1
|
Chaudhuri S, Pickering A, Dooley M, Bhattacharya J. Beyond the words: Exploring individual differences in the evaluation of poetic creativity. PLoS One 2024; 19:e0307298. [PMID: 39361574 PMCID: PMC11449365 DOI: 10.1371/journal.pone.0307298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/28/2024] [Indexed: 10/05/2024] Open
Abstract
Poetry is arguably the most creative expression of language and can evoke diverse subjective experiences, such as emotions and aesthetic responses, subsequently influencing the subjective judgment of the creativity of poem. This study investigated how certain personality traits-specifically openness, intellect, awe-proneness, and epistemic curiosity-influence the relationship between these subjective experiences and the creativity judgment of 36 English language poems. One hundred and twenty-nine participants rated each poem across six dimensions: clarity, aesthetic appeal, felt valence, felt arousal, surprise, and overall creativity. Initially, we obtained a parsimonious model that suggested aesthetic appeal, felt valence, and surprise as key predictors of poetic creativity. Subsequently, using multilevel analysis, we investigated the interactions between the four personality traits and these three predictors. Among the personality traits, openness emerged as the primary moderator in predicting judgments of poetic creativity, followed by curiosity and awe-proneness. Among the predictors, aesthetic appeal was moderated by all four personality traits, while surprise was moderated by openness, awe-proneness, and curiosity. Valence, on the other hand, was moderated by openness only. These findings provide novel insights into the ways individual differences influence evaluations of poetic creativity.
Collapse
Affiliation(s)
- Soma Chaudhuri
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Alan Pickering
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Maura Dooley
- Department of English and Creative Writing, Goldsmiths, University of London, London, United Kingdom
| | - Joydeep Bhattacharya
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| |
Collapse
|
2
|
Reybrouck M, Podlipniak P, Welch D. Music Listening as Exploratory Behavior: From Dispositional Reactions to Epistemic Interactions with the Sonic World. Behav Sci (Basel) 2024; 14:825. [PMID: 39336040 PMCID: PMC11429034 DOI: 10.3390/bs14090825] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Listening to music can span a continuum from passive consumption to active exploration, relying on processes of coping with the sounds as well as higher-level processes of sense-making. Revolving around the major questions of "what" and "how" to explore, this paper takes a naturalistic stance toward music listening, providing tools to objectively describe the underlying mechanisms of musical sense-making by weakening the distinction between music and non-music. Starting from a non-exclusionary conception of "coping" with the sounds, it stresses the exploratory approach of treating music as a sound environment to be discovered by an attentive listener. Exploratory listening, in this view, is an open-minded and active process, not dependent on simply recalling pre-existing knowledge or information that reduces cognitive processing efforts but having a high cognitive load due to the need for highly focused attention and perceptual readiness. Music, explored in this way, is valued for its complexity, surprisingness, novelty, incongruity, puzzlingness, and patterns, relying on processes of selection, differentiation, discrimination, and identification.
Collapse
Affiliation(s)
- Mark Reybrouck
- Musicology Research Group, Faculty of Arts, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Institute for Psychoacoustics and Electronic Music (IPEM), Department of Art History, Musicology and Theatre Studies, 9000 Ghent, Belgium
| | - Piotr Podlipniak
- Institute of Musicology, Adam Mickiewicz University in Poznań, 61-712 Poznań, Poland
| | - David Welch
- Institute Audiology Section, School of Population Health, University of Auckland, Auckland 2011, New Zealand
| |
Collapse
|
3
|
Bihari A, Nárai Á, Kleber B, Zsuga J, Hermann P, Vidnyánszky Z. Operatic voices engage the default mode network in professional opera singers. Sci Rep 2024; 14:21313. [PMID: 39266561 PMCID: PMC11393415 DOI: 10.1038/s41598-024-71458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
Extensive research with musicians has shown that instrumental musical training can have a profound impact on how acoustic features are processed in the brain. However, less is known about the influence of singing training on neural activity during voice perception, particularly in response to salient acoustic features, such as the vocal vibrato in operatic singing. To address this gap, the present study employed functional magnetic resonance imaging (fMRI) to measure brain responses in trained opera singers and musically untrained controls listening to recordings of opera singers performing in two distinct styles: a full operatic voice with vibrato, and a straight voice without vibrato. Results indicated that for opera singers, perception of operatic voice led to differential fMRI activations in bilateral auditory cortical regions and the default mode network. In contrast, musically untrained controls exhibited differences only in bilateral auditory cortex. These results suggest that operatic singing training triggers experience-dependent neural changes in the brain that activate self-referential networks, possibly through embodiment of acoustic features associated with one's own singing style.
Collapse
Affiliation(s)
- Adél Bihari
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Ádám Nárai
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology and Sportbiology, Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Boris Kleber
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - Judit Zsuga
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
4
|
T. Zaatar M, Alhakim K, Enayeh M, Tamer R. The transformative power of music: Insights into neuroplasticity, health, and disease. Brain Behav Immun Health 2024; 35:100716. [PMID: 38178844 PMCID: PMC10765015 DOI: 10.1016/j.bbih.2023.100716] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Music is a universal language that can elicit profound emotional and cognitive responses. In this literature review, we explore the intricate relationship between music and the brain, from how it is decoded by the nervous system to its therapeutic potential in various disorders. Music engages a diverse network of brain regions and circuits, including sensory-motor processing, cognitive, memory, and emotional components. Music-induced brain network oscillations occur in specific frequency bands, and listening to one's preferred music can grant easier access to these brain functions. Moreover, music training can bring about structural and functional changes in the brain, and studies have shown its positive effects on social bonding, cognitive abilities, and language processing. We also discuss how music therapy can be used to retrain impaired brain circuits in different disorders. Understanding how music affects the brain can open up new avenues for music-based interventions in healthcare, education, and wellbeing.
Collapse
Affiliation(s)
- Muriel T. Zaatar
- Department of Biological and Physical Sciences, American University in Dubai, Dubai, United Arab Emirates
| | | | | | | |
Collapse
|
5
|
Papatzikis E, Agapaki M, Selvan RN, Pandey V, Zeba F. Quality standards and recommendations for research in music and neuroplasticity. Ann N Y Acad Sci 2023; 1520:20-33. [PMID: 36478395 DOI: 10.1111/nyas.14944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research on how music influences brain plasticity has gained momentum in recent years. Considering, however, the nonuniform methodological standards implemented, the findings end up being nonreplicable and less generalizable. To address the need for a standardized baseline of research quality, we gathered all the studies in the music and neuroplasticity field in 2019 and appraised their methodological rigor systematically and critically. The aim was to provide a preliminary and, at the minimum, acceptable quality threshold-and, ipso facto, suggested recommendations-whereupon further discussion and development may take place. Quality appraisal was performed on 89 articles by three independent raters, following a standardized scoring system. The raters' scoring was cross-referenced following an inter-rater reliability measure, and further studied by performing multiple ratings comparisons and matrix analyses. The results for methodological quality were at a quite good level (quantitative articles: mean = 0.737, SD = 0.084; qualitative articles: mean = 0.677, SD = 0.144), following a moderate but statistically significant level of agreement between the raters (W = 0.44, χ2 = 117.249, p = 0.020). We conclude that the standards for implementation and reporting are of high quality; however, certain improvements are needed to reach the stringent levels presumed for such an influential interdisciplinary scientific field.
