1
|
Duranti E, Villa C. Insights into Dysregulated Neurological Biomarkers in Cancer. Cancers (Basel) 2024; 16:2680. [PMID: 39123408 PMCID: PMC11312413 DOI: 10.3390/cancers16152680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The link between neurodegenerative diseases (NDs) and cancer has generated greater interest in biomedical research, with decades of global studies investigating neurodegenerative biomarkers in cancer to better understand possible connections. Tau, amyloid-β, α-synuclein, SOD1, TDP-43, and other proteins associated with nervous system diseases have also been identified in various types of solid and malignant tumors, suggesting a potential overlap in pathological processes. In this review, we aim to provide an overview of current evidence on the role of these proteins in cancer, specifically examining their effects on cell proliferation, apoptosis, chemoresistance, and tumor progression. Additionally, we discuss the diagnostic and therapeutic implications of this interconnection, emphasizing the importance of further research to completely comprehend the clinical implications of these proteins in tumors. Finally, we explore the challenges and opportunities in targeting these proteins for the development of new targeted anticancer therapies, providing insight into how to integrate knowledge of NDs in oncology research.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
2
|
Zhang H, Yang J, Guo Y, Lü P, Gong X, Chen K, Li X, Tang M. Rotenone-induced PINK1/Parkin-mediated mitophagy: establishing a silkworm model for Parkinson's disease potential. Front Mol Neurosci 2024; 17:1359294. [PMID: 38706874 PMCID: PMC11066238 DOI: 10.3389/fnmol.2024.1359294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/22/2024] [Indexed: 05/07/2024] Open
Abstract
Parkinson's disease (PD), ranking as the second most prevalent neurodegenerative disorder globally, presents a pressing need for innovative animal models to deepen our understanding of its pathophysiology and explore potential therapeutic interventions. The development of such animal models plays a pivotal role in unraveling the complexities of PD and investigating promising treatment avenues. In this study, we employed transcriptome sequencing on BmN cells treated with 1 μg/ml rotenone, aiming to elucidate the underlying toxicological mechanisms. The investigation brought to light a significant reduction in mitochondrial membrane potential induced by rotenone, subsequently triggering mitophagy. Notably, the PTEN induced putative kinase 1 (PINK1)/Parkin pathway emerged as a key player in the cascade leading to rotenone-induced mitophagy. Furthermore, our exploration extended to silkworms exposed to 50 μg/ml rotenone, revealing distinctive motor dysfunction as well as inhibition of Tyrosine hydroxylase (TH) gene expression. These observed effects not only contribute valuable insights into the impact and intricate mechanisms of rotenone exposure on mitophagy but also provide robust scientific evidence supporting the utilization of rotenone in establishing a PD model in the silkworm. This comprehensive investigation not only enriches our understanding of the toxicological pathways triggered by rotenone but also highlights the potential of silkworms as a valuable model organism for PD research.
Collapse
Affiliation(s)
- Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jinyue Yang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xun Gong
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Roberts JH, Zhang J, David F, McLean A, Blumenshine K, Müller-Alander E, Halper J. Expression of genes with biomarker potential identified in skin from DSLD-affected horses increases with age. PLoS One 2023; 18:e0287740. [PMID: 37450486 PMCID: PMC10348567 DOI: 10.1371/journal.pone.0287740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Degenerative Suspensory Ligament Desmitis (DSLD) negatively impacts connective tissues in horses, which often leads to progressive chronic pain and lameness. DSLD has been shown to be a systemic disorder that affects multiple body systems, including tendons, sclerae, and the aorta. Currently, the diagnosis is confirmed by post mortem histological examination of a tendon or suspensory ligament. Histology reveals inappropriate accumulations of proteoglycans in the tendons and other tissues in DSLD-affected horses. Unfortunately, there is no reliable method to diagnose DSLD in living horses. Recently, bone morphogenetic protein 2 (BMP2) was identified in active DSLD lesions. In addition, recent data from RNA sequencing (RNA-seq) showed overexpression of numerous genes, among them BMP2, FOS and genes for keratins in DSLD skin biopsies-derived RNA. We hypothesized that some of these genes can be used as biomarkers for diagnosis of DSLD in a panel. Overexpression of some of them was verified in quantitative real time PCR. Immunohistochemistry and RNAscope in-situ hybridization (ISH) assays were used to determine the level of overexpression of specific genes in skin biopsies from control and DSLD-affected horses. The RNAscope ISH assay has shown to be more reliable and more specific that immunohistochemistry. ISH confirmed a significant increase in KRT83 and BMP-2 in hair follicles in DSLD cases, as well as abnormally high expression of FOS in the epidermis, especially in aging horses. Because statistically relevant specificity and sensitivity was documented only for FOS and BMP2, but not KRT83 we recommend the use of FOS and BMP2 panel to diagnose DSLD. We conclude that a panel of two markers from the studied group (BMP2 and FOS) can serve as an additional diagnostic tool for DSLD in living horses, especially in older animals. Further studies are necessary to confirm if this biomarker panel could be used as a prospective tool to identify DSLD in horses as they age.
