135 Rome, Italy
| | - Roberto Brugnoli
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
5
|
Li H, Wang S, Wang D, Li J, Song G, Guo Y, Yin L, Tong T, Zhang H, Dong H. Dopamine Drives Feedforward Inhibition to Orexin Feeding System, Mediating Weight Loss Induced by Morphine Addiction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411858. [PMID: 39836540 PMCID: PMC11905075 DOI: 10.1002/advs.202411858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/02/2025] [Indexed: 01/23/2025]
Abstract
Feeding behavior changes induced by opioid addiction significantly contribute to the worsening opioid crisis. Activation of the reward system has shown to provoke binge eating disorder in individuals with opioid use disorder, whereas prolonged opioid exposure leads to weight loss. Understanding the mechanisms underlying these phenomena is essential for addressing this pressing societal issue. This study demonstrates that weight loss resulting from feeding behavior changes during morphine addiction requires the activation of the ventral tegmental area dopamine (DA) system, which suppresses the orexin feeding center. Specifically, DA exerts an inhibitory effect on orexin neurons in the lateral hypothalamus area (LHA) through a feedforward inhibition mediated by GABA neurons in the LHA, involving D1 receptors (D1R) and T-type Ca2+ channels. Moreover, the morphine addiction-induced reduction in body weight and food intake can be reversed by the D1R antagonist SCH23390 and chemogenetic silencing of GABA neurons in the LHA. These findings delineate a neuromodulatory mechanism underlying morphine addiction-associated feeding behavior changes and weight loss.
Collapse
Affiliation(s)
- Huiming Li
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Sa Wang
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Dan Wang
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Jiannan Li
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Ge Song
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Yongxin Guo
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Lu Yin
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Tingting Tong
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Haopeng Zhang
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced ManufactureDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| |
Collapse
|
6
|
Alshiban A, Hasoglu T, Oster J. Efficacy And Safety of Dual Orexin Receptor Antagonist (DORA) For Sleep Disturbance in Patients With Alzheimer's Disease Dementia. A Review Article. Am J Geriatr Psychiatry 2025; 33:209-218. [PMID: 39462720 DOI: 10.1016/j.jagp.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION The rising prevalence of Alzheimer's disease (AD) and related dementia worldwide underscores the urgent need for effective interventions, particularly for managing neuropsychiatric symptoms (NPS) such as sleep disturbance. This review explores the emerging role of Dual Orexin Receptor Antagonists (DORA) in addressing sleep disturbance in patients with Alzheimer's disease dementia. METHODS A comprehensive literature search identified four relevant publications between 2014 and 2024, detailing the use of DORA medications, including suvorexant and lemborexant, in patients with Alzheimer's disease. RESULTS Findings suggest that suvorexant may improve total sleep time (TST), wakefulness after sleep onset (WASO), and sleep efficiency (SE) in Alzheimer's patients with insomnia. Lemborexant demonstrated potential in improving circadian rhythm parameters, particularly in patients with irregular sleep-wake rhythm disorder (ISWRD). Safety profiles of DORA medications appeared favorable, with mild to moderate adverse events reported. However, concerns over potential adverse events, such as falls, underscore the need for careful monitoring. CONCLUSION While the evidence suggests promise for DORA medications in addressing sleep disturbance in Alzheimer's disease, limitations in study populations and duration highlight the need for further investigation. Future clinical trials should aim for broader inclusion criteria, encompassing diverse dementia subtypes and severity levels, to enhance generalizability. Additionally, longer-term trials are essential to assess the sustained efficacy and safety of DORA interventions in this vulnerable population.
Collapse
Affiliation(s)
| | - Tuna Hasoglu
- Department of Psychiatry (TH), Tufts University School of Medicine, Boston, MA
| | - Joel Oster
- Department of Neurology, Tufts Medical Center Boston (JO), Boston, MA
| |
Collapse
|
7
|
Fasano A. The Physiology of Hunger. N Engl J Med 2025; 392:372-381. [PMID: 39842012 DOI: 10.1056/nejmra2402679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Affiliation(s)
- Alessio Fasano
- From the Division of Pediatric Gastroenterology and Nutrition, Mass General for Children and Harvard Medical School, Boston (A.F.); the Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston (A.F.); and the European Biomedical Research Institute of Salerno, Salerno, Italy (A.F.)
| |
Collapse
|
8
|
Bae R, Kim HK, Lu B, Ma J, Xing J, Kim HY. Role of Hypothalamus in Acupuncture's Effects. Brain Sci 2025; 15:72. [PMID: 39851439 PMCID: PMC11763592 DOI: 10.3390/brainsci15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
The significant correlation between ancient medicinal practices and brain function marks a revolutionary frontier in the field of neuroscience. Acupuncture, a traditional oriental medicine, can affect brain regions, such as the hypothalamus, anterior cingulate, posterior cingulate, and hippocampus, and produces specific therapeutic effects, such as pain relief, suppression of hypertension, and alleviation of drug addiction. Among the brain regions, the hypothalamus, a small yet critical region in the brain, plays a pivotal role in maintaining homeostasis by regulating a wide array of physiological processes, including stress responses, energy balance, and pain modulation. Emerging evidence suggests that acupuncture may exert its therapeutic effects by modulating the activity of the hypothalamus and its associated neural circuits, particularly in relation to pain, stress, and metabolic regulation. Thus, we conducted a comprehensive review of past and current research on the role of the hypothalamus in mediating the therapeutic effects of acupuncture.