Collapse
Affiliation(s)
- Efthymios Papatzikis
- Department of Early Childhood Education and Care, Oslo Metropolitan University, Oslo, Norway
| | - Maria Agapaki
- Department of Early Childhood Education and Care, Oslo Metropolitan University, Oslo, Norway
| | - Rosari Naveena Selvan
- Institute for Physics 3 - Biophysics and Bernstein Center for Computational Neuroscience (BCCN), University of Göttingen, Göttingen, Germany.,Department of Psychology, University of Münster, Münster, Germany
| | | | - Fathima Zeba
- School of Humanities and Social Sciences, Manipal Academy of Higher Education Dubai, Dubai, United Arab Emirates
| |
Collapse
|
6
|
Schneider P, Groß C, Bernhofs V, Christiner M, Benner J, Turker S, Zeidler BM, Seither‐Preisler A. Short-term plasticity of neuro-auditory processing induced by musical active listening training. Ann N Y Acad Sci 2022; 1517:176-190. [PMID: 36114664 PMCID: PMC9826140 DOI: 10.1111/nyas.14899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although there is strong evidence for the positive effects of musical training on auditory perception, processing, and training-induced neuroplasticity, there is still little knowledge on the auditory and neurophysiological short-term plasticity through listening training. In a sample of 37 adolescents (20 musicians and 17 nonmusicians) that was compared to a control group matched for age, gender, and musical experience, we conducted a 2-week active listening training (AULOS: Active IndividUalized Listening OptimizationS). Using magnetoencephalography and psychoacoustic tests, the short-term plasticity of auditory evoked fields and auditory skills were examined in a pre-post design, adapted to the individual neuro-auditory profiles. We found bilateral, but more pronounced plastic changes in the right auditory cortex. Moreover, we observed synchronization of the auditory evoked P1, N1, and P2 responses and threefold larger amplitudes of the late P2 response, similar to the reported effects of musical long-term training. Auditory skills and thresholds benefited largely from the AULOS training. Remarkably, after training, the mean thresholds improved by 12 dB for bone conduction and by 3-4 dB for air conduction. Thus, our findings indicate a strong positive influence of active listening training on neural auditory processing and perception in adolescence, when the auditory system is still developing.
Collapse
Affiliation(s)
- Peter Schneider
- Division of NeuroradiologyUniversity of Heidelberg Medical SchoolHeidelbergGermany,Department of Neurology, Section of BiomagnetismUniversity of Heidelberg Medical SchoolHeidelbergGermany,Jazeps Vitols Latvian Academy of MusicRigaLatvia,Centre for Systematic MusicologyUniversity of GrazGrazAustria
| | - Christine Groß
- Division of NeuroradiologyUniversity of Heidelberg Medical SchoolHeidelbergGermany,Jazeps Vitols Latvian Academy of MusicRigaLatvia
| | | | - Markus Christiner
- Jazeps Vitols Latvian Academy of MusicRigaLatvia,Centre for Systematic MusicologyUniversity of GrazGrazAustria
| | - Jan Benner
- Division of NeuroradiologyUniversity of Heidelberg Medical SchoolHeidelbergGermany,Department of Neurology, Section of BiomagnetismUniversity of Heidelberg Medical SchoolHeidelbergGermany
| | - Sabrina Turker
- Lise Meitner Research Group “Cognition and Plasticity”Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | | | | |
Collapse
|
7
|
Criscuolo A, Pando-Naude V, Bonetti L, Vuust P, Brattico E. An ALE meta-analytic review of musical expertise. Sci Rep 2022; 12:11726. [PMID: 35821035 PMCID: PMC9276732 DOI: 10.1038/s41598-022-14959-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Through long-term training, music experts acquire complex and specialized sensorimotor skills, which are paralleled by continuous neuro-anatomical and -functional adaptations. The underlying neuroplasticity mechanisms have been extensively explored in decades of research in music, cognitive, and translational neuroscience. However, the absence of a comprehensive review and quantitative meta-analysis prevents the plethora of variegated findings to ultimately converge into a unified picture of the neuroanatomy of musical expertise. Here, we performed a comprehensive neuroimaging meta-analysis of publications investigating neuro-anatomical and -functional differences between musicians (M) and non-musicians (NM). Eighty-four studies were included in the qualitative synthesis. From these, 58 publications were included in coordinate-based meta-analyses using the anatomic/activation likelihood estimation (ALE) method. This comprehensive approach delivers a coherent cortico-subcortical network encompassing sensorimotor and limbic regions bilaterally. Particularly, M exhibited higher volume/activity in auditory, sensorimotor, interoceptive, and limbic brain areas and lower volume/activity in parietal areas as opposed to NM. Notably, we reveal topographical (dis-)similarities between the identified functional and anatomical networks and characterize their link to various cognitive functions by means of meta-analytic connectivity modelling. Overall, we effectively synthesized decades of research in the field and provide a consistent and controversies-free picture of the neuroanatomy of musical expertise.
Collapse
Affiliation(s)
- Antonio Criscuolo
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus C, Denmark
| | - Victor Pando-Naude
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus C, Denmark.
| | - Leonardo Bonetti
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus C, Denmark
- Center for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Peter Vuust
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus C, Denmark
| | - Elvira Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus C, Denmark
| |
Collapse
|
8
|
Wang L. Music Aptitude, Training, and Cognitive Transfer: A Mini-Review. Front Psychol 2022; 13:903920. [PMID: 35846628 PMCID: PMC9277581 DOI: 10.3389/fpsyg.2022.903920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
In this mini-review, the genetic basis of music aptitude and the effects of music training are discussed. The review indicates that regardless of levels of innate ability, experience-induced neuroplasticity can occur as a result of music training. When that happens, it can be expressed as functional or structural brain changes. These changes are often accompanied by improvement in performance in tasks involving auditory analysis. Specifically, music training effects can transfer to a closely related cognitive domain such as auditory processing (near transfer). Music training can also affect more distantly related cognitive domains such as spatial and linguistic domains. Lastly, music training can affect general intelligence ("g") (far transfer). Music training can mold behavioral brain development and confers cognitive benefits beyond music.
