1
|
Abou Daya F, Mandigo T, Ober L, Patel D, Maher M, Math S, Tchio C, Walker JA, Saxena R, Melkani GC. Identifying links between cardiovascular disease and insomnia by modeling genes from a pleiotropic locus. Dis Model Mech 2025; 18:dmm052139. [PMID: 40176577 DOI: 10.1242/dmm.052139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Insomnia symptoms double the risk of cardiovascular disease (CVD), yet shared genetic pathways remain unclear. Genome-wide association studies identified a genetic locus (near ATP5G1, UBE2Z, SNF8, IGF2BP1 and GIP) linked to insomnia and CVD. We used Drosophila models to perform tissue-specific RNA interference knockdowns of four conserved orthologs (ATPsynC, lsn, Bruce and Imp) in neurons and the heart. Neuronal-specific knockdown of ATPsynC, Imp and lsn impaired sleep quantity and quality. In contrast, cardiac knockdown of ATPsynC and lsn reduced cardiac function and lifespan, with lsn knockdown also causing cardiac dilation and myofibrillar disorganization. Cross-tissue effects were evident: neuronal Imp knockdown compromised cardiac function, whereas cardiac ATPsynC and lsn knockdown increased sleep fragmentation and inflammation (marked by Upd3 elevation in the heart or head). Overexpression of Upd3 in neurons impaired cardiac function, and its overexpression in the heart disrupted sleep. Our findings reveal conserved genes mediating tissue-specific and cross-tissue interactions between sleep and cardiac function, providing novel insights into the genetic mechanisms linking insomnia and CVD through inflammation.
Collapse
Affiliation(s)
- Farah Abou Daya
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Torrey Mandigo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02114, USA
| | - Lily Ober
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dev Patel
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew Maher
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Suraj Math
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cynthia Tchio
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02114, USA
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02114, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Nathan Shock Center, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Long J, Dou M, Tang X, Gu X. Characterizing Genetic-Predisposed Proteins Involving Insomnia by Integrating Genome-Wide Association Study Summary Statistics. Mol Neurobiol 2025; 62:6576-6586. [PMID: 39827250 PMCID: PMC11953091 DOI: 10.1007/s12035-025-04695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Large case-control genome-wide association studies (GWASs) have detected loci associated with insomnia, but how these risk loci confer disease risk remains largely unknown. By integrating brain protein quantitative trait loci (pQTL) (NpQTL1 = 376, NpQTL2 = 152) and expression QTL (eQTL) (N = 452) datasets, with the latest insomnia GWAS summary statistics (Ncase = 109,548, NControls = 277440), we conducted proteome/transcriptome-wide association study (PWAS/TWAS) and Mendelian randomization (MR) analysis, aiming to identify causal proteins involving in the pathogenesis of insomnia. We also explored the bi-directional causality between insomnia and several common diseases. As a result, the altered protein level of 28 genes in the brain was associated with the risk of insomnia in the discovery stage of PWAS, of which 18 genes' associations were replicated in the confirmatory stage of PWAS. Among them, four proteins (2-aminoethanethiol dioxygenase (ADO), calcium-modulating cyclophilin ligand (CAMLG), islet cell autoantigen 1 like (ICA1L) and latexin (LXN)) were found to be the most likely causal genes for insomnia with validations from TWAS, MR, and colocalization results. Specifically, the higher protein level of ADO, CALMG, and ICA1L was causally associated with a lower risk of insomnia. In comparison, the higher protein level of LXN was causally associated with an increased risk for insomnia. Moreover, genetically predicted insomnia was causally associated with an increased risk of developing cardiovascular diseases and depression. In conclusion, our study identified ADO, CAMLG, ICA1L, and LXN as potentially causal proteins in the pathogenesis of insomnia. This could provide insights into further mechanistic studies and therapeutic development for insomnia.
Collapse
Affiliation(s)
- Jiang Long
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Dou
- Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Xiangdong Tang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaojing Gu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Li L, Wu D, Zhang C, Lai X, Zhang R, Hu S, Ye Y. A cross-tissue transcriptome-wide association study identifies new susceptibility genes for insomnia. J Neurophysiol 2025; 133:572-581. [PMID: 39745514 DOI: 10.1152/jn.00490.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Despite a significant genetic component to insomnia (heritability: 22%-25%), the genetic loci that modulate insomnia risk remain limited. We used the Unified Test for Molecular Markers (UTMOST) for transcriptome-wide association studies (TWAS) across various tissues, integrating summary statistics from a Genome-Wide Association Study (GWAS) of 462,341 European participants with gene expression data from the Genotype-Tissue Expression (GTEx) project. Three validation methods (FUSION, FOCUS, and MAGMA) were used to confirm important genes. Tissue and functional enrichment analyses of insomnia-related single-nucleotide polymorphisms (SNPs) were conducted with MAGMA. Conditional and joint analyses, along with fine mapping, were used to enhance our understanding of insomnia's genetic architecture. Mendelian randomization was used to assess causal associations between significant genes and insomnia. Two novel susceptibility genes, VRK2 and MMRN1, were identified as linked to insomnia risk using four TWAS approaches. Mendelian randomization analysis suggests VRK2 increases the risk of insomnia. Tissue enrichment analyses indicated that insomnia-related SNPs were enriched in specific brain regions, including the cerebellum, frontal cortex (BA9), hypothalamus, and hippocampus. Conditional and joint analyses identified two genomic regions (2p16.1 and 4q22.1). Functional enrichment analyses showed that pathways related to insomnia involve the SMAD2/3 pathway, synaptic function, and oxidative stress. This study identifies two new candidate genes, VRK2 and MMRN1, that may contribute to insomnia risk through neurodevelopment, neuroinflammation, and synaptic function, suggesting potential therapeutic targets.NEW & NOTEWORTHY This study identifies VRK2 and MMRN1 as novel susceptibility genes for insomnia through transcriptome-wide association studies (TWAS). Mendelian randomization confirms a causal link between VRK2 and insomnia. Key brain regions, including the cerebellum and frontal cortex, and critical pathways like SMAD2/3 signaling and oxidative stress are implicated. These findings provide new insights into the genetic basis of insomnia.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| | - Dongjin Wu
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| | - Cuiping Zhang
- Department of Anesthesia Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| | - Xiaokun Lai
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
- Department of Anesthesiology, the Hospital of Traditional Chinese Medicine of Dehua, Quanzhou, People's Republic of China
| | - Ruolan Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| | - Shuhui Hu
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| | - Yifeng Ye
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
4
|
Ma X, Li J, Yang Y, Qiu X, Sheng J, Han N, Wu C, Xu G, Jiang G, Tian J, Weng X, Wang J. Enhanced cerebral blood flow similarity of the somatomotor network in chronic insomnia: Transcriptomic decoding, gut microbial signatures and phenotypic roles. Neuroimage 2024; 297:120762. [PMID: 39089603 DOI: 10.1016/j.neuroimage.2024.120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Chronic insomnia (CI) is a complex disease involving multiple factors including genetics, gut microbiota, and brain structure and function. However, there lacks a unified framework to elucidate how these factors interact in CI. By combining data of clinical assessment, sleep behavior recording, cognitive test, multimodal MRI (structural, functional, and perfusion), gene, and gut microbiota, this study demonstrated that enhanced cerebral blood flow (CBF) similarities of the somatomotor network (SMN) acted as a key mediator to link multiple factors in CI. Specifically, we first demonstrated that only CBF but not morphological or functional networks exhibited alterations in patients with CI, characterized by increases within the SMN and between the SMN and higher-order associative networks. Moreover, these findings were highly reproducible and the CBF similarity method was test-retest reliable. Further, we showed that transcriptional profiles explained 60.4 % variance of the pattern of the increased CBF similarities with the most correlated genes enriched in regulation of cellular and protein localization and material transport, and gut microbiota explained 69.7 % inter-individual variance in the increased CBF similarities with the most contributions from Negativicutes and Lactobacillales. Finally, we found that the increased CBF similarities were correlated with clinical variables, accounted for sleep behaviors and cognitive deficits, and contributed the most to the patient-control classification (accuracy = 84.4 %). Altogether, our findings have important implications for understanding the neuropathology of CI and may inform ways of developing new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Xiaofen Ma
- Department of Nuclear Medicine, Jinan University Affiliated Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yuping Yang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xiaofan Qiu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jintao Sheng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ningke Han
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Changwen Wu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Guang Xu
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- Department of Nuclear Medicine, Jinan University Affiliated Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junzhang Tian
- Department of Nuclear Medicine, Jinan University Affiliated Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
5
|
Zou X, Ptáček LJ, Fu YH. The Genetics of Human Sleep and Sleep Disorders. Annu Rev Genomics Hum Genet 2024; 25:259-285. [PMID: 38669479 DOI: 10.1146/annurev-genom-121222-120306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Healthy sleep is vital for humans to achieve optimal health and longevity. Poor sleep and sleep disorders are strongly associated with increased morbidity and mortality. However, the importance of good sleep continues to be underrecognized. Mechanisms regulating sleep and its functions in humans remain mostly unclear even after decades of dedicated research. Advancements in gene sequencing techniques and computational methodologies have paved the way for various genetic analysis approaches, which have provided some insights into human sleep genetics. This review summarizes our current knowledge of the genetic basis underlying human sleep traits and sleep disorders. We also highlight the use of animal models to validate genetic findings from human sleep studies and discuss potential molecular mechanisms and signaling pathways involved in the regulation of human sleep.