Collapse
Affiliation(s)
- Ryan Bae
- Morrissey College of Arts and Sciences, Boston College, Boston, MA 02467, USA
| | - Hyung Kyu Kim
- Department of Physiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Baoji Lu
- Department of Physiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Jing Ma
- Department of Physiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Juping Xing
- Department of Physiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
9
|
Serefko A, Wróbel J, Szopa A, Dobrowolski P, Kluz T, Wdowiak A, Bojar I, Poleszak E, Romejko-Wolniewicz E, Derlatka P, Grabowska-Derlatka L, Kacperczyk-Bartnik J, Gieleta AW, Bartnik P, Jakimiuk A, Misiek M, Wróbel A. The Orexin OX 2 Receptor-Dependent Pathway Is Implicated in the Development of Overactive Bladder and Depression in Rats Exposed to Corticosterone. Neurourol Urodyn 2025; 44:229-244. [PMID: 39402852 DOI: 10.1002/nau.25602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 12/24/2024]
Abstract
AIM In the present study, we wanted to check whether TCS OX2 29 (TCS), a potent selective antagonist of OX2 receptors, would have positive effects in an animal model of detrusor overactivity co-existed with the depression-like state in Wistar male rats. METHODS The forced swim test with the measurement of spontaneous locomotor activity, conscious cystometry, determination of c-Fos expression in central micturition areas, and a set of biochemical analyses (with the use of urine, hippocampus, bladder urothelium, and detrusor muscle of tested animals) were carried out. RESULTS The outcomes showed that a 7-day administration of TCS (3 mg/kg/day, subcutaneously) normalizes the cystometric parameters corresponding to overactivity of the detrusor and reverses the pro-depressive response. Furthermore, the antagonism of OX2 receptors restored the abnormal levels of overactive bladder markers (i.e., ATP, CGRP, OCT3, TRPV1, ROCK1, and VAChT), diminished neuronal overactivity in central micturition areas (i.e., pontine micturition center, ventrolateral periaqueductal gray, and medial preoptic area) as well as restored the altered hippocampal levels of CRF, cytokines (IL-1β, IL-6, IL-10, and TNF-α), and growth factors (BDNF and NGF) that reflected biochemical disturbances detected in depressed people. CONCLUSIONS It seems that our findings open new perspectives regarding the implication of the orexin system in the functioning of the urinary bladder and in the pathophysiology of depression.
Collapse
Affiliation(s)
- Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Jan Wróbel
- Medical Faculty, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Artur Wdowiak
- Chair of Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Iwona Bojar
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Ewa Romejko-Wolniewicz
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Derlatka
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Paweł Bartnik
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Artur Jakimiuk
- Department of Obstetrics and Gynecology, National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
- Center for Reproductive Health, Institute of Mother and Child, Warsaw, Poland
| | - Marcin Misiek
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
10
|
Lai KY, Li CJ, Tsai CS, Chou WJ, Huang WT, You HL, Lee SY, Wang LJ. Appetite hormones, neuropsychological function and methylphenidate use in children with attention-deficit/hyperactivity disorder. Psychoneuroendocrinology 2024; 170:107169. [PMID: 39226626 DOI: 10.1016/j.psyneuen.2024.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Appetite hormones may play a significant role in neuronal excitability and synaptic plasticity and may also affect brain function development. This study aimed to explore the role of appetite hormones in attention deficit/hyperactivity disorder (ADHD), including aspects of pathophysiology, pharmacotherapy, and side effects. We recruited 119 patients with ADHD who were undergoing methylphenidate treatment (ADHD+MPH), 77 unmedicated ADHD patients (ADHD-MPH), and 87 healthy controls. Blood samples were collected from all participants to examine serum levels of orexin A, ghrelin, leptin, and adiponectin. Behavioral symptoms were assessed using the Swanson, Nolan, and Pelham Rating Scale, and visual and auditory attention were evaluated using computerized neuropsychological tests. The side effects of methylphenidate treatment were measured using Barkley's Side Effects Rating Scale. Orexin levels in the control group were significantly higher than in the ADHD-MPH (p=0.037) and ADHD+MPH (p<0.001) groups; additionally, orexin levels in the ADHD-MPH group were significantly higher than in the ADHD+MPH group (p=0.032). Leptin levels in both the ADHD+MPH (p=0.011) and ADHD-MPH (p=0.011) groups were significantly lower than in the control group. Ghrelin levels were positively associated with auditory attention across all ADHD groups (p=0.015). Furthermore, ghrelin levels were positively correlated with methylphenidate dosage (p=0.024), and negatively correlated with methylphenidate side effects (p=0.044) in the ADHD+MPH group. These findings provide further insight into the relationships between appetite hormones, pharmacotherapy, and ADHD. Orexin A and leptin are associated with the etiology of ADHD, while orexin A and ghrelin play important roles in attention deficits and methylphenidate usage in ADHD.