Collapse
Affiliation(s)
- Lu Wang
- Department of Educational Psychology, Ball State University, Muncie, IN, United States
| |
Collapse
|
9
|
Reybrouck M, Eerola T. Musical Enjoyment and Reward: From Hedonic Pleasure to Eudaimonic Listening. Behav Sci (Basel) 2022; 12:bs12050154. [PMID: 35621451 PMCID: PMC9137732 DOI: 10.3390/bs12050154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
This article is a hypothesis and theory paper. It elaborates on the possible relation between music as a stimulus and its possible effects, with a focus on the question of why listeners are experiencing pleasure and reward. Though it is tempting to seek for a causal relationship, this has proven to be elusive given the many intermediary variables that intervene between the actual impingement on the senses and the reactions/responses by the listener. A distinction can be made, however, between three elements: (i) an objective description of the acoustic features of the music and their possible role as elicitors; (ii) a description of the possible modulating factors—both external/exogenous and internal/endogenous ones; and (iii) a continuous and real-time description of the responses by the listener, both in terms of their psychological reactions and their physiological correlates. Music listening, in this broadened view, can be considered as a multivariate phenomenon of biological, psychological, and cultural factors that, together, shape the overall, full-fledged experience. In addition to an overview of the current and extant research on musical enjoyment and reward, we draw attention to some key methodological problems that still complicate a full description of the musical experience. We further elaborate on how listening may entail both adaptive and maladaptive ways of coping with the sounds, with the former allowing a gentle transition from mere hedonic pleasure to eudaimonic enjoyment.
Collapse
Affiliation(s)
- Mark Reybrouck
- Musicology Research Group, Faculty of Arts, KU Leuven—University of Leuven, 3000 Leuven, Belgium
- Department of Art History, Musicology and Theatre Studies, Institute for Psychoacoustics and Electronic Music (IPEM), 9000 Ghent, Belgium
- Correspondence:
| | - Tuomas Eerola
- Department of Music, Durham University, Durham DH1 3RL, UK;
| |
Collapse
|
10
|
It Takes Two: Interpersonal Neural Synchrony Is Increased after Musical Interaction. Brain Sci 2022; 12:brainsci12030409. [PMID: 35326366 PMCID: PMC8946180 DOI: 10.3390/brainsci12030409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/05/2023] Open
Abstract
Music’s deeply interpersonal nature suggests that music-derived neuroplasticity relates to interpersonal temporal dynamics, or synchrony. Interpersonal neural synchrony (INS) has been found to correlate with increased behavioral synchrony during social interactions and may represent mechanisms that support them. As social interactions often do not have clearly delineated boundaries, and many start and stop intermittently, we hypothesize that a neural signature of INS may be detectable following an interaction. The present study aimed to investigate this hypothesis using a pre-post paradigm, measuring interbrain phase coherence before and after a cooperative dyadic musical interaction. Ten dyads underwent synchronous electroencephalographic (EEG) recording during silent, non-interactive periods before and after a musical interaction in the form of a cooperative tapping game. Significant post-interaction increases in delta band INS were found in the post-condition and were positively correlated with the duration of the preceding interaction. These findings suggest a mechanism by which social interaction may be efficiently continued after interruption and hold the potential for measuring neuroplastic adaption in longitudinal studies. These findings also support the idea that INS during social interaction represents active mechanisms for maintaining synchrony rather than mere parallel processing of stimuli and motor activity.
Collapse
|
11
|
An Introduction to Musical Interactions. MULTIMODAL TECHNOLOGIES AND INTERACTION 2022. [DOI: 10.3390/mti6010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The article presents a contextual survey of eight contributions in the special issue Musical Interactions (Volume I) in Multimodal Technologies and Interaction. The presentation includes (1) a critical examination of what it means to be musical, to devise the concept of music proper to MTI as well as multicultural proximity, and (2) a conceptual framework for instrumentation, design, and assessment of musical interaction research through five enabling dimensions: Affordance; Design Alignment; Adaptive Learning; Second-Order Feedback; Temporal Integration. Each dimension is discussed and applied in the survey. The results demonstrate how the framework provides an interdisciplinary scope required for musical interaction, and how this approach may offer a coherent way to describe and assess approaches to research and design as well as implementations of interactive musical systems. Musical interaction stipulates musical liveness for experiencing both music and technologies. While music may be considered ontologically incomplete without a listener, musical interaction is defined as ontological completion of a state of music and listening through a listener’s active engagement with musical resources in multimodal information flow.
Collapse
|
12
|
Reybrouck M, Podlipniak P, Welch D. Music Listening and Homeostatic Regulation: Surviving and Flourishing in a Sonic World. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:278. [PMID: 35010538 PMCID: PMC8751057 DOI: 10.3390/ijerph19010278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
This paper argues for a biological conception of music listening as an evolutionary achievement that is related to a long history of cognitive and affective-emotional functions, which are grounded in basic homeostatic regulation. Starting from the three levels of description, the acoustic description of sounds, the neurological level of processing, and the psychological correlates of neural stimulation, it conceives of listeners as open systems that are in continuous interaction with the sonic world. By monitoring and altering their current state, they can try to stay within the limits of operating set points in the pursuit of a controlled state of dynamic equilibrium, which is fueled by interoceptive and exteroceptive sources of information. Listening, in this homeostatic view, can be adaptive and goal-directed with the aim of maintaining the internal physiology and directing behavior towards conditions that make it possible to thrive by seeking out stimuli that are valued as beneficial and worthy, or by attempting to avoid those that are annoying and harmful. This calls forth the mechanisms of pleasure and reward, the distinction between pleasure and enjoyment, the twin notions of valence and arousal, the affect-related consequences of music listening, the role of affective regulation and visceral reactions to the sounds, and the distinction between adaptive and maladaptive listening.
Collapse
Affiliation(s)
- Mark Reybrouck
- Faculty of Arts, University of Leuven, 3000 Leuven, Belgium
- Department of Art History, Musicology and Theater Studies, IPEM Institute for Psychoacoustics and Electronic Music, 9000 Ghent, Belgium
| | - Piotr Podlipniak
- Institute of Musicology, Adam Mickiewicz University in Poznań, 61-712 Poznan, Poland;
| | - David Welch
- Institute Audiology Section, School of Population Health, University of Auckland, Auckland 2011, New Zealand;
| |
Collapse
|
13
|
Reybrouck M, Vuust P, Brattico E. Neural Correlates of Music Listening: Does the Music Matter? Brain Sci 2021; 11:1553. [PMID: 34942855 PMCID: PMC8699514 DOI: 10.3390/brainsci11121553] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
The last decades have seen a proliferation of music and brain studies, with a major focus on plastic changes as the outcome of continuous and prolonged engagement with music. Thanks to the advent of neuroaesthetics, research on music cognition has broadened its scope by considering the multifarious phenomenon of listening in all its forms, including incidental listening up to the skillful attentive listening of experts, and all its possible effects. These latter range from objective and sensorial effects directly linked to the acoustic features of the music to the subjectively affective and even transformational effects for the listener. Of special importance is the finding that neural activity in the reward circuit of the brain is a key component of a conscious listening experience. We propose that the connection between music and the reward system makes music listening a gate towards not only hedonia but also eudaimonia, namely a life well lived, full of meaning that aims at realizing one's own "daimon" or true nature. It is argued, further, that music listening, even when conceptualized in this aesthetic and eudaimonic framework, remains a learnable skill that changes the way brain structures respond to sounds and how they interact with each other.