Collapse
Affiliation(s)
- Jennifer Hope Roberts
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Jian Zhang
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Florent David
- Equine Care Group, Mazy, Gembloux, Belgium
- Equine Veterinary Medical Center–A member of Qatar Foundation, Doha, Qatar
| | - Amy McLean
- Department of Animal Science, College of Agricultural and Environmental Science, University of California at Davis, Davis, California, United States of America
| | - Karen Blumenshine
- Santa Barbara Equine Practice, Santa Barbara, California, United States of America
| | | | - Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Basic Science Department, AU/UGA Medical Partnership, Athens, Georgia, United States of America
| |
Collapse
|
4
|
Giri B, Seamon M, Banerjee A, Chauhan S, Purohit S, Morgan J, Baban B, Wakade C. Emerging urinary alpha-synuclein and miRNA biomarkers in Parkinson's disease. Metab Brain Dis 2022; 37:1687-1696. [PMID: 33881722 DOI: 10.1007/s11011-021-00735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases after Alzheimer's disease (AD), afflicting adults above the age of sixty irrespective of gender, race, ethnicity, and social status. PD is characterized by motor dysfunctions, displaying resting tremor, rigidity, bradykinesia, and postural imbalance. Non-motor symptoms, including rapid eye movement (REM) behavior disorder, constipation, and loss of sense of smell, typically occur many years before the appearance of the PD motor symptoms that lead to a diagnosis. The loss of dopaminergic neurons in the substantia nigra, which leads to the motor symptoms seen in PD, is associated with the deposition of aggregated, misfolded α-Synuclein (α-Syn, SNCA) proteins forming Lewy Bodies. Additionally, dysregulation of miRNA (a short form of mRNA) may contribute to the developing pathophysiology in PD and other diseases such as cancer. Overexpression of α-Syn and miRNA in human samples has been found in PD, AD, and dementia. Therefore, evaluating these molecules in urine, present either in the free form or in association with extracellular vesicles of biological fluids, may lead to early biomarkers for clinical diagnosis. Collection of urine is non-invasive and thus beneficial, particularly in geriatric populations, for biomarker analysis. Considering the expression and function of α-Syn and miRNA, we predict that they can be used as early biomarkers in the diagnosis and prognosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Banabihari Giri
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, 987 St. Sebastian Way, Augusta, GA, 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA.