Collapse
Affiliation(s)
- Kuan-Yu Lai
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Jung Li
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Shu Tsai
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Jiang C, Lin B, Ye X, Yu Y, Xu P, Peng C, Mou T, Yu X, Zhao H, Zhao M, Li Y, Zhang S, Chen X, Pan F, Shang D, Jin K, Lu J, Chen J, Yin J, Huang M. Graph convolutional network with attention mechanism improve major depressive depression diagnosis based on plasma biomarkers and neuroimaging data. J Affect Disord 2024; 360:336-344. [PMID: 38824965 DOI: 10.1016/j.jad.2024.05.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The absence of clinically-validated biomarkers or objective protocols hinders effective major depressive disorder (MDD) diagnosis. Compared to healthy control (HC), MDD exhibits anomalies in plasma protein levels and neuroimaging presentations. Despite extensive machine learning studies in psychiatric diagnosis, a reliable tool integrating multi-modality data is still lacking. METHODS In this study, blood samples from 100 MDD and 100 HC were analyzed, along with MRI images from 46 MDD and 49 HC. Here, we devised a novel algorithm, integrating graph neural networks and attention modules, for MDD diagnosis based on inflammatory cytokines, neurotrophic factors, and Orexin A levels in the blood samples. Model performance was assessed via accuracy and F1 value in 3-fold cross-validation, comparing with 9 traditional algorithms. We then applied our algorithm to a dataset containing both the aforementioned protein quantifications and neuroimages, evaluating if integrating neuroimages into the model improves performance. RESULTS Compared to HC, MDD showed significant alterations in plasma protein levels and gray matter volume revealed by MRI. Our new algorithm exhibited superior performance, achieving an F1 value and accuracy of 0.9436 and 94.08 %, respectively. Integration of neuroimaging data enhanced our novel algorithm's performance, resulting in an improved F1 value and accuracy, reaching 0.9543 and 95.06 %. LIMITATIONS This single-center study with a small sample size requires future evaluations on a larger test set for improved reliability. CONCLUSIONS In comparison to traditional machine learning models, our newly developed MDD diagnostic model exhibited superior performance and showed promising potential for inclusion in routine clinical diagnosis for MDD.
Collapse
Affiliation(s)
- Chaonan Jiang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Bo Lin
- Department of Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China; School of Software Technology, Zhejiang University, Ningbo 315048, China
| | - Xinyi Ye
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Yiran Yu
- Management of Science with Artificial Intelligence, University of Nottingham Ningbo China, 315048, China
| | - Pengfeng Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Chenxu Peng
- Department of Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xinjian Yu
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haoyang Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Miaomiao Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ying Li
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Shiyi Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xuanqiang Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Fen Pan
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Desheng Shang
- Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jingkai Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianwei Yin
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310003, China
| | - Manli Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
12
|
Carpi M, Palagini L, Fernandes M, Calvello C, Geoffroy PA, Miniati M, Pini S, Gemignani A, Mercuri NB, Liguori C. Clinical usefulness of dual orexin receptor antagonism beyond insomnia: Neurological and psychiatric comorbidities. Neuropharmacology 2024; 245:109815. [PMID: 38114045 DOI: 10.1016/j.neuropharm.2023.109815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Orexin is a neurotransmitter produced by a small group of hypothalamic neurons. Besides its well-known role in the regulation of the sleep-wake cycle, the orexin system was shown to be relevant in several physiological functions including cognition, mood and emotion modulation, and energy homeostasis. Indeed, the implication of orexin neurotransmission in neurological and psychiatric diseases has been hypothesized via a direct effect exerted by the projections of orexin neurons to several brain areas, and via an indirect effect through orexin-mediated modulation of sleep and wake. Along with the growing evidence concerning the use of dual orexin receptor antagonists (DORAs) in the treatment of insomnia, studies assessing their efficacy in insomnia comorbid with psychiatric and neurological diseases have been set in order to investigate the potential impact of DORAs on both sleep-related symptoms and disease-specific manifestations. This narrative review aimed at summarizing the current evidence on the use of DORAs in neurological and psychiatric conditions comorbid with insomnia, also discussing the possible implication of modulating the orexin system for improving the burden of symptoms and the pathological mechanisms of these disorders. Target searches were performed on PubMed/MEDLINE and Scopus databases and ongoing studies registered on Clinicaltrials.gov were reviewed. Despite some contradictory findings, preclinical studies seemingly support the possible beneficial role of orexin antagonism in the management of the most common neurological and psychiatric diseases with sleep-related comorbidities. However, clinical research is still limited and further studies are needed for corroborating these promising preliminary results.
