1
|
Acconito C, Rovelli K, Saquella F, Balconi M. Cognitive and emotional engagement in negotiation: insights from EEG and fNIRS Hyperscanning. Exp Brain Res 2025; 243:151. [PMID: 40397160 DOI: 10.1007/s00221-025-07093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
In negotiation, individuals collaborate to achieve a shared goal and reach a mutual agreement by understanding their partner's intentions and adapting to them. Unlike most social cognition studies that investigate brain activity in individuals separately, this study employed an innovative hyperscanning approach, which is able to explore the inter-brain synchronization during negotiation. 26 students, divided into 13 dyads, participated in a negotiation decision-making task, requiring convergence on a shared course of action. The interaction was segmented offline into three phases: opener (sharing of individual opinions), central (negotiation), and final phase (shared decision). Electrophysiological (EEG delta, theta, alpha, beta and gamma bands) and hemodynamic (oxygenated-OHb and deoxygenated-HHb hemoglobin) data were collected. Higher HHb levels were observed during the central phase compared to the final phase, suggesting a relative decrease in frontal activation, potentially due to a shift in cognitive processing toward temporoparietal regions, as indicated by EEG findings. Increased delta, theta, and alpha activity was reported in the frontal area, suggesting the engagement of emotional and motivational systems as well as cortical resources for information processing. Finally, beta and gamma bands showed higher activity in the temporo-central and parieto-occipital areas, indicating the activation of perspective-taking. This study highlights how hyperscanning reveals the neural mechanisms of negotiation, where emotional, cognitive, and perspective-taking processes converge.
Collapse
Affiliation(s)
- Carlotta Acconito
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy.
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli 1, 20123, Milan, Italy.
| | - Katia Rovelli
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli 1, 20123, Milan, Italy
| | - Federica Saquella
- Faculty of Medicine, Università Degli Studi di Milano, Via Festa del Perdono, 7, 20122, Milan, Italy
| | - Michela Balconi
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli 1, 20123, Milan, Italy
| |
Collapse
|
2
|
Rovelli K, Balconi M. Mind in others' shoes: Neuroscientific protocol for external referent decision awareness (ERDA) in organizations. Neuroscience 2025; 567:249-260. [PMID: 39798833 DOI: 10.1016/j.neuroscience.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/06/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
This study investigates the neural and physiological mechanisms underlying External Referent Decision Awareness (ERDA) within organizational contexts, focusing on hierarchical roles (Head, Peer, Staff). Twenty-two professionals participated, and electroencephalographic (EEG frequency band: Delta, Theta, Alpha, Beta, Gamma) and autonomic indices (skin conductance and cardiovascular indices) were recorded, while personality traits and decision-making styles were assessed. Results revealed higher Delta and Theta activation in the left temporo-parietal junction (TPJ) during Peer-related decisions, reflecting increased social cognition and ambiguity regulation in those contexts. Gamma activity, associated with high-order cognitive processes, was prominent in the left frontal cortex across all roles, indicating complex decision evaluation. These findings underscore the complexity of low-frequency bands (Delta and Theta), involved in emotional regulation and social cognition, while high-frequency bands (Gamma) reflect cognitive integration and decision complexity. Furthermore, autonomic data showed higher Skin Conductance Levels (SCL) for Head decisions, suggesting greater emotional involvement.The findings revealed a significant negative correlation between avoidant decision-making styles and the neural and behavioral evaluations of leader decisions, suggesting reduced engagement of neurocognitive systems involved in reward processing and evaluative judgment in individuals with a tendency to avoid decision-making. Additionally, higher extraversion correlated with more favorable evaluations of decisions made by Staff, potentially indicating greater activation in neural circuits associated with social reward and group dynamics. In conclusion, these findings suggest that neural activity and personality traits interact to shape hierarchical decision-making awareness, highlighting the need for tailored leadership and decision-making strategies in organizations.
Collapse
Affiliation(s)
- Katia Rovelli
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy; Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy.