Collapse
Affiliation(s)
- Xianlin Zou
- Department of Neurology, University of California, San Francisco, California, USA; , ,
| | - Louis J Ptáček
- Department of Neurology, University of California, San Francisco, California, USA; , ,
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Institute of Human Genetics, University of California, San Francisco, California, USA
| | - Ying-Hui Fu
- Institute of Human Genetics, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA; , ,
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| |
Collapse
|
6
|
Liu J, Richmond RC, Anderson EL, Bowden J, Barry CJS, Dashti HS, Daghlas IS, Lane JM, Kyle SD, Vetter C, Morrison CL, Jones SE, Wood AR, Frayling TM, Wright AK, Carr MJ, Anderson SG, Emsley RA, Ray DW, Weedon MN, Saxena R, Rutter MK, Lawlor DA. The role of accelerometer-derived sleep traits on glycated haemoglobin and glucose levels: a Mendelian randomization study. Sci Rep 2024; 14:14962. [PMID: 38942746 PMCID: PMC11213880 DOI: 10.1038/s41598-024-58007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/25/2024] [Indexed: 06/30/2024] Open
Abstract
Self-reported shorter/longer sleep duration, insomnia, and evening preference are associated with hyperglycaemia in observational analyses, with similar observations in small studies using accelerometer-derived sleep traits. Mendelian randomization (MR) studies support an effect of self-reported insomnia, but not others, on glycated haemoglobin (HbA1c). To explore potential effects, we used MR methods to assess effects of accelerometer-derived sleep traits (duration, mid-point least active 5-h, mid-point most active 10-h, sleep fragmentation, and efficiency) on HbA1c/glucose in European adults from the UK Biobank (UKB) (n = 73,797) and the MAGIC consortium (n = 146,806). Cross-trait linkage disequilibrium score regression was applied to determine genetic correlations across accelerometer-derived, self-reported sleep traits, and HbA1c/glucose. We found no causal effect of any accelerometer-derived sleep trait on HbA1c or glucose. Similar MR results for self-reported sleep traits in the UKB sub-sample with accelerometer-derived measures suggested our results were not explained by selection bias. Phenotypic and genetic correlation analyses suggested complex relationships between self-reported and accelerometer-derived traits indicating that they may reflect different types of exposure. These findings suggested accelerometer-derived sleep traits do not affect HbA1c. Accelerometer-derived measures of sleep duration and quality might not simply be 'objective' measures of self-reported sleep duration and insomnia, but rather captured different sleep characteristics.
Collapse
Affiliation(s)
- Junxi Liu
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- Nuffield Department of Population Health, Oxford Population Health, University of Oxford, Oxford, UK.
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma L Anderson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Division of Psychiatry, University College of London, London, UK
| | - Jack Bowden
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- College of Medicine and Health, The University of Exeter, Exeter, UK
| | - Ciarrah-Jane S Barry
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hassan S Dashti
- Centre for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Iyas S Daghlas
- Centre for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jacqueline M Lane
- Centre for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Simon D Kyle
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Céline Vetter
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Claire L Morrison
- Department of Psychology & Neuroscience and Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Samuel E Jones
- Institute for Molecular Medicine Finland, University of Helsinki, Uusimaa, Finland
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Alison K Wright
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Matthew J Carr
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- National Institute for Health Research (NIHR) Greater Manchester Patient Safety Translational Research Centre, University of Manchester, Manchester, UK
| | - Simon G Anderson
- George Alleyne Chronic Disease Research Centre, Caribbean Institute of Health Research, University of the West Indies, Kingston, Jamaica
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard A Emsley
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, and Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, and NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Richa Saxena
- Centre for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin K Rutter
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and The University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Lind MJ. Analysis of novel sleep variable highlights shared genetics of sleep and psychiatric disorders. Sleep 2024; 47:zsad311. [PMID: 38097278 PMCID: PMC10851838 DOI: 10.1093/sleep/zsad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Affiliation(s)
- Mackenzie J Lind
- VA Puget Sound Health Care System, Seattle Division, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
8
|
Palagini L, Geoffroy PA, Gehrman PR, Miniati M, Gemignani A, Riemann D. Potential genetic and epigenetic mechanisms in insomnia: A systematic review. J Sleep Res 2023; 32:e13868. [PMID: 36918298 DOI: 10.1111/jsr.13868] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Insomnia is a stress-related sleep disorder conceptualised within a diathesis-stress framework, which it is thought to result from predisposing factors interacting with precipitating stressful events that trigger the development of insomnia. Among predisposing factors genetics and epigenetics may play a role. A systematic review of the current evidence for the genetic and epigenetic basis of insomnia was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) system. A total of 24 studies were collected for twins and family heritability, 55 for genome-wide association studies, 26 about candidate genes for insomnia, and eight for epigenetics. Data showed that insomnia is a complex polygenic stress-related disorder, and it is likely to be caused by a synergy of genetic and environmental factors, with stress-related sleep reactivity being the important trait. Even if few studies have been conducted to date on insomnia, epigenetics may be the framework to understand long-lasting consequences of the interaction between genetic and environmental factors and effects of stress on the brain in insomnia. Interestingly, polygenic risk for insomnia has been causally linked to different mental and medical disorders. Probably, by treating insomnia it would be possible to intervene on the effect of stress on the brain and prevent some medical and mental conditions.
Collapse
Affiliation(s)
- Laura Palagini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Pierre A Geoffroy
- Département de Psychiatrie et D'Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, Paris, France
- GHU Paris - Psychiatry and Neurosciences, Paris, France
- Université de Paris, NeuroDiderot, INSERM, Paris, France
| | - Philip R Gehrman
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Angelo Gemignani
- Unit of Psychology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Irwin MR, Straub RH, Smith MT. Heat of the night: sleep disturbance activates inflammatory mechanisms and induces pain in rheumatoid arthritis. Nat Rev Rheumatol 2023; 19:545-559. [PMID: 37488298 DOI: 10.1038/s41584-023-00997-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 07/26/2023]
Abstract
Sleep has a homeostatic role in the regulation of the immune system and serves to constrain activation of inflammatory signalling and expression of cellular inflammation. In patients with rheumatoid arthritis (RA), a misaligned inflammatory profile induces a dysregulation of sleep-wake activity, which leads to excessive inflammation and the induction of increased sensitivity to pain. Given that multiple biological mechanisms contribute to sleep disturbances (such as insomnia), and that the central nervous system communicates with the innate immune system via neuroendocrine and neural effector pathways, potential exists to develop prevention opportunities to mitigate the risk of insomnia in RA. Furthermore, understanding these risk mechanisms might inform additional insomnia treatment strategies directed towards steering and reducing the magnitude of the inflammatory response, which together could influence outcomes of pain and disease activity in RA.
Collapse
Affiliation(s)
- Michael R Irwin
- Department of Psychiatry and Behavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience and Human Behaviour, Los Angeles, CA, USA.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital, Regensburg, Germany
| | - Michael T Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Lo YJ, Mishra VK, Lo HY, Dubey NK, Lo WC. Clinical Spectrum and Trajectory of Innovative Therapeutic Interventions for Insomnia: A Perspective. Aging Dis 2023; 14:1038-1069. [PMID: 37163444 PMCID: PMC10389812 DOI: 10.14336/ad.2022.1203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/03/2022] [Indexed: 05/12/2023] Open
Abstract
Increasing incidences of insomnia in adults, as well as the aging population, have been reported for their negative impact on the quality of life. Insomnia episodes may be associated with neurocognitive, musculoskeletal, cardiovascular, gastrointestinal, renal, hepatic, and metabolic disorders. Epidemiological evidence also revealed the association of insomnia with oncologic and asthmatic complications, which has been indicated as bidirectional. Two therapeutic approaches including cognitive behavioral therapy (CBT) and drugs-based therapies are being practiced for a long time. However, the adverse events associated with drugs limit their wide and long-term application. Further, Traditional Chinese medicine, acupressure, and pulsed magnetic field therapy may also provide therapeutic relief. Notably, the recently introduced cryotherapy has been demonstrated as a potential candidate for insomnia which could reduce pain, by suppressing oxidative stress and inflammation. It seems that the synergistic therapeutic approach of cryotherapy and the above-mentioned approaches might offer promising prospects to further improve efficacy and safety. Considering these facts, this perspective presents a comprehensive summary of recent advances in pathological aetiologies of insomnia including COVID-19, and its therapeutic management with a greater emphasis on cryotherapy.
Collapse
Affiliation(s)
| | | | | | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei 114757, Taiwan.
- ShiNeo Technology Co., Ltd., New Taipei City 24262, Taiwan.
| | - Wen-Cheng Lo
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
11
|
Carvalhas-Almeida C, Serra J, Moita J, Cavadas C, Álvaro AR. Understanding neuron-glia crosstalk and biological clocks in insomnia. Neurosci Biobehav Rev 2023; 147:105100. [PMID: 36804265 DOI: 10.1016/j.neubiorev.2023.105100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
According to the World Health Organization, about one-third of the population experiences insomnia symptoms, and about 10-15% suffer from chronic insomnia, the most common sleep disorder. Sleeping difficulties associated with insomnia are often linked to chronic sleep deprivation, which has a negative health impact partly due to disruption in the internal synchronisation of biological clocks. These are regulated by clock genes and modulate most biological processes. Most studies addressing circadian rhythm regulation have focused on the role of neurons, yet glial cells also impact circadian rhythms and sleep regulation. Chronic insomnia and sleep loss have been associated with glial cell activation, exacerbated neuroinflammation, oxidative stress, altered neuronal metabolism and synaptic plasticity, accelerated age-related processes and decreased lifespan. It is, therefore, essential to highlight the importance of glia-neuron interplay on sleep/circadian regulation and overall healthy brain function. Hence, in this review, we aim to address the main neurobiological mechanisms involved in neuron-glia crosstalk, with an emphasis on microglia and astrocytes, in both healthy sleep, chronic sleep deprivation and chronic insomnia.