Collapse
Affiliation(s)
- Mark Reybrouck
- Faculty of Arts, University of Leuven, 3000 Leuven, Belgium
- Department of Art History, Musicology and Theater Studies, IPEM Institute for Psychoacoustics and Electronic Music, 9000 Ghent, Belgium
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (P.V.); (E.B.)
- The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (P.V.); (E.B.)
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70122 Bari, Italy
| |
Collapse
|
14
|
Schmitgen A, Saal J, Sankaran N, Desai M, Joseph I, Starr P, Chang EF, Shirvalkar P. Musical Hallucinations in Chronic Pain: The Anterior Cingulate Cortex Regulates Internally Generated Percepts. Front Neurol 2021; 12:669172. [PMID: 34017308 PMCID: PMC8129573 DOI: 10.3389/fneur.2021.669172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
The anterior cingulate cortex (ACC) has been extensively implicated in the functional brain network underlying chronic pain. Electrical stimulation of the ACC has been proposed as a therapy for refractory chronic pain, although, mechanisms of therapeutic action are still unclear. As stimulation of the ACC has been reported to produce many different behavioral and perceptual responses, this region likely plays a varied role in sensory and emotional integration as well as modulating internally generated perceptual states. In this case series, we report the emergence of subjective musical hallucinations (MH) after electrical stimulation of the ACC in two patients with refractory chronic pain. In an N-of-1 analysis from one patient, we identified neural activity (local field potentials) that distinguish MH from both the non-MH condition and during a task involving music listening. Music hallucinations were associated with reduced alpha band activity and increased gamma band activity in the ACC. Listening to similar music was associated with different changes in ACC alpha and gamma power, extending prior results that internally generated perceptual phenomena are supported by circuits in the ACC. We discuss these findings in the context of phantom perceptual phenomena and posit a framework whereby chronic pain may be interpreted as a persistent internally generated percept.
Collapse
Affiliation(s)
- Ashlyn Schmitgen
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
| | - Jeremy Saal
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
| | - Narayan Sankaran
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Maansi Desai
- Department of Speech, Language, and Hearing Science, University of Texas at Austin, Austin, TX, United States
| | - Isabella Joseph
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
| | - Philip Starr
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Edward F. Chang
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Prasad Shirvalkar
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Criscuolo A, Bonetti L, Särkämö T, Kliuchko M, Brattico E. On the Association Between Musical Training, Intelligence and Executive Functions in Adulthood. Front Psychol 2019; 10:1704. [PMID: 31417454 PMCID: PMC6682658 DOI: 10.3389/fpsyg.2019.01704] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/08/2019] [Indexed: 01/09/2023] Open
Abstract
Converging evidence has demonstrated that musical training is associated with improved perceptual and cognitive skills, including executive functions and general intelligence, particularly in childhood. In contrast, in adults the relationship between cognitive performance and musicianship is less clear and seems to be modulated by a number of background factors, such as personality and socio-economic status. Aiming to shed new light on this topic, we administered the Wechsler Adult Intelligence Scale III (WAIS-III), the Wechsler Memory Scale III (WMS-III), and the Stroop Test to 101 Finnish healthy adults grouped according to their musical expertise (non-musicians, amateurs, and musicians). After being matched for socio-economic status, personality traits and other demographic variables, adult musicians exhibited higher cognitive performance than non-musicians in all the mentioned measures. Moreover, linear regression models showed significant positive relationships between executive functions (working memory and attention) and the duration of musical practice, even after controlling for intelligence and background variables, such as personality traits. Hence, our study offers further support for the association between cognitive abilities and musical training, even in adulthood. HIGHLIGHTS - Musicians show higher general intelligence (FSIQ), verbal intelligence (VIQ), working memory (WMI) and attention skills than non-musicians. Amateurs score in between.- Significant positive correlations between years of musical playing and cognitive abilities support the hypothesis that long-term musical practice is associated with intelligence and executive functions.
Collapse
Affiliation(s)
- Antonio Criscuolo
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University - The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marina Kliuchko
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University - The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University - The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
16
|
Lv Y. Influence of Cognitive Neural Mechanism on Music Appreciation and Learning. Transl Neurosci 2019; 10:57-63. [PMID: 31098313 PMCID: PMC6487782 DOI: 10.1515/tnsci-2019-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/28/2019] [Indexed: 11/15/2022] Open
Abstract
Based on the related research results of the relationship between cognitive neural mechanism and music in recent years. In this paper, we study the relationship between the cognitive neurons and music from the overlapping and separation of brain neuro-mechanism and the significance of functional relationships between the two. Through analysis, it can be seen that the cognitive neural mechanism has a certain influence on music appreciation and learning and the studies on brain-damaged patients show that the two may have separate and independent neural bases. Finally, we find the influence of sub-consciousness on decision making through the measurement of SCRs (skin conductance responses), and thus propose a decision model modified by subconscious and make an outlook for future research trends.
Collapse
Affiliation(s)
- Yang Lv
- School of Humanities, Xidian University, Xi'an 710126, China
| |
Collapse
|
17
|
Kliuchko M, Brattico E, Gold BP, Tervaniemi M, Bogert B, Toiviainen P, Vuust P. Fractionating auditory priors: A neural dissociation between active and passive experience of musical sounds. PLoS One 2019; 14:e0216499. [PMID: 31051008 PMCID: PMC6499420 DOI: 10.1371/journal.pone.0216499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022] Open
Abstract
Learning, attention and action play a crucial role in determining how stimulus predictions are formed, stored, and updated. Years-long experience with the specific repertoires of sounds of one or more musical styles is what characterizes professional musicians. Here we contrasted active experience with sounds, namely long-lasting motor practice, theoretical study and engaged listening to the acoustic features characterizing a musical style of choice in professional musicians with mainly passive experience of sounds in laypersons. We hypothesized that long-term active experience of sounds would influence the neural predictions of the stylistic features in professional musicians in a distinct way from the mainly passive experience of sounds in laypersons. Participants with different musical backgrounds were recruited: professional jazz and classical musicians, amateur musicians and non-musicians. They were presented with a musical multi-feature paradigm eliciting mismatch negativity (MMN), a prediction error signal to changes in six sound features for only 12 minutes of electroencephalography (EEG) and magnetoencephalography (MEG) recordings. We observed a generally larger MMN amplitudes-indicative of stronger automatic neural signals to violated priors-in jazz musicians (but not in classical musicians) as compared to non-musicians and amateurs. The specific MMN enhancements were found for spectral features (timbre, pitch, slide) and sound intensity. In participants who were not musicians, the higher preference for jazz music was associated with reduced MMN to pitch slide (a feature common in jazz music style). Our results suggest that long-lasting, active experience of a musical style is associated with accurate neural priors for the sound features of the preferred style, in contrast to passive listening.