Collapse
Affiliation(s)
- Matteo Carpi
- Sleep and Epilepsy Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy.
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Carmen Calvello
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Pierre Alexis Geoffroy
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018, Paris, France; GHU Paris - Psychiatry & Neurosciences, Paris, France; Université de Paris, NeuroDiderot, Inserm, FHU I2-D2, F-75019, Paris, France.
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | - Angelo Gemignani
- Unit of Psychology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy.
| | | | - Claudio Liguori
- Sleep and Epilepsy Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
13
|
Ouaidat S, Amaral IM, Monteiro DG, Harati H, Hofer A, El Rawas R. Orexins/Hypocretins: Gatekeepers of Social Interaction and Motivation. Int J Mol Sci 2024; 25:2609. [PMID: 38473854 PMCID: PMC10931973 DOI: 10.3390/ijms25052609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Ever since the discovery of the brain's orexin/hypocretin system, most research was directed toward unveiling its contribution to the normal functioning of individuals. The investigation of reward-seeking behaviors then gained a lot of attention once the distribution of orexinergic neurons was revealed. Here, we discuss findings on the involvement of orexins in social interaction, a natural reward type. While some studies have succeeded in defining the relationship between orexin and social interaction, the controversy regarding its nature (direct or inverse relation) raises questions about what aspects have been overlooked until now. Upon examining the literature, we identified a research gap concerning conditions influencing the impact of orexins on social behavior expression. In this review, we introduce a number of factors (e.g., stress, orexin's source) that must be considered while studying the role of orexins in social interaction. Furthermore, we refer to published research to investigate the stage at which orexins affect social interaction and we highlight the nucleus accumbens (NAc) shell's role in social interaction and other rewarding behaviors. Finally, the underlying orexin molecular pathway influencing social motivation in particular illnesses is proposed. We conclude that orexin's impact on social interaction is multifactorial and depends on specific conditions available at a time.
Collapse
Affiliation(s)
- Sara Ouaidat
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 1533, Lebanon
| | - Inês M. Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Diogo G. Monteiro
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 1533, Lebanon
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
15
|
Kang J, Ren B, Huang L, Dong X, Xiong Q, Feng Z. Orexin-A alleviates ferroptosis by activating the Nrf2/HO-1 signaling pathway in traumatic brain injury. Aging (Albany NY) 2024; 16:3404-3419. [PMID: 38349868 PMCID: PMC10929813 DOI: 10.18632/aging.205541] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Traumatic Brain Injury (TBI) has high disability and mortality rate. Oxidative stress and ferroptosis are important pathophysiological characteristics after TBI. Orexin-A (OXA) can alleviate neuronal damage in diverse neurological disorders. Nevertheless, the role and mechanism of OXA in TBI stay unknown. OBJECTIVES The research investigated protection influence of OXA on TBI and its potential mechanisms. METHODS Male Sprague-Dawley rats were randomly grouped into: sham, TBI, TBI + normal saline (NS) and TBI+OXA groups. TBI model was constructed in rat via modified Feeney's approach, and OXA treatment was administered following construction of TBI model. RESULTS Relative to TBI+NS group, TBI+OXA group displayed greatly recovered tissue damage and neurological deficits. Additionally, OXA eased oxidative stress as well as ferroptosis in cerebral cortex of rats following TBI. Furthermore, OXA increased Nrf2 expression and regulating factors HO-1 and NQO1 in cerebral cortex of TBI rats. CONCLUSIONS Our research found OXA may restrain ferroptosis via Nrf2/HO-1 signaling pathway activation, thereby reducing brain injury after TBI.
Collapse
Affiliation(s)
- Junwei Kang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Bingkai Ren
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Lianghua Huang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
- First Department of Rehabilitation Medicine, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Xiaoyang Dong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Qi Xiong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhen Feng
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| |
Collapse
|
16
|
Carter JK, Quach BC, Willis C, Minto MS, PGC-SUD Epigenetics Working Group, Hancock DB, Montalvo-Ortiz J, Corradin O, Logan RW, Walss-Bass C, Maher BS, Johnson EO. Identifying novel gene dysregulation associated with opioid overdose death: A meta-analysis of differential gene expression in human prefrontal cortex. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.12.24301153. [PMID: 38260365 PMCID: PMC10802752 DOI: 10.1101/2024.01.12.24301153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Only recently have human postmortem brain studies of differential gene expression (DGE) associated with opioid overdose death (OOD) been published; sample sizes from these studies have been modest (N = 40-153). To increase statistical power to identify OOD-associated genes, we leveraged human prefrontal cortex RNAseq data from four independent OOD studies and conducted a transcriptome-wide DGE meta-analysis (N = 285). Using a unified gene expression data processing and analysis framework across studies, we meta-analyzed 20 098 genes and found 335 significant differentially expressed genes (DEGs) by OOD status (false discovery rate < 0.05). Of these, 66 DEGs were among the list of 303 genes reported as OOD-associated in prior prefrontal cortex molecular studies, including genes/gene families (e.g., OPRK1, NPAS4, DUSP, EGR). The remaining 269 DEGs were not previously reported (e.g., NR4A2, SYT1, HCRTR2, BDNF). There was little evidence of genetic drivers for the observed differences in gene expression between opioid addiction cases and controls. Enrichment analyses for the DEGs across molecular pathway and biological process databases highlight an interconnected set of genes and pathways from orexin and tyrosine kinase receptors through MEK/ERK/MAPK signaling to affect neuronal plasticity.