Collapse
Affiliation(s)
- Catarina Carvalhas-Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Joana Serra
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Joaquim Moita
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
12
|
Wang J, Zhao H, Shi K, Wang M. Treatment of insomnia based on the mechanism of pathophysiology by acupuncture combined with herbal medicine: A review. Medicine (Baltimore) 2023; 102:e33213. [PMID: 36930068 PMCID: PMC10019201 DOI: 10.1097/md.0000000000033213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Insomnia is a sleep disorder which severely affects patients mood, quality of life and social functioning, serves as a trigger or risk factor to a variety of diseases such as depression, cardiovascular and cerebrovascular diseases, obesity and diabetes, and even increases the risk of suicide, and has become an increasingly widespread concern worldwide. Considerable research on insomnia has been conducted in modern medicine in recent years and encouraging results have been achieved in the fields of genetics and neurobiology. Unfortunately, however, the pathogenesis of insomnia remains elusive to modern medicine, and pharmacological treatment of insomnia has been regarded as conventional. However, in the course of treatment, pharmacological treatment itself is increasingly being questioned due to potential dependence and drug resistance and is now being replaced by cognitive behavior therapy as the first-line treatment. As an important component of complementary and alternative medicine, traditional Chinese medicine, especially non-pharmacological treatment methods such as acupuncture, is gaining increasing attention worldwide. In this article, we discuss the combination of traditional Chinese medicine, acupuncture, and medicine to treat insomnia based on neurobiology in the context of modern medicine.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pain, Datong Hospital of Traditional Chinese Medicine, Shanxi Province, Datong, China
| | - Haishen Zhao
- Department of Rehabilitation, Luchaogang Community Health Service Center, Pudong New District, Shanghai, China
| | - Kejun Shi
- Department of Rehabilitation, Luchaogang Community Health Service Center, Pudong New District, Shanghai, China
| | - Manya Wang
- Department of Rehabilitation, Luchaogang Community Health Service Center, Pudong New District, Shanghai, China
| |
Collapse
|
13
|
Oniszczenko W. The association between affective temperaments and insomnia as mediated by satisfaction with life: a cross-sectional study. CURRENT ISSUES IN PERSONALITY PSYCHOLOGY 2023; 12:170-177. [PMID: 39184905 PMCID: PMC11339849 DOI: 10.5114/cipp/159454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The primary objectives of this study were to examine whether affective temperaments are associated with satisfaction with life; to determine whether satisfaction with life can mediate the relationship between affective temperaments and insomnia; and to reaffirm the relationship between affective temperaments and insomnia. We hypothesized that affective temperaments were associated directly and indirectly via satisfaction with life with insomnia. PARTICIPANTS AND PROCEDURE A total of 497 participants aged 18 to 67 years, including 435 women and 62 men, were recruited from the general population via an online recruitment platform. We used the Temperament Evaluation of the Memphis, Pisa, Paris and San Diego Autoquestionnaire to evaluate affective temperaments and the Satisfaction with Life Scale to assess satisfaction with life. The Athens Insomnia Scale was used to assess participants' level of insomnia symptoms. RESULTS Depressive, cyclothymic, irritable and anxious temperaments correlated positively with insomnia symptoms, but hyperthymic temperament correlated negatively with insomnia symptoms. Satisfaction with life correlated negatively with insomnia symptoms. Hyperthymic temperament correlated positively with satisfaction with life, but depressive, cyclothymic, irritable and anxious temperaments correlated negatively with satisfaction with life. Hierarchical regression analysis indicated that 30% of the variance in insomnia symptoms was attributable to satisfaction with life level and the presence of cyclothymic and anxious temperaments. The mediation analysis suggested a significant indirect effect of cyclothymic and anxious temperaments on insomnia through satisfaction with life as a mediator between affective temperaments and insomnia. CONCLUSIONS Cyclothymic and anxious temperaments can influence the symptoms of insomnia directly and indirectly as mediated by satisfaction with life.
Collapse
|
14
|
Palermo J, Chesi A, Zimmerman A, Sonti S, Pahl MC, Lasconi C, Brown EB, Pippin JA, Wells AD, Doldur-Balli F, Mazzotti DR, Pack AI, Gehrman PR, Grant SF, Keene AC. Variant-to-gene mapping followed by cross-species genetic screening identifies GPI-anchor biosynthesis as a regulator of sleep. SCIENCE ADVANCES 2023; 9:eabq0844. [PMID: 36608130 PMCID: PMC9821868 DOI: 10.1126/sciadv.abq0844] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/05/2022] [Indexed: 05/13/2023]
Abstract
Genome-wide association studies (GWAS) in humans have identified loci robustly associated with several heritable diseases or traits, yet little is known about the functional roles of the underlying causal variants in regulating sleep duration or quality. We applied an ATAC-seq/promoter focused Capture C strategy in human iPSC-derived neural progenitors to carry out a "variant-to-gene" mapping campaign that identified 88 candidate sleep effector genes connected to relevant GWAS signals. To functionally validate the role of the implicated effector genes in sleep regulation, we performed a neuron-specific RNA interference screen in the fruit fly, Drosophila melanogaster, followed by validation in zebrafish. This approach identified a number of genes that regulate sleep including a critical role for glycosylphosphatidylinositol (GPI)-anchor biosynthesis. These results provide the first physical variant-to-gene mapping of human sleep genes followed by a model organism-based prioritization, revealing a conserved role for GPI-anchor biosynthesis in sleep regulation.
Collapse
Affiliation(s)
- Justin Palermo
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amber Zimmerman
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Shilpa Sonti
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chiara Lasconi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth B. Brown
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Diego R. Mazzotti
- Division of Medical Informatics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Allan I. Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Phillip R. Gehrman
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Divisions of Human Genetics and Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
15
|
Lane JM, Qian J, Mignot E, Redline S, Scheer FAJL, Saxena R. Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet 2023; 24:4-20. [PMID: 36028773 PMCID: PMC10947799 DOI: 10.1038/s41576-022-00519-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Circadian rhythms and sleep are fundamental biological processes integral to human health. Their disruption is associated with detrimental physiological consequences, including cognitive, metabolic, cardiovascular and immunological dysfunctions. Yet many of the molecular underpinnings of sleep regulation in health and disease have remained elusive. Given the moderate heritability of circadian and sleep traits, genetics offers an opportunity that complements insights from model organism studies to advance our fundamental molecular understanding of human circadian and sleep physiology and linked chronic disease biology. Here, we review recent discoveries of the genetics of circadian and sleep physiology and disorders with a focus on those that reveal causal contributions to complex diseases.
Collapse
Affiliation(s)
- Jacqueline M Lane
- Center for Genomic Medicine and Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Jingyi Qian
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Emmanuel Mignot
- Center for Narcolepsy, Stanford University, Palo Alto, California, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| | - Richa Saxena
- Center for Genomic Medicine and Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
16
|
Tesfaye R, Huguet G, Schmilovich Z, Renne T, Loum MA, Douard E, Saci Z, Jean-Louis M, Martineau JL, Whelan R, Desrivieres S, Heinz A, Schumann G, Hayward C, Elsabbagh M, Jacquemont S. Investigating the contributions of circadian pathway and insomnia risk genes to autism and sleep disturbances. Transl Psychiatry 2022; 12:424. [PMID: 36192372 PMCID: PMC9529939 DOI: 10.1038/s41398-022-02188-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Sleep disturbance is prevalent in youth with Autism Spectrum Disorder (ASD). Researchers have posited that circadian dysfunction may contribute to sleep problems or exacerbate ASD symptomatology. However, there is limited genetic evidence of this. It is also unclear how insomnia risk genes identified through GWAS in general populations are related to ASD and common sleep problems like insomnia traits in ASD. We investigated the contribution of copy number variants (CNVs) encompassing circadian pathway genes and insomnia risk genes to ASD risk as well as sleep disturbances in children with ASD. We studied 5860 ASD probands and 2092 unaffected siblings from the Simons Simplex Collection (SSC) and MSSNG database, as well as 7509 individuals from two unselected populations (IMAGEN and Generation Scotland). Sleep duration and insomnia symptoms were parent reported for SSC probands. We identified 335 and 616 rare CNVs encompassing circadian and insomnia risk genes respectively. Deletions and duplications with circadian genes were overrepresented in ASD probands compared to siblings and unselected controls. For insomnia-risk genes, deletions (not duplications) were associated with ASD in both cohorts. Results remained significant after adjusting for cognitive ability. CNVs containing circadian pathway and insomnia risk genes showed a stronger association with ASD, compared to CNVs containing other genes. Circadian genes did not influence sleep duration or insomnia traits in ASD. Insomnia risk genes intolerant to haploinsufficiency increased risk for insomnia when duplicated. CNVs encompassing circadian and insomnia risk genes increase ASD liability with little to no observable impacts on sleep disturbances.