Collapse
Affiliation(s)
- Marina Kliuchko
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg (RAMA), Aarhus, Denmark
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elvira Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg (RAMA), Aarhus, Denmark
| | - Benjamin P. Gold
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mari Tervaniemi
- Cicero Learning, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Brigitte Bogert
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Petri Toiviainen
- Department of Music, Art and Culture Studies, University of Jyväskylä, Jyväskylä, Finland
| | - Peter Vuust
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg (RAMA), Aarhus, Denmark
| |
Collapse
|
18
|
The urge to judge: Why the judgmental attitude has anything to do with the aesthetic enjoyment of negative emotions. Behav Brain Sci 2019; 40:e353. [PMID: 29342780 DOI: 10.1017/s0140525x17001613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Based on arguments from both philosophical and empirical aesthetics, we hereby propose that the enjoyment of negative emotions in art and fiction is distinct from the immediate pleasure deriving from sensory features, because it requires a conscious, intentional attitude toward the object. This attitude is linked with the compelling goal of providing a judgment of liking, beauty, perfection, or similar.
Collapse
|
19
|
Mencke I, Omigie D, Wald-Fuhrmann M, Brattico E. Atonal Music: Can Uncertainty Lead to Pleasure? Front Neurosci 2019; 12:979. [PMID: 30670941 PMCID: PMC6331456 DOI: 10.3389/fnins.2018.00979] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/07/2018] [Indexed: 01/25/2023] Open
Abstract
In recent years, the field of neuroaesthetics has gained considerable attention with music being a favored object of study. The majority of studies concerning music have, however, focused on the experience of Western tonal music (TM), which is characterized by tonal hierarchical organization, a high degree of consonance, and a tendency to provide the listener with a tonic as a reference point during the listening experience. We argue that a narrow focus on Western TM may have led to a one-sided view regarding the qualities of the aesthetic experience of music since Western art music from the 20th and 21st century like atonal music (AM) – while lacking a tonal hierarchical structure, and while being highly dissonant and hard to predict – is nevertheless enjoyed by a group of avid listeners. We propose a research focus that investigates, in particular, the experience of AM as a novel and compelling way with which to enhance our understanding of both the aesthetic appreciation of music and the role of predictive models in the context of musical pleasure. We use music theoretical analysis and music information retrieval methods to demonstrate how AM presents the listener with a highly uncertain auditory environment. Specifically, an analysis of a corpus of 100 musical segments is used to illustrate how tonal classical music and AM differ quantitatively in terms of both key and pulse clarity values. We then examine person related, extrinsic and intrinsic factors, that point to potential mechanisms underlying the appreciation and pleasure derived from AM. We argue that personality traits like “openness to experience,” the framing of AM as art, and the mere exposure effect are key components of such mechanisms. We further argue that neural correlates of uncertainty estimation could represent a central mechanism for engaging with AM and that such contexts engender a comparatively weak predictive model in the listener. Finally we argue that in such uncertain contexts, correct predictions may be more subjectively rewarding than prediction errors since they signal to the individual that their predictive model is improving.
Collapse
Affiliation(s)
- Iris Mencke
- Department of Music, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus, Denmark
| | - Diana Omigie
- Department of Music, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany.,Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Melanie Wald-Fuhrmann
- Department of Music, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus, Denmark
| |
Collapse
|
20
|
Reybrouck M, Vuust P, Brattico E. Brain Connectivity Networks and the Aesthetic Experience of Music. Brain Sci 2018; 8:brainsci8060107. [PMID: 29895737 PMCID: PMC6025331 DOI: 10.3390/brainsci8060107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Listening to music is above all a human experience, which becomes an aesthetic experience when an individual immerses himself/herself in the music, dedicating attention to perceptual-cognitive-affective interpretation and evaluation. The study of these processes where the individual perceives, understands, enjoys and evaluates a set of auditory stimuli has mainly been focused on the effect of music on specific brain structures, as measured with neurophysiology and neuroimaging techniques. The very recent application of network science algorithms to brain research allows an insight into the functional connectivity between brain regions. These studies in network neuroscience have identified distinct circuits that function during goal-directed tasks and resting states. We review recent neuroimaging findings which indicate that music listening is traceable in terms of network connectivity and activations of target regions in the brain, in particular between the auditory cortex, the reward brain system and brain regions active during mind wandering.
Collapse
Affiliation(s)
- Mark Reybrouck
- Faculty of Arts, University of Leuven, 3000 Leuven, Belgium.
- Department of Art History, Musicology and Theater Studies, IPEM Institute for Psychoacoustics and Electronic Music, 9000 Ghent, Belgium.
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark.
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark.
| |
Collapse
|
21
|
Sheikhi S, Saboory E, Farjah GH. Correlation of nerve fibers in corpus callosum and number of neurons in cerebral cortex: an innovative mathematical model. Int J Neurosci 2018; 128:995-1002. [PMID: 29619891 DOI: 10.1080/00207454.2018.1458725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Purpose/aim: It is estimated that 109 bits/s information are processed in the human brain. The transmission of this huge amount of information requires all connections in the brain to be highly accurate and have order. The current study attempted to present a new aspect of order and proportion in the ultra-structure of the human brain and to calculate the degree of neural interdependence between the two hemispheres. MATERIALS AND METHODS In this model, intensity of interdependence of the brain to hemispheres is estimated to be equal to the mathematical proportion of number of neurons in cerebral cortex divided by 2 (number of hemispheres), divided by number of nerve fibers in the human corpus callosum. RESULTS The calculated number is equal to 30-50 and it indicates that for every 30-50 neurons between the two hemispheres, there is a neural interconnecting bridge. CONCLUSIONS This connection indicates that the brain's function output follows a mathematical relation.
Collapse
Affiliation(s)
- Siamak Sheikhi
- a Neurophysiology Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | - Ehsan Saboory
- a Neurophysiology Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | - Gholam Hosein Farjah
- b Department of Anatomy, Faculty of medicine , Urmia University of Medical Sciences , Urmia Iran
| |
Collapse
|
22
|
Liu C, Brattico E, Abu-Jamous B, Pereira CS, Jacobsen T, Nandi AK. Effect of Explicit Evaluation on Neural Connectivity Related to Listening to Unfamiliar Music. Front Hum Neurosci 2017; 11:611. [PMID: 29311874 PMCID: PMC5742221 DOI: 10.3389/fnhum.2017.00611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
People can experience different emotions when listening to music. A growing number of studies have investigated the brain structures and neural connectivities associated with perceived emotions. However, very little is known about the effect of an explicit act of judgment on the neural processing of emotionally-valenced music. In this study, we adopted the novel consensus clustering paradigm, called binarisation of consensus partition matrices (Bi-CoPaM), to study whether and how the conscious aesthetic evaluation of the music would modulate brain connectivity networks related to emotion and reward processing. Participants listened to music under three conditions - one involving a non-evaluative judgment, one involving an explicit evaluative aesthetic judgment, and one involving no judgment at all (passive listening only). During non-evaluative attentive listening we obtained auditory-limbic connectivity whereas when participants were asked to decide explicitly whether they liked or disliked the music excerpt, only two clusters of intercommunicating brain regions were found: one including areas related to auditory processing and action observation, and the other comprising higher-order structures involved with visual processing. Results indicate that explicit evaluative judgment has an impact on the neural auditory-limbic connectivity during affective processing of music.