Collapse
Affiliation(s)
- Javan K. Carter
- Omics, Epidemiology, and Analytics Program, RTI International, Research Triangle Park, North Carolina, USA
| | - Bryan C. Quach
- Omics, Epidemiology, and Analytics Program, RTI International, Research Triangle Park, North Carolina, USA
| | - Caryn Willis
- Omics, Epidemiology, and Analytics Program, RTI International, Research Triangle Park, North Carolina, USA
| | - Melyssa S. Minto
- Omics, Epidemiology, and Analytics Program, RTI International, Research Triangle Park, North Carolina, USA
| | | | - Dana B. Hancock
- Omics, Epidemiology, and Analytics Program, RTI International, Research Triangle Park, North Carolina, USA
| | - Janitza Montalvo-Ortiz
- Department of Psychiatry, Division of Human Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Clinical Neurosciences Division, National Center of PTSD, VA CT Healthcare System, West Haven, Connecticut, USA
| | - Olivia Corradin
- Whitehead Institute Biomedical Research, Cambridge, Massachusetts, USA
| | - Ryan W. Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- MD Anderson Cancer Center University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Brion S. Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Eric Otto Johnson
- Omics, Epidemiology, and Analytics Program, RTI International, Research Triangle Park, North Carolina, USA
- Fellow Program, RTI International, Research Triangle Park, North Carolina, USA
| |
Collapse
|
17
|
Farajzadeh-Dehkordi M, Mafakher L, Harifi A, Haghdoost-Yazdi H, Piri H, Rahmani B. Unraveling the function and structure impact of deleterious missense SNPs in the human OX1R receptor by computational analysis. Sci Rep 2024; 14:833. [PMID: 38191899 PMCID: PMC10774445 DOI: 10.1038/s41598-023-49809-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
The orexin/hypocretin receptor type 1 (OX1R) plays a crucial role in regulating various physiological functions, especially feeding behavior, addiction, and reward. Genetic variations in the OX1R have been associated with several neurological disorders. In this study, we utilized a combination of sequence and structure-based computational tools to identify the most deleterious missense single nucleotide polymorphisms (SNPs) in the OX1R gene. Our findings revealed four highly conserved and structurally destabilizing missense SNPs, namely R144C, I148N, S172W, and A297D, located in the GTP-binding domain. Molecular dynamics simulations analysis demonstrated that all four most detrimental mutant proteins altered the overall structural flexibility and dynamics of OX1R protein, resulting in significant changes in the structural organization and motion of the protein. These findings provide valuable insights into the impact of missense SNPs on OX1R function loss and their potential contribution to the development of neurological disorders, thereby guiding future research in this field.
Collapse
Affiliation(s)
- Mahvash Farajzadeh-Dehkordi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Harifi
- Department of Electrical and Computer Engineering, University of Hormozgan, Bandar Abbas, Hormozgan, Iran
| | - Hashem Haghdoost-Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Piri
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Babak Rahmani
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran.
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
18
|
Ren J, Zhao X, Su C, Li X, Zhou J. ADHD in narcolepsy: A closer look at prevalence and ties. Neurosci Biobehav Rev 2024; 156:105471. [PMID: 38030099 DOI: 10.1016/j.neubiorev.2023.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
The reported prevalence of attention deficit hyperactivity disorder (ADHD) in narcolepsy varies considerably, while the associated factors remain inadequately established. A systematic search of studies published in PubMed, EMBASE, and the Cochrane Library was performed from inception to March 2023. Ten studies with 839 patients with narcolepsy were included in the study. Utilizing a random effects model, the pooled prevalence of ADHD in narcolepsy was 25% (95% CI, 14-38%). Notably, patients with narcolepsy type 2 showed a significantly higher prevalence of ADHD than that of narcolepsy type 1 (46% vs. 20%, p = 0.045). Furthermore, the rate of ADHD was notably elevated in narcolepsy compared with the healthy controls (odds ratio 9.59, 95% CI, 4.06-22.63, p < 0.001). Several factors such as excessive daytime sleepiness (EDS), fatigue, insomnia severity, and the quality of life were significantly associated with ADHD in narcolepsy (all ps < 0.05). These findings highlight the importance of monitoring and managing ADHD in narcolepsy, and provide a clue to help reducing ADHD by intervening in these associated factors.