Collapse
Affiliation(s)
- Rackeb Tesfaye
- McGill University, Neurology and Neurosurgery, Montreal Neurological Institute, Azrieli Centre for Autism Research, Montreal, Canada.
| | - Guillaume Huguet
- UHC Sainte-Justine Research Center, Université de Montréal, Montreal, Canada
| | | | - Thomas Renne
- UHC Sainte-Justine Research Center, Université de Montréal, Montreal, Canada
| | - Mor Absa Loum
- UHC Sainte-Justine Research Center, Université de Montréal, Montreal, Canada
| | - Elise Douard
- UHC Sainte-Justine Research Center, Université de Montréal, Montreal, Canada
| | - Zohra Saci
- UHC Sainte-Justine Research Center, Université de Montréal, Montreal, Canada
| | | | - Jean Luc Martineau
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - Rob Whelan
- Global Brain Health Institute and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivieres
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, United Kingdom
- PONS Research Group, Dept of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin and Leibniz Institute for Neurobiology, Magdeburg, Germany, and Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, People's Republic of China
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
| | - Mayada Elsabbagh
- McGill University, Neurology and Neurosurgery, Montreal Neurological Institute, Azrieli Centre for Autism Research, Montreal, Canada
| | | |
Collapse
|
17
|
Liu J, Richmond RC, Bowden J, Barry C, Dashti HS, Daghlas I, Lane JM, Jones SE, Wood AR, Frayling TM, Wright AK, Carr MJ, Anderson SG, Emsley RA, Ray DW, Weedon MN, Saxena R, Lawlor DA, Rutter MK. Assessing the Causal Role of Sleep Traits on Glycated Hemoglobin: A Mendelian Randomization Study. Diabetes Care 2022; 45:772-781. [PMID: 35349659 PMCID: PMC9114722 DOI: 10.2337/dc21-0089] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 11/18/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To examine the effects of sleep traits on glycated hemoglobin (HbA1c). RESEARCH DESIGN AND METHODS This study triangulated evidence across multivariable regression (MVR) and one- (1SMR) and two-sample Mendelian randomization (2SMR) including sensitivity analyses on the effects of five self-reported sleep traits (i.e., insomnia symptoms [difficulty initiating or maintaining sleep], sleep duration, daytime sleepiness, napping, and chronotype) on HbA1c (in SD units) in adults of European ancestry from the UK Biobank (for MVR and 1SMR analyses) (n = 336,999; mean [SD] age 57 [8] years; 54% female) and in the genome-wide association studies from the Meta-Analyses of Glucose and Insulin-Related Traits Consortium (MAGIC) (for 2SMR analysis) (n = 46,368; 53 [11] years; 52% female). RESULTS Across MVR, 1SMR, 2SMR, and their sensitivity analyses, we found a higher frequency of insomnia symptoms (usually vs. sometimes or rarely/never) was associated with higher HbA1c (MVR 0.05 SD units [95% CI 0.04-0.06]; 1SMR 0.52 [0.42-0.63]; 2SMR 0.24 [0.11-0.36]). Associations remained, but point estimates were somewhat attenuated after excluding participants with diabetes. For other sleep traits, there was less consistency across methods, with some but not all providing evidence of an effect. CONCLUSIONS Our results suggest that frequent insomnia symptoms cause higher HbA1c levels and, by implication, that insomnia has a causal role in type 2 diabetes. These findings could have important implications for developing and evaluating strategies that improve sleep habits to reduce hyperglycemia and prevent diabetes.
Collapse
Affiliation(s)
- Junxi Liu
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Rebecca C. Richmond
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Jack Bowden
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K
- College of Medicine and Health, University of Exeter, Exeter, U.K
| | - Ciarrah Barry
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Hassan S. Dashti
- Centre for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| | - Iyas Daghlas
- Centre for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| | - Jacqueline M. Lane
- Centre for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| | - Samuel E. Jones
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Andrew R. Wood
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, U.K
| | - Timothy M. Frayling
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, U.K
| | - Alison K. Wright
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | - Matthew J. Carr
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
- Manchester Academic Health Science Centre, University of Manchester, Manchester, U.K
- National Institute for Health Research (NIHR) Greater Manchester Patient Safety Translational Research Centre, University of Manchester, Manchester, U.K
| | - Simon G. Anderson
- George Alleyne Chronic Disease Research Centre, Caribbean Institute of Health Research, University of the West Indies, Kingston, Jamaica
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | - Richard A. Emsley
- Department of Biostatistics and Health Informatics, King’s College London, London, U.K
| | - David W. Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
| | - Michael N. Weedon
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, U.K
| | - Richa Saxena
- Centre for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Deborah A. Lawlor
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol National Health Service (NHS) Foundation Trust, University of Bristol, Bristol, U.K
| | - Martin K. Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K
| |
Collapse
|
18
|
Mainieri G, Montini A, Nicotera A, Di Rosa G, Provini F, Loddo G. The Genetics of Sleep Disorders in Children: A Narrative Review. Brain Sci 2021; 11:1259. [PMID: 34679324 PMCID: PMC8534132 DOI: 10.3390/brainsci11101259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Sleep is a universal, highly preserved process, essential for human and animal life, whose complete functions are yet to be unravelled. Familial recurrence is acknowledged for some sleep disorders, but definite data are lacking for many of them. Genetic studies on sleep disorders have progressed from twin and family studies to candidate gene approaches to culminate in genome-wide association studies (GWAS). Several works disclosed that sleep-wake characteristics, in addition to electroencephalographic (EEG) sleep patterns, have a certain degree of heritability. Notwithstanding, it is rare for sleep disorders to be attributed to single gene defects because of the complexity of the brain network/pathways involved. Besides, the advancing insights in epigenetic gene-environment interactions add further complexity to understanding the genetic control of sleep and its disorders. This narrative review explores the current genetic knowledge in sleep disorders in children, following the International Classification of Sleep Disorders-Third Edition (ICSD-3) categorisation.
Collapse
Affiliation(s)
- Greta Mainieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (G.M.); (A.M.)
| | - Angelica Montini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (G.M.); (A.M.)
| | - Antonio Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, 98124 Messina, Italy; (A.N.); (G.D.R.)
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, 98124 Messina, Italy; (A.N.); (G.D.R.)
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (G.M.); (A.M.)
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | | |
Collapse
|
19
|
Choe HN, Jarvis ED. The role of sex chromosomes and sex hormones in vocal learning systems. Horm Behav 2021; 132:104978. [PMID: 33895570 DOI: 10.1016/j.yhbeh.2021.104978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Vocal learning is the ability to imitate and modify sounds through auditory experience, a rare trait found in only a few lineages of mammals and birds. It is a critical component of human spoken language, allowing us to verbally transmit speech repertoires and knowledge across generations. In many vocal learning species, the vocal learning trait is sexually dimorphic, where it is either limited to males or present in both sexes to different degrees. In humans, recent findings have revealed subtle sexual dimorphism in vocal learning/spoken language brain regions and some associated disorders. For songbirds, where the neural mechanisms of vocal learning have been well studied, vocal learning appears to have been present in both sexes at the origin of the lineage and was then independently lost in females of some subsequent lineages. This loss is associated with an interplay between sex chromosomes and sex steroid hormones. Even in species with little dimorphism, like humans, sex chromosomes and hormones still have some influence on learned vocalizations. Here we present a brief synthesis of these studies, in the context of sex determination broadly, and identify areas of needed investigation to further understand how sex chromosomes and sex steroid hormones help establish sexually dimorphic neural structures for vocal learning.
Collapse
Affiliation(s)
- Ha Na Choe
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| | - Erich D Jarvis
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| |
Collapse
|
20
|
Ma T, Chen H, Lu Q, Tong X. Polygenic Risk for Insomnia in Adolescents of Diverse Ancestry. Front Genet 2021; 12:654717. [PMID: 34040634 PMCID: PMC8141920 DOI: 10.3389/fgene.2021.654717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Insomnia is a common mental disorder, affecting nearly one fifth of the pre-adult population in the United States. The recent, largest genome-wide association study (GWAS) conducted on the United Kingdom Biobank cohort identified hundreds of significant single-nucleotide polymorphism (SNP), allowing the epidemiologists to quantify individual genetic predisposition in the subsequent studies via the polygenic risk scoring technique. The nucleotide polymorphisms and risk scoring, while being able to generalize to other adult populations of European origin, are not yet tested on pediatric and adolescent populations of diverse racial-ethnic backgrounds, and our study intends to fill these gaps. Materials and Methods: We took the summary of the same United Kingdom Biobank study and conducted a polygenic risk score (PRS) analysis on a multi-ethnicity, pre-adult population provided by the Adolescent Brain Cognitive Development (ABCD) Study. Results: The PRSs according to the significant nucleotide polymorphisms found in white British adults is a strong predictor of insomnia in children of similar European background but lacks power in non-European groups. Conclusions: Through polygenic risk scoring, the knowledge of insomnia genetics summarized from a white adult study population is transferable to a younger age group, which aids the search of actionable targets of early insomnia prevention. Yet population stratification may prevent the easy generalization across ethnic lines; therefore, it is necessary to conduct group specific studies to aid people of non-European genetic background.