| | - Marissa Seamon
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
- Department of Neuroscience, Augusta University, Augusta, GA, USA
| | - Aditi Banerjee
- Brain Peds Division, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sneha Chauhan
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, 987 St. Sebastian Way, Augusta, GA, 30912, USA
| | - Sharad Purohit
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, 987 St. Sebastian Way, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
| | - John Morgan
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Babak Baban
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Chandramohan Wakade
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, 987 St. Sebastian Way, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
- Department of Neuroscience, Augusta University, Augusta, GA, USA
- Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| |
Collapse
|
5
|
Al-Qassabi A, Tsao TS, Racolta A, Kremer T, Cañamero M, Belousov A, Santana MA, Beck RC, Zhang H, Meridew J, Pugh J, Lian F, Robida MD, Ritter M, Czech C, Beach TG, Pestic-Dragovich L, Taylor KI, Zago W, Tang L, Dziadek S, Postuma RB. Immunohistochemical Detection of Synuclein Pathology in Skin in Idiopathic Rapid Eye Movement Sleep Behavior Disorder and Parkinsonism. Mov Disord 2021; 36:895-904. [PMID: 33232556 PMCID: PMC10123546 DOI: 10.1002/mds.28399] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent studies reported abnormal alpha-synuclein deposition in biopsy-accessible sites of the peripheral nervous system in Parkinson's disease (PD). This has considerable implications for clinical diagnosis. Moreover, if deposition occurs early, it may enable tissue diagnosis of prodromal PD. OBJECTIVE The aim of this study was to develop and test an automated bright-field immunohistochemical assay of cutaneous pathological alpha-synuclein deposition in patients with idiopathic rapid eye movement sleep behavior disorder, PD, and atypical parkinsonism and in control subjects. METHODS For assay development, postmortem skin biopsies were taken from 28 patients with autopsy-confirmed Lewy body disease and 23 control subjects. Biopsies were stained for pathological alpha-synuclein in automated stainers using a novel dual-immunohistochemical assay for serine 129-phosphorylated alpha-synuclein and pan-neuronal marker protein gene product 9.5. After validation, single 3-mm punch skin biopsies were taken from the cervical 8 paravertebral area from 79 subjects (28 idiopathic rapid eye movement sleep behavior disorder, 20 PD, 10 atypical parkinsonism, and 21 control subjects). Raters blinded to clinical diagnosis assessed the biopsies. RESULTS The immunohistochemistry assay differentiated alpha-synuclein pathology from nonpathological-appearing alpha-synuclein using combined phosphatase and protease treatments. Among autopsy samples, 26 of 28 Lewy body samples and none of the 23 controls were positive. Among living subjects, punch biopsies were positive in 23 (82%) subjects with idiopathic rapid eye movement sleep behavior disorder, 14 (70%) subjects with PD, 2 (20%) subjects with atypical parkinsonism, and none (0%) of the control subjects. After a 3-year follow-up, eight idiopathic rapid eye movement sleep behavior disorder subjects phenoconverted to defined neurodegenerative syndromes, in accordance with baseline biopsy results. CONCLUSION Even with a single 3-mm punch biopsy, there is considerable promise for using pathological alpha-synuclein deposition in skin to diagnose both clinical and prodromal PD. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ahmed Al-Qassabi
- Department of Neurology, McGill University–Montreal General Hospital, Montreal, Quebec, Canada
- Sultan Qaboos University Hospital, Muscat
| | | | | | - Thomas Kremer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Marta Cañamero
- Roche Pharmaceutical Research and Early Development, Penzberg, Germany
| | - Anton Belousov
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | | | | | | - Judith Pugh
- Roche Tissue Diagnostics, Tucson, Arizona, USA
| | - Fangru Lian
- Roche Tissue Diagnostics, Tucson, Arizona, USA
| | | | - Mirko Ritter
- Roche Centralised and Point of Care Solutions, Penzberg, Germany
| | - Christian Czech
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Kirsten I. Taylor
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- Faculty of Psychology, University of Basel, Basel, Switzerland
| | - Wagner Zago
- Prothena Biosciences Inc., South San Francisco, California, USA
| | - Lei Tang
- Roche Tissue Diagnostics, Tucson, Arizona, USA
| | - Sebastian Dziadek
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ronald B. Postuma
- Department of Neurology, McGill University–Montreal General Hospital, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- CARSM, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
6
|
Shekoohi S, Rajasekaran S, Patel D, Yang S, Liu W, Huang S, Yu X, Witt SN. Knocking out alpha-synuclein in melanoma cells dysregulates cellular iron metabolism and suppresses tumor growth. Sci Rep 2021; 11:5267. [PMID: 33664298 PMCID: PMC7933179 DOI: 10.1038/s41598-021-84443-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
The protein alpha-synuclein (α-syn) is unusual because, depending on its conformation and the type of cell in which it is expressed, it is pro-death or pro-survival, triggering neurodegeneration in Parkinson's disease and enhancing cell survival of some melanomas. To probe the function of α-syn in melanoma, we used CRISPR/Cas9 to knockout SNCA, the gene that codes for α-syn, in SK-Mel-28 melanoma cells. The SNCA-knockout clones in culture exhibited a decrease in the transferrin receptor 1 (TfR1), an increase in ferritin, an increase of reactive oxygen species and proliferated slower than control cells. These SNCA-knockout clones grafted into SCID mice grew significantly slower than the SK-Mel-28 control cells that expressed α-syn. In the excised SNCA-knockout xenografts, TfR1 decreased 3.3-fold, ferritin increased 6.2-fold, the divalent metal ion transporter 1 (DMT1) increased threefold, and the iron exporter ferroportin (FPN1) decreased twofold relative to control xenografts. The excised SNCA-KO tumors exhibited significantly more ferric iron and TUNEL staining relative to the control melanoma xenografts. Collectively, depletion of α-syn in SK-Mel-28 cells dysregulates cellular iron metabolism, especially in xenografts, yielding melanoma cells that are deficient in TfR1 and FPN1, that accumulate ferric iron and ferritin, and that undergo apoptosis relative to control cells expressing α-syn.