| | - Michela Balconi
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy; Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
3
|
Balconi M, Angioletti L, Allegretta RA. Which type of feedback-Positive or negative- reinforces decision recall? An EEG study. Front Syst Neurosci 2025; 18:1524475. [PMID: 39845868 PMCID: PMC11751025 DOI: 10.3389/fnsys.2024.1524475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
This study examines the impact of positive and negative feedback on recall of past decisions, focusing on behavioral performance and electrophysiological (EEG) responses. Participants completed a decision-making task involving 10 real-life scenarios, each followed by immediate positive or negative feedback. In a recall phase, participants' accuracy (ACC), errors (ERRs), and response times (RTs) were recorded alongside EEG data to analyze brain activity patterns related to recall. Results indicate that accurately recalled decisions with positive feedback had slower RTs, suggesting an attentional bias toward positive information that could increase cognitive load during memory retrieval. A lack of difference in recall accuracy implies that social stimuli and situational goals may influence the positivity bias. EEG data showed distinct patterns: lower alpha band activity in frontal regions (AF7, AF8) for both correct and incorrect decisions recall, reflecting focused attention and cognitive control. Correctly recalled decisions with negative feedback showed higher delta activity, often linked to aversive processing, while incorrect recalls with negative feedback showed higher beta and gamma activity. A theta band feedback-dependent modulation in electrode activity showed higher values for decisions with negative feedback, suggesting memory suppression. These findings suggest that recalling decisions linked to self-threatening feedback may require greater cognitive effort, as seen in increased beta and gamma activity, which may indicate motivational processing and selective memory suppression. This study provides insights into the neural mechanisms of feedback-based memory recall, showing how feedback valence affects not only behavioral outcomes but also the cognitive and emotional processes involved in decision recall.
Collapse
Affiliation(s)
- Michela Balconi
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Laura Angioletti
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Roberta A. Allegretta
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
4
|
Balconi M, Rovelli K, Angioletti L, Allegretta RA. Working Memory Workload When Making Complex Decisions: A Behavioral and EEG Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:5754. [PMID: 39275665 PMCID: PMC11397910 DOI: 10.3390/s24175754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
Working memory (WM) is crucial for adequate performance execution in effective decision-making, enabling individuals to identify patterns and link information by focusing on current and past situations. This work explored behavioral and electrophysiological (EEG) WM correlates through a novel decision-making task, based on real-life situations, assessing WM workload related to contextual variables. A total of 24 participants performed three task phases (encoding, retrieval, and metacognition) while their EEG activity (delta, theta, alpha, and beta frequency bands) was continuously recorded. From the three phases, three main behavioral indices were computed: Efficiency in complex Decision-making, Tolerance of Decisional Complexity, and Metacognition of Difficulties. Results showed the central role of alpha and beta bands during encoding and retrieval: decreased alpha/beta activity in temporoparietal areas during encoding might indicate activation of regions related to verbal WM performance and a load-related effect, while decreased alpha activity in the same areas and increased beta activity over posterior areas during retrieval might indicate, respectively, active information processing and focused attention. Evidence from correlational analysis between the three indices and EEG bands are also discussed. Integration of behavioral and metacognitive data gathered through this novel task and their interrelation with EEG correlates during task performance proves useful to assess WM workload during complex managerial decision-making.
Collapse
Affiliation(s)
- Michela Balconi
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Katia Rovelli
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Laura Angioletti
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Roberta A Allegretta
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| |
Collapse
|
5
|
Balconi M, Acconito C, Allegretta RA, Angioletti L. Neurophysiological and Autonomic Correlates of Metacognitive Control of and Resistance to Distractors in Ecological Setting: A Pilot Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2171. [PMID: 38610382 PMCID: PMC11014065 DOI: 10.3390/s24072171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
In organisational contexts, professionals are required to decide dynamically and prioritise unexpected external inputs deriving from multiple sources. In the present study, we applied a multimethodological neuroscientific approach to investigate the ability to resist and control ecological distractors during decision-making and to explore whether a specific behavioural, neurophysiological (i.e., delta, theta, alpha and beta EEG band), or autonomic (i.e., heart rate-HR, and skin conductance response-SCR) pattern is correlated with specific personality profiles, collected with the 10-item Big Five Inventory. Twenty-four participants performed a novel Resistance to Ecological Distractors (RED) task aimed at exploring the ability to resist and control distractors and the level of coherence and awareness of behaviour (metacognition ability), while neurophysiological and autonomic measures were collected. The behavioural results highlighted that effectiveness in performance did not require self-control and metacognition behaviour and that being proficient in metacognition can have an impact on performance. Moreover, it was shown that the ability to resist ecological distractors is related to a specific autonomic profile (HR and SCR decrease) and that the neurophysiological and autonomic activations during task execution correlate with specific personality profiles. The agreeableness profile was negatively correlated with the EEG theta band and positively with the EEG beta band, the conscientiousness profile was negatively correlated with the EEG alpha band, and the extroversion profile was positively correlated with the EEG beta band. Taken together, these findings describe and disentangle the hidden relationship that lies beneath individuals' decision to inhibit or activate intentionally a specific behaviour, such as responding, or not, to an external stimulus, in ecological conditions.
Collapse
Affiliation(s)
- Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy; (M.B.); (R.A.A.); (L.A.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy
| | - Carlotta Acconito
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy; (M.B.); (R.A.A.); (L.A.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy
| | - Roberta A. Allegretta
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy; (M.B.); (R.A.A.); (L.A.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy
| | - Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy; (M.B.); (R.A.A.); (L.A.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milan, Italy
| |
Collapse
|