Collapse
Affiliation(s)
- Tengfei Ma
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Qing Lu
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, United States.,Department of Biostatistics, College of Public Health and Health Professionals and College of Medicine, University of Florida, Gainesville, FL, United States
| | - Xiaoran Tong
- Biostatistics and Computational Biology, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
21
|
Kafle OP, Cheng S, Ma M, Li P, Cheng B, Zhang L, Wen Y, Liang C, Qi X, Zhang F. Identifying insomnia-related chemicals through integrative analysis of genome-wide association studies and chemical-genes interaction information. Sleep 2021; 43:5805199. [PMID: 32170308 DOI: 10.1093/sleep/zsaa042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/02/2020] [Indexed: 12/30/2022] Open
Abstract
STUDY OBJECTIVES Insomnia is a common sleep disorder and constitutes a major issue in modern society. We provide new clues for revealing the association between environmental chemicals and insomnia. METHODS Three genome-wide association studies (GWAS) summary datasets of insomnia (n = 113,006, n = 1,331,010, and n = 453,379, respectively) were driven from the UK Biobank, 23andMe, and deCODE. The chemical-gene interaction dataset was downloaded from the Comparative Toxicogenomics Database. First, we conducted a meta-analysis of the three datasets of insomnia using the METAL software. Using the result of meta-analysis, transcriptome-wide association studies were performed to calculate the expression association testing statistics of insomnia. Then chemical-related gene set enrichment analysis (GSEA) was used to explore the association between chemicals and insomnia. RESULTS For GWAS meta-analysis dataset of insomnia, we identified 42 chemicals associated with insomnia in brain tissue (p < 0.05) by GSEA. We detected five important chemicals such as pinosylvin (p = 0.0128), bromobenzene (p = 0.0134), clonidine (p = 0.0372), gabapentin (p = 0.0372), and melatonin (p = 0.0404) which are directly associated with insomnia. CONCLUSION Our study results provide new clues for revealing the roles of environmental chemicals in the development of insomnia.
Collapse
Affiliation(s)
- Om Prakash Kafle
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
22
|
Lind MJ, Brick LA, Gehrman PR, Duncan LE, Gelaye B, Maihofer AX, Nievergelt CM, Nugent NR, Stein MB, Amstadter AB. Molecular genetic overlap between posttraumatic stress disorder and sleep phenotypes. Sleep 2021; 43:5658424. [PMID: 31802129 DOI: 10.1093/sleep/zsz257] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/17/2019] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Sleep problems are common, serving as both a predictor and symptom of posttraumatic stress disorder (PTSD), with these bidirectional relationships well established in the literature. While both sleep phenotypes and PTSD are moderately heritable, there has been a paucity of investigation into potential genetic overlap between sleep and PTSD. Here, we estimate genetic correlations between multiple sleep phenotypes (including insomnia symptoms, sleep duration, daytime sleepiness, and chronotype) and PTSD, using results from the largest genome-wide association study (GWAS) to date of PTSD, as well as publicly available GWAS results for sleep phenotypes within UK Biobank data (23 variations, encompassing four main phenotypes). METHODS Genetic correlations were estimated utilizing linkage disequilibrium score regression (LDSC), an approach that uses GWAS summary statistics to compute genetic correlations across traits, and Mendelian randomization (MR) analyses were conducted to follow up on significant correlations. RESULTS Significant, moderate genetic correlations were found between insomnia symptoms (rg range 0.36-0.49), oversleeping (rg range 0.32-0.44), undersleeping (rg range 0.48-0.49), and PTSD. In contrast, there were mixed results for continuous sleep duration and daytime sleepiness phenotypes, and chronotype was not correlated with PTSD. MR analyses did not provide evidence for casual effects of sleep phenotypes on PTSD. CONCLUSION Sleep phenotypes, particularly insomnia symptoms and extremes of sleep duration, have shared genetic etiology with PTSD, but causal relationships were not identified. This highlights the importance of further investigation into the overlapping influences on these phenotypes as sample sizes increase and new methods to investigate directionality and causality become available.
Collapse
Affiliation(s)
- Mackenzie J Lind
- Department of Psychiatry and Behavioral Sciences, University of Washington, WA.,Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA
| | - Leslie A Brick
- Department of Psychiatry and Human Behavior in Alpert Medical School of Brown University, RI
| | - Philip R Gehrman
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, PA
| | - Laramie E Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University, CA
| | - Bizu Gelaye
- Department of Epidemiology and Psychiatry, Harvard T. H. Chan School of Public Health and Harvard School of Medicine, MA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego and Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, CA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego and Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, CA
| | - Nicole R Nugent
- Department of Psychiatry and Human Behavior in Alpert Medical School of Brown University, RI.,Bradley/Hasbro Children's Research Center of Rhode Island Hospital, RI
| | - Murray B Stein
- Department of Psychiatry and Family Medicine & Public Health, University of California San Diego, CA and VA San Diego Healthcare System, CA
| | - Ananda B Amstadter
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA.,Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, VA
| | | |
Collapse
|
23
|
Belfer SJ, Bashaw AG, Perlis ML, Kayser MS. A Drosophila model of sleep restriction therapy for insomnia. Mol Psychiatry 2021; 26:492-507. [PMID: 30824866 PMCID: PMC6717687 DOI: 10.1038/s41380-019-0376-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/23/2019] [Accepted: 02/11/2019] [Indexed: 01/03/2023]
Abstract
Insomnia is the most common sleep disorder among adults, especially affecting individuals of advanced age or with neurodegenerative disease. Insomnia is also a common comorbidity across psychiatric disorders. Cognitive behavioral therapy for insomnia (CBT-I) is the first-line treatment for insomnia; a key component of this intervention is restriction of sleep opportunity, which optimizes matching of sleep ability and opportunity, leading to enhanced sleep drive. Despite the well-documented efficacy of CBT-I, little is known regarding how CBT-I works at a cellular and molecular level to improve sleep, due in large part to an absence of experimentally-tractable animals models of this intervention. Here, guided by human behavioral sleep therapies, we developed a Drosophila model for sleep restriction therapy (SRT) of insomnia. We demonstrate that restriction of sleep opportunity through manipulation of environmental cues improves sleep efficiency in multiple short-sleeping Drosophila mutants. The response to sleep opportunity restriction requires ongoing environmental inputs, but is independent of the molecular circadian clock. We apply this sleep opportunity restriction paradigm to aging and Alzheimer's disease fly models, and find that sleep impairments in these models are reversible with sleep restriction, with associated improvement in reproductive fitness and extended lifespan. This work establishes a model to investigate the neurobiological basis of CBT-I, and provides a platform that can be exploited toward novel treatment targets for insomnia.
Collapse
Affiliation(s)
- Samuel J Belfer
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexander G Bashaw
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael L Perlis
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Behavioral Sleep Medicine Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew S Kayser
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Chronobiology Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Why is personality tied to sleep quality? A biometric analysis of twins. JOURNAL OF RESEARCH IN PERSONALITY 2021. [DOI: 10.1016/j.jrp.2020.104048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Rosenberg R, Citrome L, Drake CL. Advances in the Treatment of Chronic Insomnia: A Narrative Review of New Nonpharmacologic and Pharmacologic Therapies. Neuropsychiatr Dis Treat 2021; 17:2549-2566. [PMID: 34393484 PMCID: PMC8354724 DOI: 10.2147/ndt.s297504] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic insomnia disorder, which affects 6-10% of the population, is diagnostically characterized by ongoing difficulties with initiating or maintaining sleep occurring at least three times per week, persisting for at least 3 months, and associated with daytime impairment. While chronic insomnia is often considered a condition primarily related to impaired sleep, the disorder can also adversely affect domains of physical and mental health, quality of life, and daytime function, which highlights the importance of treating the multidimensional sleep disorder. Owing to misperceptions about the safety and effectiveness of treatment options, many individuals with insomnia may not seek professional treatment, and alternatively use ineffective home remedies or over-the-counter medications to improve sleep. Some physicians may even believe that insomnia is remediated by simply having the patient "get more sleep". Unfortunately, treatment of insomnia is not always that simple. The disorder's complex underlying pathophysiology warrants consideration of different nonpharmacologic and pharmacologic treatment options. Indeed, recent insights gained from research into the pathophysiology of insomnia have facilitated development of newer treatment approaches with more efficacious outcomes. This narrative review provides a summary of the diagnostic criteria and pathophysiology of insomnia and its subtypes. Further, this review emphasizes new and emerging nonpharmacologic and pharmacologic treatments for chronic insomnia, including recent enhancements in approaches to cognitive behavioral therapy for insomnia (CBT-I) and the new dual orexin receptor antagonist (DORA) pharmacologics. These advances in treatment have expanded the treatment options and are likely to result in improved outcomes in patients with chronic insomnia.