Collapse
Affiliation(s)
- Sahar Shekoohi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Santhanasabapathy Rajasekaran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Dhaval Patel
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Shu Yang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Wang Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Stephan N Witt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA.
| |
Collapse
|
7
|
Bellucci A, Bubacco L, Longhena F, Parrella E, Faustini G, Porrini V, Bono F, Missale C, Pizzi M. Nuclear Factor-κB Dysregulation and α-Synuclein Pathology: Critical Interplay in the Pathogenesis of Parkinson's Disease. Front Aging Neurosci 2020; 12:68. [PMID: 32265684 PMCID: PMC7105602 DOI: 10.3389/fnagi.2020.00068] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
The loss of dopaminergic neurons of the nigrostriatal system underlies the onset of the typical motor symptoms of Parkinson's disease (PD). Lewy bodies (LB) and Lewy neurites (LN), proteinaceous inclusions mainly composed of insoluble α-synuclein (α-syn) fibrils are key neuropathological hallmarks of the brain of affected patients. Compelling evidence supports that in the early prodromal phases of PD, synaptic terminal and axonal alterations initiate and drive a retrograde degeneration process culminating with the loss of nigral dopaminergic neurons. This notwithstanding, the molecular triggers remain to be fully elucidated. Although it has been shown that α-syn fibrillary aggregation can induce early synaptic and axonal impairment and cause nigrostriatal degeneration, we still ignore how and why α-syn fibrillation begins. Nuclear factor-κB (NF-κB) transcription factors, key regulators of inflammation and apoptosis, are involved in the brain programming of systemic aging as well as in the pathogenesis of several neurodegenerative diseases. The NF-κB family of factors consists of five different subunits (c-Rel, p65/RelA, p50, RelB, and p52), which combine to form transcriptionally active dimers. Different findings point out a role of RelA in PD. Interestingly, the nuclear content of RelA is abnormally increased in nigral dopamine (DA) neurons and glial cells of PD patients. Inhibition of RelA exert neuroprotection against (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP and 1-methyl-4-phenylpyridinium (MPP+) toxicity, suggesting that this factor decreases neuronal resilience. Conversely, the c-Rel subunit can exert neuroprotective actions. We recently described that mice deficient for c-Rel develop a PD-like motor and non-motor phenotype characterized by progressive brain α-syn accumulation and early synaptic changes preceding the frank loss of nigrostriatal neurons. This evidence supports that dysregulations in this transcription factors may be involved in the onset of PD. This review highlights observations supporting a possible interplay between NF-κB dysregulation and α-syn pathology in PD, with the aim to disclose novel potential mechanisms involved in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padua, Padua, Italy
| | - Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Edoardo Parrella
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vanessa Porrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
8
|
Significant Changes in Plasma Alpha-Synuclein and Beta-Synuclein Levels in Male Children with Autism Spectrum Disorder. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4503871. [PMID: 29850516 PMCID: PMC5911343 DOI: 10.1155/2018/4503871] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023]
Abstract
Alpha-synuclein (α-synuclein) and beta-synuclein (β-synuclein) are presynaptic proteins playing important roles in neuronal plasticity and synaptic vesicle regulation. To evaluate the association of these two proteins and autism spectrum disorder (ASD), we investigated the plasma α-synuclein and β-synuclein levels in 39 male children with ASD (2 subgroups: 25 autism and 14 pervasive developmental disorder-not otherwise specified (PDD-NOS)) comparing with 29 sex- and age-matched controls by using enzyme-linked immunosorbent assay (ELISA). We first determined the levels of these two proteins in the ASD subgroups and found that there were no significant differences in both plasma α-synuclein and β-synuclein levels in the autism and PDD-NOS groups. Thus, we could combine the 2 subgroups into one ASD group. Interestingly, the mean plasma α-synuclein level was significantly lower (P < 0.001) in the ASD children (10.82 ± 6.46 ng/mL) than in the controls (29.47 ± 18.62 ng/mL), while the mean plasma β-synuclein level in the ASD children (1344.19 ± 160.26 ng/mL) was significantly higher (P < 0.05) than in the controls (1219.16 ± 177.10 ng/mL). This is the first study examining the associations between α-synuclein and β-synuclein and male ASD patients. We found that alterations in the plasma α-synuclein and β-synuclein levels might be implicated in the association between synaptic abnormalities and ASD pathogenesis.