Collapse
Affiliation(s)
- Jiafeng Ren
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China; Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xianchao Zhao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Changjun Su
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Psychology, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region, China.
| | - Junying Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China; Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Wang L, Wang R, Song M, Lu W, Li N, Gao Y, Huang F, Liu B, Chen H, An C, Wang X. Association between peripheral orexin A/B levels and depression with childhood trauma. J Affect Disord 2023; 340:592-597. [PMID: 37385389 DOI: 10.1016/j.jad.2023.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Orexin dysfunction has previously been demonstrated to be associated with depression. However, no studies reported the different effects of orexin A/B on depression with and without childhood trauma (CT). In this study,we assessed the correlation between expression of orexin A/B and depression severity in major depressive disorder (MDD) patients and healthy controls. METHODS A total of 97 MDD patients and 51 healthy controls were recruited in this study. According to the total scores of childhood trauma questionnaire (CTQ), the MDD patients were further divided into two subgroups, MDD with CT and MDD without CT. The 17-item Hamilton Depression Scale (HAMD-17), and plasma orexin A and orexin B concentrations were measured in all participants using enzyme-linked immunosorbent assay. RESULTS Orexin B plasma levels were significantly higher in MDD patients with CT and without CT than that in the healthy control group (P < 0.05), whereas there was no statistical difference between the two depression groups. After adjusting age and BMI for covariates, the LASSO regression revealed significant association between the plasma orexin B levels and the total scores of HAMD (β = 3.348), CTQ (β = 2.005). There was no difference in plasma orexin A levels among three groups (P > 0.05). CONCLUSIONS Although peripheral orexin B levels are associated with the depression, rather than orexin A, CT appear to play a role in the association between orexin B levels and depression. China Clinical Trial Registration Center (Registration No.: ChiCTR2000039692).
Collapse
Affiliation(s)
- Lan Wang
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Ran Wang
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Mei Song
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Wenting Lu
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Na Li
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Yuanyuan Gao
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Fanfan Huang
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Bufan Liu
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Huan Chen
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China
| | - Cuixia An
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China.
| | - Xueyi Wang
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Medical Research Center for Mental Disorders, Hebei technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang 050031, China.
| |
Collapse
|
20
|
Mazaheri S, Zendehdel M, Haghparast A. Restraint stress potentiates sensitivity to the antinociceptive effect of morphine through orexin receptors in the ventral tegmental area. Neuropeptides 2023; 101:102353. [PMID: 37385145 DOI: 10.1016/j.npep.2023.102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Orexin signaling in the ventral tegmental area (VTA) plays a critical role in stress and addictive behaviors. On the other hand, exposure to stress potentiates behavioral sensitization to drugs of abuse such as morphine. This study aimed to elucidate the role of orexin receptors within the VTA in restraint stress (RS)-induced morphine sensitization. Adult male albino Wistar rats underwent stereotaxic surgery, and two stainless steel guide cannulae were bilaterally implanted into the VTA. Different doses of SB334867 or TCS OX2 29 as orexin-1 (OX1) and orexin-2 (OX2) receptor antagonists were microinjected into the VTA five min before exposure to RS, respectively. A duration of three hours was considered for applying the RS, and 10 min after RS exposure, animals received a subcutaneous injection of an ineffective dose of morphine (1 mg/kg) for three consecutive days followed by a five-day drug/stress-free period. On the ninth day, the tail-flick test evaluated the sensitivity to the antinociceptive effects of morphine. The results demonstrated that the sole application of RS or morphine (1 mg/kg) could not induce morphine sensitization; however, concurrent application of RS and morphine could induce morphine sensitization. Besides, intra-VTA administration of OX1 R or OX2 R antagonists before paired administration of morphine and RS blocked morphine sensitization. The role of OX1 R and OX2 R in the induction of stress-induced morphine sensitization was almost identical. This study provides new insight into the role of orexin signaling in the VTA in the potentiation of morphine sensitization induced by RS and morphine co-administration.
Collapse
Affiliation(s)
- Sajad Mazaheri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Zendehdel
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Najib J, Toderika Y, Dima L. Daridorexant, an Orexin Receptor Antagonist for the Management of Insomnia. Am J Ther 2023; 30:e360-e368. [PMID: 37449930 DOI: 10.1097/mjt.0000000000001647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND Insomnia is a common sleep disorder that is diagnosed primarily by patients' subjective reported symptoms. Daridorexant is a new dual orexin receptor antagonist that was recently approved by Food and Drug Administration for insomnia characterized by difficulty falling asleep and/or maintaining sleep. MECHANISM OF ACTION, PHARMACODYNAMICS, AND PHARMACOKINETICS The orexin neuropeptide signaling system plays a role in wakefulness, and blocking the wake-promoting neuropeptides results in diminished wake signaling, thus exerting a sedative effect using an entirely different mechanism of action than the classical sleep promoting agents. The drug has quick onset of action, high volume of distribution, and high protein binding. Pharmacokinetics and pharmacodynamic parameters were similar in patients of different sex and age and were not significantly affected by race, body size, or mild-to-moderate kidney impairment. Dose limitation to 25 mg in moderate liver impairment and no use in severe liver impairment are recommended. The drug undergoes hepatic CYP3A4 metabolism; thus, caution with strong CYP3A4 inhibitors and inducers is warranted. CLINICAL TRIALS The drug was approved based on phase 3 trials involving study 1 and study 2. Study 1 noted daridorexant at doses of 25 and 50 mg demonstrated a statistically significant improvement in wake time after sleep onset, latency to persistent sleep, and self-reported total sleep time against placebo at months 1 and 3. Similarly in study 2, compared with placebo, the 25 mg dose demonstrated statistically significant improvement in wake time after sleep onset, latency to persistent sleep, and self-reported total sleep time at months 1 and 3. Treatment-emergent adverse events were similar for daridorexant and placebo, with nasopharyngitis and headache most frequently reported. THERAPEUTIC ADVANCE Daridorexant is a novel agent with demonstrated efficacy in sleep onset and maintenance and decrease in daytime sedation. Preliminary results from a 1-year extension study note similar incidences of mild-to-moderate side effects as noted in previous trials. Further studies are needed to establish its place in the pharmacological treatment of insomnia.