Collapse
Affiliation(s)
- Chao Liu
- Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, United Kingdom
| | - Elvira Brattico
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.,AMI Centre, School of Science, Aalto University, Espoo, Finland
| | - Basel Abu-Jamous
- Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, United Kingdom
| | | | - Thomas Jacobsen
- Experimental Psychology Unit, Helmut Schmidt University, University of Federal Armed Forces, Hamburg, Germany
| | - Asoke K Nandi
- Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, United Kingdom.,The Key Laboratory of Embedded Systems and Service Computing, College of Electronic and Information Engineering, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Invitto S, Calcagnì A, Mignozzi A, Scardino R, Piraino G, Turchi D, De Feudis I, Brunetti A, Bevilacqua V, de Tommaso M. Face Recognition, Musical Appraisal, and Emotional Crossmodal Bias. Front Behav Neurosci 2017; 11:144. [PMID: 28824392 PMCID: PMC5539234 DOI: 10.3389/fnbeh.2017.00144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/19/2017] [Indexed: 01/28/2023] Open
Abstract
Recent research on the crossmodal integration of visual and auditory perception suggests that evaluations of emotional information in one sensory modality may tend toward the emotional value generated in another sensory modality. This implies that the emotions elicited by musical stimuli can influence the perception of emotional stimuli presented in other sensory modalities, through a top-down process. The aim of this work was to investigate how crossmodal perceptual processing influences emotional face recognition and how potential modulation of this processing induced by music could be influenced by the subject's musical competence. We investigated how emotional face recognition processing could be modulated by listening to music and how this modulation varies according to the subjective emotional salience of the music and the listener's musical competence. The sample consisted of 24 participants: 12 professional musicians and 12 university students (non-musicians). Participants performed an emotional go/no-go task whilst listening to music by Albeniz, Chopin, or Mozart. The target stimuli were emotionally neutral facial expressions. We examined the N170 Event-Related Potential (ERP) and behavioral responses (i.e., motor reaction time to target recognition and musical emotional judgment). A linear mixed-effects model and a decision-tree learning technique were applied to N170 amplitudes and latencies. The main findings of the study were that musicians' behavioral responses and N170 is more affected by the emotional value of music administered in the emotional go/no-go task and this bias is also apparent in responses to the non-target emotional face. This suggests that emotional information, coming from multiple sensory channels, activates a crossmodal integration process that depends upon the stimuli emotional salience and the listener's appraisal.
Collapse
Affiliation(s)
- Sara Invitto
- Human Anatomy and Neuroscience Lab, Department of Environmental Science and Technology, University of SalentoLecce, Italy
| | - Antonio Calcagnì
- Department of Psychology and Cognitive Sciences, University of TrentoTrento, Italy
| | - Arianna Mignozzi
- Human Anatomy and Neuroscience Lab, Department of Environmental Science and Technology, University of SalentoLecce, Italy
| | - Rosanna Scardino
- Human Anatomy and Neuroscience Lab, Department of Environmental Science and Technology, University of SalentoLecce, Italy
| | | | - Daniele Turchi
- Human Anatomy and Neuroscience Lab, Department of Environmental Science and Technology, University of SalentoLecce, Italy
| | - Irio De Feudis
- Department of Electrical and Information Engineering, Polytechnic University of BariBari, Italy
| | - Antonio Brunetti
- Department of Electrical and Information Engineering, Polytechnic University of BariBari, Italy
| | - Vitoantonio Bevilacqua
- Department of Electrical and Information Engineering, Polytechnic University of BariBari, Italy
| | - Marina de Tommaso
- Department of Medical Science, Neuroscience, and Sense Organs, University Aldo MoroBari, Italy
| |
Collapse
|
24
|
Reybrouck M, Eerola T. Music and Its Inductive Power: A Psychobiological and Evolutionary Approach to Musical Emotions. Front Psychol 2017; 8:494. [PMID: 28421015 PMCID: PMC5378764 DOI: 10.3389/fpsyg.2017.00494] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/16/2017] [Indexed: 01/27/2023] Open
Abstract
The aim of this contribution is to broaden the concept of musical meaning from an abstract and emotionally neutral cognitive representation to an emotion-integrating description that is related to the evolutionary approach to music. Starting from the dispositional machinery for dealing with music as a temporal and sounding phenomenon, musical emotions are considered as adaptive responses to be aroused in human beings as the product of neural structures that are specialized for their processing. A theoretical and empirical background is provided in order to bring together the findings of music and emotion studies and the evolutionary approach to musical meaning. The theoretical grounding elaborates on the transition from referential to affective semantics, the distinction between expression and induction of emotions, and the tension between discrete-digital and analog-continuous processing of the sounds. The empirical background provides evidence from several findings such as infant-directed speech, referential emotive vocalizations and separation calls in lower mammals, the distinction between the acoustic and vehicle mode of sound perception, and the bodily and physiological reactions to the sounds. It is argued, finally, that early affective processing reflects the way emotions make our bodies feel, which in turn reflects on the emotions expressed and decoded. As such there is a dynamic tension between nature and nurture, which is reflected in the nature-nurture-nature cycle of musical sense-making.