Collapse
|
9
|
Tekriwal A, Kern DS, Tsai J, Ince NF, Wu J, Thompson JA, Abosch A. REM sleep behaviour disorder: prodromal and mechanistic insights for Parkinson's disease. J Neurol Neurosurg Psychiatry 2017; 88:445-451. [PMID: 27965397 DOI: 10.1136/jnnp-2016-314471] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 11/04/2022]
Abstract
Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterised by complex motor enactment of dreams and is a potential prodromal marker of Parkinson's disease (PD). Of note, patients with PD observed during RBD episodes exhibit improved motor function, relative to baseline states during wake periods. Here, we review recent epidemiological and mechanistic findings supporting the prodromal value of RBD for PD, incorporating clinical and electrophysiological studies. Explanations for the improved motor function during RBD episodes are evaluated in light of recent publications. In addition, we present preliminary findings describing changes in the activity of the basal ganglia across the sleep-wake cycle that contribute to our understanding of RBD.
Collapse
Affiliation(s)
- Anand Tekriwal
- Department of Neurosurgery, University of Colorado-Anschutz Medical Center, Denver, Colorado, USA
| | - Drew S Kern
- Department of Neurology, University of Colorado-Anschutz Medical Center, Denver, Colorado, USA
| | - Jean Tsai
- Department of Neurology, University of Colorado-Anschutz Medical Center, Denver, Colorado, USA
| | - Nuri F Ince
- Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Jianping Wu
- Neuromodulation Global Research, Medtronic, Minneapolis, Minnesota, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado-Anschutz Medical Center, Denver, Colorado, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Colorado-Anschutz Medical Center, Denver, Colorado, USA
| |
Collapse
|
10
|
Ge Y, Xu K. Alpha-synuclein contributes to malignant progression of human meningioma via the Akt/mTOR pathway. Cancer Cell Int 2016; 16:86. [PMID: 27895530 PMCID: PMC5109801 DOI: 10.1186/s12935-016-0361-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The aim of this study is to explore the expression of alpha-synuclein (α-synuclein) in benign, atypical, and anaplastic meningiomas and determine its role in the malignant progression of meningiomas. METHODS Expression of α-synuclein was measured in 44 meningioma samples by real-time PCR analysis. The effects of overexpression or knockdown of α-synuclein on meningioma cell growth, invasiveness, and tumorigenicity were determined. RESULTS Atypical and anaplastic meningiomas displayed significantly greater levels of α-synuclein mRNA, relative to benign tumors. Depletion of α-synuclein decreased cell proliferation and colony formation and promoted apoptosis in IOMM-Lee meningioma cells, whereas overexpression of α-synuclein facilitated cell proliferation and colony formation in CH-157MN meningioma cells. Silencing of α-synuclein attenuated IOMM-Lee cell migration and invasion. In contrast, ectopic expression of α-synuclein increased the invasiveness of CH-157MN cells. In vivo studies further demonstrated that downregulation of α-synuclein significantly retarded meningioma growth in nude mice. At the molecular level, the phosphorylation levels of Akt, mTOR, p70S6K and 4EBP were significantly decreased in α-synuclein-depleted IOMM-Lee cells. CONCLUSIONS In conclusion, α-synuclein upregulation contributes to aggressive phenotypes of meningiomas via the Akt/mTOR pathway and thus represents a potential therapeutic target for malignant meningiomas.
Collapse
Affiliation(s)
- Yiqin Ge
- Department of Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062 China
| | - Kan Xu
- Department of Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062 China
| |
Collapse
|