Collapse
Affiliation(s)
- Jadwiga Najib
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY; and
| | - Yuliana Toderika
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY; and
| | - Lorena Dima
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Transilvania University of Brasov, Brasov, Romania
| |
Collapse
|
22
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
23
|
Sonuga-Barke EJS, Becker SP, Bölte S, Castellanos FX, Franke B, Newcorn JH, Nigg JT, Rohde LA, Simonoff E. Annual Research Review: Perspectives on progress in ADHD science - from characterization to cause. J Child Psychol Psychiatry 2023; 64:506-532. [PMID: 36220605 PMCID: PMC10023337 DOI: 10.1111/jcpp.13696] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 12/20/2022]
Abstract
The science of attention-deficit/hyperactivity disorder (ADHD) is motivated by a translational goal - the discovery and exploitation of knowledge about the nature of ADHD to the benefit of those individuals whose lives it affects. Over the past fifty years, scientific research has made enormous strides in characterizing the ADHD condition and in understanding its correlates and causes. However, the translation of these scientific insights into clinical benefits has been limited. In this review, we provide a selective and focused survey of the scientific field of ADHD, providing our personal perspectives on what constitutes the scientific consensus, important new leads to be highlighted, and the key outstanding questions to be addressed going forward. We cover two broad domains - clinical characterization and, risk factors, causal processes and neuro-biological pathways. Part one focuses on the developmental course of ADHD, co-occurring characteristics and conditions, and the functional impact of living with ADHD - including impairment, quality of life, and stigma. In part two, we explore genetic and environmental influences and putative mediating brain processes. In the final section, we reflect on the future of the ADHD construct in the light of cross-cutting scientific themes and recent conceptual reformulations that cast ADHD traits as part of a broader spectrum of neurodivergence.
Collapse
Affiliation(s)
- Edmund J S Sonuga-Barke
- School of Academic Psychiatry, Institute of Psychology, Psychiatry & Neuroscience, King’s College London. UK
- Department of Child & Adolescent Psychiatry, Aarhus University, Denmark
| | - Stephen P. Becker
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, United States
| | - Sven Bölte
- Department of Women’s and Children’s Health, Karolinska Institutet, Sweden
- Division of Child and Adolescent Psychiatry, Center for Psychiatry Research, Stockholm County Council, Sweden
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Joel T. Nigg
- Department of Psychiatry, Oregon Health and Science University, USA
| | - Luis Augusto Rohde
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clinica de Porto Alegre, Federal University of Rio Grande do Sul, Brazil; National Institute of Developmental Psychiatry, Brazil
| | - Emily Simonoff
- School of Academic Psychiatry, Institute of Psychology, Psychiatry & Neuroscience, King’s College London. UK
| |
Collapse
|
24
|
Dual Cannabinoid and Orexin Regulation of Anhedonic Behaviour Caused by Prolonged Restraint Stress. Brain Sci 2023; 13:brainsci13020314. [PMID: 36831860 PMCID: PMC9954020 DOI: 10.3390/brainsci13020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The endocannabinoid and orexin systems share many biological functions, including wakefulness, stress response, reward processing, and mood. While these systems work against one another with respect to arousal, chronic stress-induced downregulation of both systems often leads to anhedonia or the inability to experience pleasure from natural rewards. In the current study, a 24 h restraint stress test (24 h RST) reduced sucrose preference in adult male and female C57BL/6 mice. Prior to the stressor, subsets of mice were intraperitoneally administered cannabinoid and orexin receptor agonists, antagonists, and combinations of these drugs. Restraint mice that received the cannabinoid receptor type 1 (CB1R) antagonist SR141716A, orexin receptor type 2 (OX2R) agonist YNT-185, and the combination of SR141716A and YNT-185, exhibited less anhedonia compared to vehicle/control mice. Thus, the 24 h RST likely decreased orexin signaling, which was then restored by YNT-185. Receptor colocalization analysis throughout mesocorticolimbic brain regions revealed increased CB1R-OX1R colocalization from SR141716A and YNT-185 treatments. Although a previous study from our group showed additive cataleptic effects between CP55,940 and the dual orexin receptor antagonist (TCS-1102), the opposite combination of pharmacological agents proved additive for sucrose preference. Taken together, these results reveal more of the complex interactions between the endocannabinoid and orexin systems.