Collapse
Affiliation(s)
- Mark Reybrouck
- Faculty of Arts, Musicology Research Group, KU Leuven - University of LeuvenLeuven, Belgium
| | | |
Collapse
|
25
|
Alluri V, Toiviainen P, Burunat I, Kliuchko M, Vuust P, Brattico E. Connectivity patterns during music listening: Evidence for action-based processing in musicians. Hum Brain Mapp 2017; 38:2955-2970. [PMID: 28349620 DOI: 10.1002/hbm.23565] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
Musical expertise is visible both in the morphology and functionality of the brain. Recent research indicates that functional integration between multi-sensory, somato-motor, default-mode (DMN), and salience (SN) networks of the brain differentiates musicians from non-musicians during resting state. Here, we aimed at determining whether brain networks differentially exchange information in musicians as opposed to non-musicians during naturalistic music listening. Whole-brain graph-theory analyses were performed on participants' fMRI responses. Group-level differences revealed that musicians' primary hubs comprised cerebral and cerebellar sensorimotor regions whereas non-musicians' dominant hubs encompassed DMN-related regions. Community structure analyses of the key hubs revealed greater integration of motor and somatosensory homunculi representing the upper limbs and torso in musicians. Furthermore, musicians who started training at an earlier age exhibited greater centrality in the auditory cortex, and areas related to top-down processes, attention, emotion, somatosensory processing, and non-verbal processing of speech. We here reveal how brain networks organize themselves in a naturalistic music listening situation wherein musicians automatically engage neural networks that are action-based while non-musicians use those that are perception-based to process an incoming auditory stream. Hum Brain Mapp 38:2955-2970, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vinoo Alluri
- Department of Music, University of Jyväskylä, Jyväskylä, Finland
| | - Petri Toiviainen
- Department of Music, University of Jyväskylä, Jyväskylä, Finland
| | - Iballa Burunat
- Department of Music, University of Jyväskylä, Jyväskylä, Finland
| | - Marina Kliuchko
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Peter Vuust
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Elvira Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Denmark.,Advanced Magnetic Imaging (AMI) Centre, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
26
|
Liu C, Abu-Jamous B, Brattico E, Nandi AK. Towards Tunable Consensus Clustering for Studying Functional Brain Connectivity During Affective Processing. Int J Neural Syst 2016; 27:1650042. [DOI: 10.1142/s0129065716500428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decades, neuroimaging of humans has gained a position of status within neuroscience, and data-driven approaches and functional connectivity analyses of functional magnetic resonance imaging (fMRI) data are increasingly favored to depict the complex architecture of human brains. However, the reliability of these findings is jeopardized by too many analysis methods and sometimes too few samples used, which leads to discord among researchers. We propose a tunable consensus clustering paradigm that aims at overcoming the clustering methods selection problem as well as reliability issues in neuroimaging by means of first applying several analysis methods (three in this study) on multiple datasets and then integrating the clustering results. To validate the method, we applied it to a complex fMRI experiment involving affective processing of hundreds of music clips. We found that brain structures related to visual, reward, and auditory processing have intrinsic spatial patterns of coherent neuroactivity during affective processing. The comparisons between the results obtained from our method and those from each individual clustering algorithm demonstrate that our paradigm has notable advantages over traditional single clustering algorithms in being able to evidence robust connectivity patterns even with complex neuroimaging data involving a variety of stimuli and affective evaluations of them. The consensus clustering method is implemented in the R package “UNCLES” available on http://cran.r-project.org/web/packages/UNCLES/index.html .
Collapse
Affiliation(s)
- Chao Liu
- * Department of Electronic and Computer Engineering, Brunel University London, London, UK
| | - Basel Abu-Jamous
- * Department of Electronic and Computer Engineering, Brunel University London, London, UK
| | - Elvira Brattico
- † Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,‡ The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Asoke K Nandi
- * Department of Electronic and Computer Engineering, Brunel University London, London, UK.,§ The Key Laboratory of Embedded Systems and Service Computing, College of Electronic and Information Engineering, Tongji University, Shanghai, P. R. China
| |
Collapse
|
27
|
Blum K, Simpatico T, Febo M, Rodriquez C, Dushaj K, Li M, Braverman ER, Demetrovics Z, Oscar-Berman M, Badgaiyan RD. Hypothesizing Music Intervention Enhances Brain Functional Connectivity Involving Dopaminergic Recruitment: Common Neuro-correlates to Abusable Drugs. Mol Neurobiol 2016; 54:3753-3758. [PMID: 27246565 DOI: 10.1007/s12035-016-9934-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/10/2016] [Indexed: 01/27/2023]
Abstract
The goal of this review is to explore the clinical significance of music listening on neuroplasticity and dopaminergic activation by understanding the role of music therapy in addictive behavior treatment. fMRI data has shown that music listening intensely modifies mesolimbic structural changes responsible for reward processing (e.g., nucleus accumbens [NAc]) and may control the emotional stimuli's effect on autonomic and physiological responses (e.g., hypothalamus). Music listening has been proven to induce the endorphinergic response blocked by naloxone, a common opioid antagonist. NAc opioid transmission is linked to the ventral tegmental area (VTA) dopamine release. There are remarkable commonalities between listening to music and the effect of drugs on mesolimbic dopaminergic activation. It has been found that musical training before the age of 7 results in changes in white-matter connectivity, protecting carriers with low dopaminergic function (DRD2A1 allele, etc.) from poor decision-making, reward dependence, and impulsivity. In this article, we briefly review a few studies on the neurochemical effects of music and propose that these findings are relevant to the positive clinical findings observed in the literature. We hypothesize that music intervention enhances brain white matter plasticity through dopaminergic recruitment and that more research is needed to explore the efficacy of these therapies.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine, Box 100183, Gainesville, FL, 32610-0183, USA. .,Department of Psychiatry and Human Global Mental Health Institute, Center for Clinical & Translational Science, University of Vermont, Burlington, VT, USA. .,Division of Neuroscience -Based Therapy, Summit Estate Recovery Center, Las Gatos, CA, USA. .,Division of Addition Services, Dominion Diagnostics, LLC, North Kingstown, RI, USA. .,PATH Foundation NY, New York, NY, USA. .,IGENE, LLC, Austin, TX, USA. .,Division of Applied Clinical Research, Dominion Diagnostics, LLC, North Kingstown, RI, USA. .,Department of Clinical Psychology and Addiction, Institute of Psychology, Eötvös Loránd University, Budapest, Hungary. .,Division of Neuroscience Research & Addiction Therapy, Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA.
| | - Thomas Simpatico
- Department of Psychiatry and Human Global Mental Health Institute, Center for Clinical & Translational Science, University of Vermont, Burlington, VT, USA
| | - Marcelo Febo
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine, Box 100183, Gainesville, FL, 32610-0183, USA
| | | | | | - Mona Li
- PATH Foundation NY, New York, NY, USA
| | | | - Zsolt Demetrovics
- Department of Clinical Psychology and Addiction, Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Marlene Oscar-Berman
- Departments of Psychiatry and Anatomy & Neurobiology, Boston University School of Medicine and Boston VA Healthcare System, Boston, MA, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA.,Neuromodulation Program, University of Minnesota Twin City Campus, Minneapolis, MN, USA.,Laboratory of Advanced Radiochemistry, University of Minnesota Twin City Campus, Minneapolis, MN, USA
| |
Collapse
|
28
|
Brattico E, Bogert B, Alluri V, Tervaniemi M, Eerola T, Jacobsen T. It's Sad but I Like It: The Neural Dissociation Between Musical Emotions and Liking in Experts and Laypersons. Front Hum Neurosci 2016; 9:676. [PMID: 26778996 PMCID: PMC4701928 DOI: 10.3389/fnhum.2015.00676] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/30/2015] [Indexed: 01/23/2023] Open
Abstract
Emotion-related areas of the brain, such as the medial frontal cortices, amygdala, and striatum, are activated during listening to sad or happy music as well as during listening to pleasurable music. Indeed, in music, like in other arts, sad and happy emotions might co-exist and be distinct from emotions of pleasure or enjoyment. Here we aimed at discerning the neural correlates of sadness or happiness in music as opposed those related to musical enjoyment. We further investigated whether musical expertise modulates the neural activity during affective listening of music. To these aims, 13 musicians and 16 non-musicians brought to the lab their most liked and disliked musical pieces with a happy and sad connotation. Based on a listening test, we selected the most representative 18 sec excerpts of the emotions of interest for each individual participant. Functional magnetic resonance imaging (fMRI) recordings were obtained while subjects listened to and rated the excerpts. The cortico-thalamo-striatal reward circuit and motor areas were more active during liked than disliked music, whereas only the auditory cortex and the right amygdala were more active for disliked over liked music. These results discern the brain structures responsible for the perception of sad and happy emotions in music from those related to musical enjoyment. We also obtained novel evidence for functional differences in the limbic system associated with musical expertise, by showing enhanced liking-related activity in fronto-insular and cingulate areas in musicians.