Collapse
Affiliation(s)
| | - Leslie Citrome
- Department of Psychiatry and Behavioral Sciences, New York Medical College, Valhalla, NY, USA
| | - Christopher L Drake
- Thomas Roth Sleep Disorders and Research Center, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
26
|
Barclay NL, Kocevska D, Bramer WM, Van Someren EJW, Gehrman P. The heritability of insomnia: A meta-analysis of twin studies. GENES BRAIN AND BEHAVIOR 2020; 20:e12717. [PMID: 33222383 DOI: 10.1111/gbb.12717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022]
Abstract
Twin studies of insomnia exhibit heterogeneity in estimates of heritability. This heterogeneity is likely because of sex differences, age of the sample, the reporter and the definition of insomnia. The aim of the present study was to systematically search the literature for twin studies investigating insomnia disorder and insomnia symptoms and to meta-analyse the estimates of heritability derived from these studies to generate an overall estimate of heritability. We further examined whether heritability was moderated by sex, age, reporter and insomnia symptom. A systematic literature search of five online databases was completed on 24 January 2020. Two authors independently screened 5644 abstracts, and 160 complete papers for the inclusion criteria of twin studies from the general population reporting heritability statistics on insomnia or insomnia symptoms, written in English, reporting data from independent studies. We ultimately included 12 papers in the meta-analysis. The meta-analysis focussed on twin intra-class correlations for monozygotic and dizygotic twins. Based on these intra-class correlations, the meta-analytic estimate of heritability was estimated at 40%. Moderator analyses showed stronger heritability in females than males; and for parent-reported insomnia symptoms compared with self-reported insomnia symptoms. There were no other significant moderator effects, although this is likely because of the small number of studies that were comparable across levels of the moderators. Our meta-analysis provides a robust estimate of the heritability of insomnia, which can inform future research aiming to uncover molecular genetic factors involved in insomnia vulnerability.
Collapse
Affiliation(s)
- Nicola L Barclay
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Desi Kocevska
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, The Netherlands
| | - Wichor M Bramer
- Medical Library, Erasmus MC - University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, The Netherlands.,Departments of Integrative Neurophysiology and Psychiatry, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Philip Gehrman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Peck MM, Maram R, Mohamed A, Ochoa Crespo D, Kaur G, Ashraf I, Malik BH. The Influence of Pro-inflammatory Cytokines and Genetic Variants in the Development of Fibromyalgia: A Traditional Review. Cureus 2020; 12:e10276. [PMID: 33042712 PMCID: PMC7538208 DOI: 10.7759/cureus.10276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
Fibromyalgia is a complex syndrome characterized by widespread chronic pain, without any obvious etiology, and it is often accompanied by a constellation of symptoms such as fatigue, sleep disturbances and cognitive dysfunction, to name a few. The syndrome may be associated with a variety of autoimmune and psychiatric conditions. Fibromyalgia can occur with other musculoskeletal pathologies and its symptoms can overlap with other chronic painful conditions such as chronic myofascial pain syndromes seen in cervical and lumbar spinal osteoarthritis and degenerative disc disease. Gene polymorphisms have been related to a decreased pain threshold and an increased susceptibility to disorders associated with chronic pain. Some of those genetic variants might trigger the onset of fibromyalgia. Researchers are looking into the possible factors that might contribute to its pathophysiology. It is important to study the connections between pro-inflammatory cytokines and genetic variants in pain-related genes and their roles in predisposition and development of fibromyalgia. The objective of this review article is to provide a brief overview of the pro-inflammatory cytokines commonly associated with fibromyalgia, as well as to look into the genes that have shown some level of involvement in the development of fibromyalgia and its symptomatology.
Collapse
Affiliation(s)
- Mercedes Maria Peck
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ruchira Maram
- Internal Medicine, Arogyasri Healthcare Trust, Hyderabad, IND
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Alaa Mohamed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Memorial Hermann Medical Center, Houston, USA
| | - Diego Ochoa Crespo
- Internal Medicine, Clinica San Martin, Azogues, ECU
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Gurleen Kaur
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ibtisam Ashraf
- Internal Medicine, Shalamar Institute of Health Sciences, Lahore, PAK
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bilal Haider Malik
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
28
|
Van Someren EJW. Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol Rev 2020; 101:995-1046. [PMID: 32790576 DOI: 10.1152/physrev.00046.2019] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While insomnia is the second most common mental disorder, progress in our understanding of underlying neurobiological mechanisms has been limited. The present review addresses the definition and prevalence of insomnia and explores its subjective and objective characteristics across the 24-hour day. Subsequently, the review extensively addresses how the vulnerability to develop insomnia is affected by genetic variants, early life stress, major life events, and brain structure and function. Further supported by the clear mental health risks conveyed by insomnia, the integrated findings suggest that the vulnerability to develop insomnia could rather be found in brain circuits regulating emotion and arousal than in circuits involved in circadian and homeostatic sleep regulation. Finally, a testable model is presented. The model proposes that in people with a vulnerability to develop insomnia, the locus coeruleus is more sensitive to-or receives more input from-the salience network and related circuits, even during rapid eye movement sleep, when it should normally be sound asleep. This vulnerability may ignite a downward spiral of insufficient overnight adaptation to distress, resulting in accumulating hyperarousal, which, in turn, impedes restful sleep and moreover increases the risk of other mental health adversity. Sensitized brain circuits are likely to be subjectively experienced as "sleeping with one eye open". The proposed model opens up the possibility for novel intervention studies and animal studies, thus accelerating the ignition of a neuroscience of insomnia, which is direly needed for better treatment.
Collapse
Affiliation(s)
- Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit University Amsterdam, Amsterdam, The Netherlands; and Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Melo DLM, Carvalho LBC, Prado LBF, Prado GF. Biofeedback Therapies for Chronic Insomnia: A Systematic Review. Appl Psychophysiol Biofeedback 2020; 44:259-269. [PMID: 31123938 DOI: 10.1007/s10484-019-09442-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The treatment of insomnia is still a challenge in clinical practice. This systematic review of randomized and quasi-randomized clinical trials aims to summarize the evidence for the use of biofeedback techniques in the treatment of chronic insomnia. Studies that compared biofeedback with other techniques of cognitive behavioral therapy, placebo, or absence of treatment were selected. The outcomes evaluated included sleep onset latency, total sleep time, sleep fragmentation, sleep efficiency and subjective sleep quality. Comparing to placebo and absence of treatment, some studies suggest possible benefits from the use of biofeedback for chronic insomnia in decreasing sleep onset latency and number of awakenings; however, there was marked divergence among included studies. There was no evidence of improvement in total sleep time, sleep efficiency and subjective sleep quality. Moreover, the maintenance of long-term benefits lacks evidence for any outcome. In the majority of outcomes evaluated, no significant differences in the effectiveness of biofeedback compared with other cognitive behavioral therapy techniques were observed. This systematic review found conflicting evidence for the effectiveness of biofeedback techniques in the treatment of chronic insomnia. Inter- and intra-group clinical heterogeneity among studies could be a reasonable explanation for the divergent results. These findings emphasize the need of performing further randomized clinical trials of higher methodological quality in order to better delineate the effectiveness of biofeedback on chronic insomnia treatment.
Collapse
Affiliation(s)
- Denise Lima Medeiros Melo
- Department of Neurology, Neuro-Sono Sleep Center, Federal University of Sao Paulo-UNIFESP, R. Cláudio Rossi, 394, São Paulo, SP, CEP 01547-000, Brazil.
| | - Luciane Bizari Coin Carvalho
- Department of Neurology, Neuro-Sono Sleep Center, Federal University of Sao Paulo-UNIFESP, R. Cláudio Rossi, 394, São Paulo, SP, CEP 01547-000, Brazil
| | - Lucila Bizari Fernandes Prado
- Department of Neurology, Neuro-Sono Sleep Center, Federal University of Sao Paulo-UNIFESP, R. Cláudio Rossi, 394, São Paulo, SP, CEP 01547-000, Brazil
| | - Gilmar Fernandes Prado
- Department of Neurology, Neuro-Sono Sleep Center, Federal University of Sao Paulo-UNIFESP, R. Cláudio Rossi, 394, São Paulo, SP, CEP 01547-000, Brazil
| |
Collapse
|
30
|
Winiger EA, Huggett SB, Hatoum AS, Friedman NP, Drake CL, Wright KP, Hewitt JK. Onset of regular cannabis use and young adult insomnia: an analysis of shared genetic liability. Sleep 2020; 43:zsz293. [PMID: 31855253 PMCID: PMC7368342 DOI: 10.1093/sleep/zsz293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/22/2019] [Indexed: 01/13/2023] Open
Abstract
STUDY OBJECTIVES Estimate the genetic and environmental influences on the relationship between onset of regular cannabis use and young adult insomnia. METHODS In a population-based twin cohort of 1882 twins (56% female, mean age = 22.99, SD = 2.97) we explored the genetic/environmental etiology of the relationship between onset of regular cannabis use and insomnia-related outcomes via multivariate twin models. RESULTS Controlling for sex, current depression symptoms, and prior diagnosis of an anxiety or depression disorder, adult twins who reported early onset for regular cannabis use (age 17 or younger) were more likely to have insomnia (β = 0.07, p = 0.024) and insomnia with short sleep on weekdays (β = 0.08, p = 0.003) as young adults. We found significant genetic contributions for the onset of regular cannabis use (a2 = 76%, p < 0.001), insomnia (a2 = 44%, p < 0.001), and insomnia with short sleep on weekdays (a2 = 37%, p < 0.001). We found significant genetic correlations between onset of regular use and both insomnia (rA = 0.20, p = 0.047) and insomnia with short sleep on weekdays (rA = 0.25, p = 0.008) but no significant environmental associations between these traits. CONCLUSIONS We found common genetic liabilities for early onset of regular cannabis use and insomnia, implying pleiotropic influences of genes on both traits.