Collapse
|
25
|
Ziemichód W, Grabowska K, Kurowska A, Biała G. A Comprehensive Review of Daridorexant, a Dual-Orexin Receptor Antagonist as New Approach for the Treatment of Insomnia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186041. [PMID: 36144776 PMCID: PMC9502995 DOI: 10.3390/molecules27186041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
Insomnia affects 4.4-4.8% of the world's population, but because the effect of hypnotic drugs is limited and may cause harmful side-effects, scientists are turning their attention to developing drugs that act on the orexin system. Daridorexant, a selective dual-orexin receptor antagonist (DORA), has exhibited promising results in both animal and human studies. Its activity was evaluated based on the physiology-based pharmacodynamic and pharmacokinetic model. The use of daridorexant is considered safe, with no clinically significant side-effects including deprivation of next-morning residual effects. In this manuscript we conducted a comprehensive review of daridorexant including pharmacodynamics, animal and human research, pharmacokinetics and safety.
Collapse
|
26
|
Saadati N, Bananej M, Khakpai F, Zarrindast MR, Alibeik H. Synergistic antidepressant effects of citalopram and SB-334867 in the REM sleep-deprived mice: Possible role of BDNF. Pharmacol Biochem Behav 2022; 219:173449. [PMID: 35973584 DOI: 10.1016/j.pbb.2022.173449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
This study was done to evaluate the effect of co-treatment of orexin agents along with citalopram on the modulation of depression-like behavior and the expression of BDNF in the prefrontal cortex (PFC) of sleep-deprived male mice. A sleep deprivation model was performed in which rapid eye movement (REM) sleep was completely prohibited, and non-REM sleep was intensely reduced for 24 h. For drug microinjection, the guide cannula was surgically fixed in the left lateral ventricle of mice. Furthermore, we used the open-field test (OFT), forced swim test (FST), tail suspension test (TST), and splash test for recording depression-like behavior as well as Real-Time PCR amplification for assessing the expression of BDNF in the PFC of REM sleep-deprived mice. Our results revealed that REM sleep deprivation did not change locomotor activity while increased depressive-like behavior in FST, TST, and splash tests. However, the expression of BDNF was decreased in the PFC. Intraperitoneally (i.p.) administration of citalopram induced antidepressant effect in the normal and REM sleep-deprived mice. Moreover, intracerebroventricular (i.c.v.) microinjection of a non-effective dose of SB-334867, an orexin antagonist, potentiated the antidepressant-like effect of citalopram. On the other hand, a non-significant dosage of orexin-1 reversed the antidepressant effect of citalopram in the normal and REM sleep-deprived animals. Furthermore, our results showed that injection of citalopram alone or with SB-334867 increased the mRNA expression level of BDNF in the PFC of REM sleep-deprived mice. These data suggest that REM sleep deprivation interferes with the neural systems underlying the depression-like process and supports a likely interaction of the orexin system with citalopram on the modulation of depression-like behavior in REM sleep-deprived mice.
Collapse
Affiliation(s)
- Naghmeh Saadati
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Bananej
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Hengameh Alibeik
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Bergamini G, Coloma P, Massinet H, Steiner MA. What evidence is there for implicating the brain orexin system in neuropsychiatric symptoms in dementia? Front Psychiatry 2022; 13:1052233. [PMID: 36506416 PMCID: PMC9732550 DOI: 10.3389/fpsyt.2022.1052233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Neuropsychiatric symptoms (NPS) affect people with dementia (PwD) almost universally across all stages of the disease, and regardless of its exact etiology. NPS lead to disability and reduced quality of life of PwD and their caregivers. NPS include hyperactivity (agitation and irritability), affective problems (anxiety and depression), psychosis (delusions and hallucinations), apathy, and sleep disturbances. Preclinical studies have shown that the orexin neuropeptide system modulates arousal and a wide range of behaviors via a network of axons projecting from the hypothalamus throughout almost the entire brain to multiple, even distant, regions. Orexin neurons integrate different types of incoming information (e.g., metabolic, circadian, sensory, emotional) and convert them into the required behavioral output coupled to the necessary arousal status. Here we present an overview of the behavioral domains influenced by the orexin system that may be relevant for the expression of some critical NPS in PwD. We also hypothesize on the potential effects of pharmacological interference with the orexin system in the context of NPS in PwD.
Collapse
Affiliation(s)
- Giorgio Bergamini
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Preciosa Coloma
- Clinical Science, Global Clinical Development, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Helene Massinet
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | |
Collapse
|