Collapse
Affiliation(s)
- Elvira Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University and Royal Academy of Music Aarhus/Aalborg (RAMA)Aarhus, Denmark; Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of HelsinkiHelsinki, Finland; Advanced Magnetic Imaging Centre, Aalto UniversityEspoo, Finland
| | - Brigitte Bogert
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland
| | - Vinoo Alluri
- Department of Music, University of JyväskyläJyväskylä, Finland; Neuroscience of Emotion and Affective Dynamics Lab, University of GeneveGeneve, Switzerland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of HelsinkiHelsinki, Finland; Cicero Learning, University of HelsinkiHelsinki, Finland
| | | | - Thomas Jacobsen
- Experimental Psychology Unit, Helmut Schmidt University/University of the Federal Armed Forces Hamburg Hamburg, Germany
| |
Collapse
|
29
|
Kotchoubey B, Pavlov YG, Kleber B. Music in Research and Rehabilitation of Disorders of Consciousness: Psychological and Neurophysiological Foundations. Front Psychol 2015; 6:1763. [PMID: 26640445 PMCID: PMC4661237 DOI: 10.3389/fpsyg.2015.01763] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/03/2015] [Indexed: 01/18/2023] Open
Abstract
According to a prevailing view, the visual system works by dissecting stimuli into primitives, whereas the auditory system processes simple and complex stimuli with their corresponding features in parallel. This makes musical stimulation particularly suitable for patients with disorders of consciousness (DoC), because the processing pathways related to complex stimulus features can be preserved even when those related to simple features are no longer available. An additional factor speaking in favor of musical stimulation in DoC is the low efficiency of visual stimulation due to prevalent maladies of vision or gaze fixation in DoC patients. Hearing disorders, in contrast, are much less frequent in DoC, which allows us to use auditory stimulation at various levels of complexity. The current paper overviews empirical data concerning the four main domains of brain functioning in DoC patients that musical stimulation can address: perception (e.g., pitch, timbre, and harmony), cognition (e.g., musical syntax and meaning), emotions, and motor functions. Music can approach basic levels of patients' self-consciousness, which may even exist when all higher-level cognitions are lost, whereas music induced emotions and rhythmic stimulation can affect the dopaminergic reward-system and activity in the motor system respectively, thus serving as a starting point for rehabilitation.
Collapse
Affiliation(s)
- Boris Kotchoubey
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Yuri G. Pavlov
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Psychology, Ural Federal University, Yekaterinburg, Russia
| | - Boris Kleber
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Kliuchko M, Heinonen-Guzejev M, Monacis L, Gold BP, Heikkilä KV, Spinosa V, Tervaniemi M, Brattico E. The association of noise sensitivity with music listening, training, and aptitude. Noise Health 2015; 17:350-7. [PMID: 26356378 PMCID: PMC4900497 DOI: 10.4103/1463-1741.165065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
After intensive, long-term musical training, the auditory system of a musician is specifically tuned to perceive musical sounds. We wished to find out whether a musician's auditory system also develops increased sensitivity to any sound of everyday life, experiencing them as noise. For this purpose, an online survey, including questionnaires on noise sensitivity, musical background, and listening tests for assessing musical aptitude, was administered to 197 participants in Finland and Italy. Subjective noise sensitivity (assessed with the Weinstein's Noise Sensitivity Scale) was analyzed for associations with musicianship, musical aptitude, weekly time spent listening to music, and the importance of music in each person's life (or music importance). Subjects were divided into three groups according to their musical expertise: Nonmusicians (N = 103), amateur musicians (N = 44), and professional musicians (N = 50). The results showed that noise sensitivity did not depend on musical expertise or performance on musicality tests or the amount of active (attentive) listening to music. In contrast, it was associated with daily passive listening to music, so that individuals with higher noise sensitivity spent less time in passive (background) listening to music than those with lower sensitivity to noise. Furthermore, noise-sensitive respondents rated music as less important in their life than did individuals with lower sensitivity to noise. The results demonstrate that the special sensitivity of the auditory system derived from musical training does not lead to increased irritability from unwanted sounds. However, the disposition to tolerate contingent musical backgrounds in everyday life depends on the individual's noise sensitivity.
Collapse
Affiliation(s)
- Marina Kliuchko
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki, Helsinki; Department of Music, University of Jyväskylä, Jyväskylä, Finland,
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Schiavio A, Altenmüller E. Exploring Music-Based Rehabilitation for Parkinsonism through Embodied Cognitive Science. Front Neurol 2015; 6:217. [PMID: 26539155 PMCID: PMC4609849 DOI: 10.3389/fneur.2015.00217] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/26/2015] [Indexed: 11/25/2022] Open
Abstract
Recent embodied approaches in cognitive sciences emphasize the constitutive roles of bodies and environment in driving cognitive processes. Cognition is thus seen as a distributed system based on the continuous interaction of bodies, brains, and environment. These categories, moreover, do not relate only causally, through a sequential input-output network of computations; rather, they are dynamically enfolded in each other, being mutually implemented by the concrete patterns of actions adopted by the cognitive system. However, while this claim has been widely discussed across various disciplines, its relevance and potential beneficial applications for music therapy remain largely unexplored. With this in mind, we provide here an overview of the embodied approaches to cognition, discussing their main tenets through the lenses of music therapy. In doing so, we question established methodological and theoretical paradigms and identify possible novel strategies for intervention. In particular, we refer to the music-based rehabilitative protocols adopted for Parkinson's disease patients. Indeed, in this context, it has recently been observed that music therapy not only affects movement-related skills but that it also contributes to stabilizing physiological functions and improving socio-affective behaviors. We argue that these phenomena involve previously unconsidered aspects of cognition and (motor) behavior, which are rooted in the action-perception cycle characterizing the whole living system.
Collapse
Affiliation(s)
- Andrea Schiavio
- School of Music, The Ohio State University, Columbus, OH, USA
- Department of Music, The University of Sheffield, Sheffield, UK
| | - Eckart Altenmüller
- Institute of Music Physiology and Musician’s Medicine, University of Music, Drama and Media Hannover, Hannover, Germany
| |
Collapse
|