Collapse
Affiliation(s)
- Evan A Winiger
- Institute for Behavioral Genetics, University of Colorado - Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO
| | - Spencer B Huggett
- Institute for Behavioral Genetics, University of Colorado - Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO
| | - Alexander S Hatoum
- Institute for Behavioral Genetics, University of Colorado - Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO
| | - Naomi P Friedman
- Institute for Behavioral Genetics, University of Colorado - Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO
| | | | - Kenneth P Wright
- Department of Integrative Physiology, University of Colorado - Boulder, Boulder, CO
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado - Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado - Boulder, Boulder, CO
| |
Collapse
|
31
|
Genome-wide association analysis of insomnia using data from Partners Biobank. Sci Rep 2020; 10:6928. [PMID: 32332799 PMCID: PMC7181749 DOI: 10.1038/s41598-020-63792-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Insomnia is one of the most prevalent and burdensome mental disorders worldwide, affecting between 10–20% of adults and up to 48% of the geriatric population. It is further associated with substance usage and dependence, as well other psychiatric disorders. In this study, we combined electronic health record (EHR) derived phenotypes and genotype information to conduct a genome wide analysis of insomnia in a 18,055 patient cohort. Diagnostic codes were used to identify 3,135 patients with insomnia. Our genome-wide association study (GWAS) identified one novel genomic risk locus on chromosome 8 (lead SNP rs17052966, p = 4.53 × 10−9, odds ratio = 1.28, se = 0.04). The heritability analysis indicated that common SNPs accounts for 7% (se = 0.02, p = 0.015) of phenotypic variation. We further conducted a large-scale meta-analysis of our results and summary statistics of two recent insomnia GWAS and 13 significant loci were identified. The genetic correlation analysis yielded a strong positive genetic correlation between insomnia and alcohol use (rG = 0.56, se = 0.14, p < 0.001), nicotine use (rG = 0.50, se = 0.12, p < 0.001) and opioid use (rG = 0.43, se = 0.18, p = 0.02) disorders, suggesting a significant common genetic risk factors between insomnia and substance use.
Collapse
|
32
|
|
33
|
Genetics of Circadian and Sleep Measures in Adults: Implications for Sleep Medicine. CURRENT SLEEP MEDICINE REPORTS 2020. [DOI: 10.1007/s40675-020-00165-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Bragantini D, Sivertsen B, Gehrman P, Lydersen S, Güzey IC. Genetic polymorphisms associated with sleep-related phenotypes; relationships with individual nocturnal symptoms of insomnia in the HUNT study. BMC MEDICAL GENETICS 2019; 20:179. [PMID: 31718593 PMCID: PMC6852911 DOI: 10.1186/s12881-019-0916-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
Background In recent years, several GWAS (genome wide association studies) of sleep-related traits have identified a number of SNPs (single nucleotides polymorphism) but their relationships with symptoms of insomnia are not known. The aim of this study was to investigate whether SNPs, previously reported in association with sleep-related phenotypes, are associated with individual symptoms of insomnia. Methods We selected participants from the HUNT study (Norway) who reported at least one symptom of insomnia consisting of sleep onset, maintenance or early morning awakening difficulties, (cases, N = 2563) compared to participants who presented no symptoms at all (controls, N = 3665). Cases were further divided in seven subgroups according to different combinations of these three symptoms. We used multinomial logistic regressions to test the association among different patterns of symptoms and 59 SNPs identified in past GWAS studies. Results Although 16 SNPS were significantly associated (p < 0.05) with at least one symptom subgroup, none of the investigated SNPs remained significant after correction for multiple testing using the false discovery rate (FDR) method. Conclusions SNPs associated with sleep-related traits do not replicate on any pattern of insomnia symptoms after multiple tests correction. However, correction in this case may be overly conservative.
Collapse
Affiliation(s)
- Daniela Bragantini
- Department of Research and Development (AFFU), Norwegian University of Science and Technology (NTNU), PO Box 3250 Sluppen, NO-7006, Trondheim, Norway. .,Department of Mental Health, Norwegian University of Science and Technology (NTNU), PO Box 3250 Sluppen, NO-7006, Trondheim, Norway. .,St. Olav's University Hospital, Division of Mental Health Care, Østmarkveien 15, NO-7040, Trondheim, Norway.
| | - Børge Sivertsen
- Department of Mental Health, Norwegian University of Science and Technology (NTNU), PO Box 3250 Sluppen, NO-7006, Trondheim, Norway.,Department of Health Promotion, Norwegian Institute of Public Health, PO Box 973 Sentrum, 5808, Bergen, Norway.,Department of Research and Innovation, Helse-Fonna HF Haugesund Hospital, PO Box 2170, 5504, Haugesund, Norway
| | - Philip Gehrman
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 3535 Market St., Suite 670, Philadelphia, PA, 19104, USA
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare (RKBU), Norwegian University of Science and Technology (NTNU), P.O. Box 8905, N-7491, Trondheim, Norway
| | - Ismail Cüneyt Güzey
- Department of Research and Development (AFFU), Norwegian University of Science and Technology (NTNU), PO Box 3250 Sluppen, NO-7006, Trondheim, Norway.,Department of Mental Health, Norwegian University of Science and Technology (NTNU), PO Box 3250 Sluppen, NO-7006, Trondheim, Norway.,St. Olav's University Hospital, Division of Mental Health Care, Østmarkveien 15, NO-7040, Trondheim, Norway
| |
Collapse
|
35
|
El Gewely M, Welman M, Xiong L, Yin S, Catoire H, Rouleau G, Montplaisir JY, Desautels A, Warby SC. Reassessing GWAS findings for the shared genetic basis of insomnia and restless legs syndrome. Sleep 2019; 41:5095658. [PMID: 30215811 DOI: 10.1093/sleep/zsy164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
Two genome-wide association studies (GWAS) suggest that insomnia and restless legs syndrome (RLS) share a common genetic basis. While the identified genetic variation in the MEIS1 gene was previously associated with RLS, the two GWAS suggest a novel and independent association with insomnia symptoms. To test the potential pleiotropic effect of MEIS1, we genotyped three MEIS1 variants in 646 chronic insomnia disorder (CID) patients with and without RLS. To confirm our results, we compared the allelic and genotypic distributions of the CID cohort with ethnically matched controls and RLS cases in the French Canadian cohort. The CID cohort was diagnosed by sleep medicine specialists and 26% of the sample received the combined diagnosis of CID+RLS. We find significant differences in allele and genotype distributions between CID-only and CID+RLS groups, suggesting that MEIS1 is only associated with RLS. Genotype distributions and minor allele frequencies of the three MEIS1 SNPs of the CID-only and control groups were similar (rs113851554: 5.3% vs. 5.6%; rs2300478: 25.3% vs. 26.5%; rs12469063: 23.6% vs. 24.4%; all p > 0.05). Likewise, there were no differences between CID+RLS and RLS-only groups (all p > 0.05). In conclusion, our data confirms that MEIS1 is a genetic risk factor for the development of RLS, but it does not support the pleiotropic effect of MEIS1 in CID. While a lack of power precluded us from refuting small pleiotropic effects, our findings emphasize the critical importance of isolating CID from other disorders that can cause sleep difficulties, particularly RLS, for future genetic studies.
Collapse
Affiliation(s)
- Maryam El Gewely
- Department of Psychiatry, Université de Montréal, Montréal, Canada.,Centre d'études avancées en médecine du sommeil, Montréal, Canada
| | - Mélanie Welman
- Centre d'études avancées en médecine du sommeil, Montréal, Canada
| | - Lan Xiong
- Department of Psychiatry, Université de Montréal, Montréal, Canada.,Centre de recherche, Institut universitaire en santé mentale de Montréal, Montréal, Canada.,Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Sophie Yin
- Centre d'études avancées en médecine du sommeil, Montréal, Canada
| | - Hélène Catoire
- Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Guy Rouleau
- Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Jacques Y Montplaisir
- Department of Psychiatry, Université de Montréal, Montréal, Canada.,Centre d'études avancées en médecine du sommeil, Montréal, Canada
| | - Alex Desautels
- Centre d'études avancées en médecine du sommeil, Montréal, Canada.,Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Simon C Warby
- Department of Psychiatry, Université de Montréal, Montréal, Canada.,Centre d'études avancées en médecine du sommeil, Montréal, Canada
| |
Collapse
|
36
|
Rensen N, Steur LMH, Schepers SA, Merks JHM, Moll AC, Grootenhuis MA, Kaspers GJL, van Litsenburg RRL. Concurrence of sleep problems and distress: prevalence and determinants in parents of children with cancer. Eur J Psychotraumatol 2019; 10:1639312. [PMID: 31448065 PMCID: PMC6691919 DOI: 10.1080/20008198.2019.1639312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/23/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Parents of children with cancer are at risk for sleep problems. If these problems persist, an important perpetuating factor might be ongoing parental distress. Objective: The aim of this study is to assess the prevalence of sleep problems and the concurrence with distress in parents of children treated for cancer, and to identify predictors of this symptom clustering. Method: Parents completed the Medical Outcomes Study (MOS) Sleep Scale and Distress Thermometer for Parents (DT-P). Clinically relevant sleep problems were defined as a score >1SD above the norm and clinical distress as a thermometer score above the established cut-off of 4. Four parent categories were constructed: neither sleep problems nor distress; no distress but sleep problems; no sleep problems but distress; both sleep problems and distress. Predictive determinants (sociodemographic, medical, psychosocial) for each category were assessed with multilevel multinomial logistic regression. Results: Parents (202 mothers and 150 fathers) of 231 children with different cancers participated. Mean time since diagnosis was 3.3 ± 1.4 years (90% off-treatment). The prevalence of sleep problems was 37%. Fifty percent of parents reported neither sleep problems nor distress, 9% had only sleep problems, 13% only distress, and 28% reported both. Compared to parents without sleep problems or distress, parents who reported both were more likely to report parenting problems (OR 4.4, [2.2-9.1]), chronic illness (OR 2.8, [1.2-6.5]), insufficient social support (OR 3.7, [1.5-9.1]), pre-existent sleep problems (OR 6.2, [2.0-18.6]) and be female (OR 1.8, [1.1-4.2]). Conclusions: Sleep problems are common in parents of children treated for cancer, and occur mostly in the presence of clinical distress. Future research must show which interventions are most effective in this group: mainly targeted at sleep improvement or with prominent roles for stress management or trauma processing.
Collapse
Affiliation(s)
- Niki Rensen
- Pediatric Oncology-Hematology, Cancer Center Amsterdam, Amsterdam UMC, Emma Children’s Hospital, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Lindsay M. H. Steur
- Pediatric Oncology-Hematology, Cancer Center Amsterdam, Amsterdam UMC, Emma Children’s Hospital, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sasja A. Schepers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Psychosocial Department, Amsterdam UMC, Emma Children’s Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Johannes H. M. Merks
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Pediatric Oncology-Hematology, Amsterdam UMC, Emma Children’s Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Annette C. Moll
- Ophthalmology, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Martha A. Grootenhuis
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Psychosocial Department, Amsterdam UMC, Emma Children’s Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Gertjan J. L. Kaspers
- Pediatric Oncology-Hematology, Cancer Center Amsterdam, Amsterdam UMC, Emma Children’s Hospital, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Raphaële R. L. van Litsenburg
- Pediatric Oncology-Hematology, Cancer Center Amsterdam, Amsterdam UMC, Emma Children’s Hospital, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
37
|
Peter-Derex L. Patologie del sonno. Neurologia 2019. [DOI: 10.1016/s1634-7072(19)42492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
38
|
Bragantini D, Sivertsen B, Gehrman P, Lydersen S, Güzey IC. Variations in circadian genes and individual nocturnal symptoms of insomnia. The HUNT study. Chronobiol Int 2019; 36:681-688. [DOI: 10.1080/07420528.2019.1582540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Daniela Bragantini
- Department of Research and Development (AFFU), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Mental health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Division of Mental Health Care, St. Olav’s University Hospital, Trondheim, Norway
| | - Børge Sivertsen
- Department of Mental health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Health Promotion, Norwegian Institute of Public Health, Bergen, Norway
- Department of Research and Innovation, Helse-Fonna HF Haugesund Hospital, Haugesund, Norway
| | - Philip Gehrman
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stian Lydersen
- Department of Mental Health, Regional Centre for Child and Youth Mental Health and Child Welfare (RKBU), Norwegian University of Science and Technology (NTNU, Trondheim, Norway
| | - Ismail Cüneyt Güzey
- Department of Research and Development (AFFU), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Mental health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Division of Mental Health Care, St. Olav’s University Hospital, Trondheim, Norway
| |
Collapse
|
39
|
Lane JM, Jones SE, Dashti HS, Wood AR, Aragam KG, van Hees VT, Strand LB, Winsvold BS, Wang H, Bowden J, Song Y, Patel K, Anderson SG, Beaumont RN, Bechtold DA, Cade BE, Haas M, Kathiresan S, Little MA, Luik AI, Loudon AS, Purcell S, Richmond RC, Scheer FAJL, Schormair B, Tyrrell J, Winkelman JW, Winkelmann J, Hveem K, Zhao C, Nielsen JB, Willer CJ, Redline S, Spiegelhalder K, Kyle SD, Ray DW, Zwart JA, Brumpton B, Frayling TM, Lawlor DA, Rutter MK, Weedon MN, Saxena R. Biological and clinical insights from genetics of insomnia symptoms. Nat Genet 2019; 51:387-393. [PMID: 30804566 PMCID: PMC6415688 DOI: 10.1038/s41588-019-0361-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/25/2019] [Indexed: 11/09/2022]
Abstract
Insomnia is a common disorder linked with adverse long-term medical and psychiatric outcomes. The underlying pathophysiological processes and causal relationships of insomnia with disease are poorly understood. Here we identified 57 loci for self-reported insomnia symptoms in the UK Biobank (n = 453,379) and confirmed their effects on self-reported insomnia symptoms in the HUNT Study (n = 14,923 cases and 47,610 controls), physician-diagnosed insomnia in the Partners Biobank (n = 2,217 cases and 14,240 controls), and accelerometer-derived measures of sleep efficiency and sleep duration in the UK Biobank (n = 83,726). Our results suggest enrichment of genes involved in ubiquitin-mediated proteolysis and of genes expressed in multiple brain regions, skeletal muscle, and adrenal glands. Evidence of shared genetic factors was found between frequent insomnia symptoms and restless legs syndrome, aging, and cardiometabolic, behavioral, psychiatric, and reproductive traits. Evidence was found for a possible causal link between insomnia symptoms and coronary artery disease, depressive symptoms, and subjective well-being.
Collapse
Affiliation(s)
- Jacqueline M Lane
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Samuel E Jones
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Hassan S Dashti
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Krishna G Aragam
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Linn B Strand
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bendik S Winsvold
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- FORMI and Department of Neurology, Oslo University Hospital, Oslo, Norway
- Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Heming Wang
- Broad Institute, Cambridge, MA, USA
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jack Bowden
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yanwei Song
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- College of Science, Northeastern University, Boston, MA, USA
| | - Krunal Patel
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- College of Science, Northeastern University, Boston, MA, USA
| | - Simon G Anderson
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Farr Institute of Health Informatics Research, University College London, London, UK
| | - Robin N Beaumont
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - David A Bechtold
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Brian E Cade
- Broad Institute, Cambridge, MA, USA
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mary Haas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Max A Little
- Department of Mathematics, Aston University, Birmingham, UK
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Annemarie I Luik
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Andrew S Loudon
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shaun Purcell
- Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca C Richmond
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Frank A J L Scheer
- Broad Institute, Cambridge, MA, USA
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Barbara Schormair
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jessica Tyrrell
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - John W Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Neurogenetics, Technische Universität München, Munich, Germany
| | - Kristian Hveem
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jonas B Nielsen
- FORMI and Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Cristen J Willer
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Susan Redline
- Departments of Medicine, Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kai Spiegelhalder
- Clinic for Psychiatry and Psychotherapy, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon D Kyle
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David W Ray
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX37LE/NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - John-Anker Zwart
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ben Brumpton
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Department of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Martin K Rutter
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
40
|
Abstract
The functions of sleep remain a mystery. Yet they must be important since sleep is highly conserved, and its chronic disruption is associated with various metabolic, psychiatric, and neurodegenerative disorders. This review will cover our evolving understanding of the mechanisms by which sleep is controlled and the complex relationship between sleep and disease states.
Collapse
Affiliation(s)
- William J Joiner
- Department of Pharmacology, Biomedical Sciences Graduate Program, Neurosciences Graduate Program, and Center for Circadian Biology, University of California San Diego , La Jolla, California
| |
Collapse
|
41
|
Kalmbach DA, Anderson JR, Drake CL. The impact of stress on sleep: Pathogenic sleep reactivity as a vulnerability to insomnia and circadian disorders. J Sleep Res 2018; 27:e12710. [PMID: 29797753 PMCID: PMC7045300 DOI: 10.1111/jsr.12710] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022]
Abstract
Sleep reactivity is the trait-like degree to which stress exposure disrupts sleep, resulting in difficulty falling and staying asleep. Individuals with highly reactive sleep systems experience drastic deterioration of sleep when stressed, whereas those with low sleep reactivity proceed largely unperturbed during stress. Research shows that genetics, familial history of insomnia, female gender and environmental stress influence how the sleep system responds to stress. Further work has identified neurobiological underpinnings for sleep reactivity involving disrupted cortical networks and dysregulation in the autonomic nervous system and hypothalamic-pituitary-adrenal axis. Sleep reactivity is most pathologically and clinically pertinent when in excess, such that high sleep reactivity predicts risk for future insomnia disorder, with early evidence suggesting high sleep reactivity corresponds to severe insomnia phenotypes (sleep onset insomnia and short sleep insomnia). High sleep reactivity is also linked to risk of shift-work disorder, depression and anxiety. Importantly, stress-related worry and rumination may exploit sensitive sleep systems, thereby augmenting the pathogenicity of sleep reactivity. With the development of cost-effective assessment of sleep reactivity, we can now identify individuals at risk of future insomnia, shift-work disorder and mental illness, thus identifying a target population for preventive intervention. Given that insomniacs with high sleep reactivity tend to present with severe insomnia phenotypes, patient sleep reactivity may inform triaging to different levels of treatment. Future research on sleep reactivity is needed to clarify its neurobiology, characterize its long-term prospective associations with insomnia and shift-work disorder phenotypes, and establish its prognostic value for mental illness and other non-sleep disorders.
Collapse
Affiliation(s)
- David A. Kalmbach
- Sleep Disorders and Research Center, Henry Ford Hospital, Detroit, Michigan
| | - Jason R. Anderson
- Department of Psychological Sciences, Kent State University, Kent, Ohio
| | | |
Collapse
|
42
|
Shaffer KM, Applebaum AJ, DuHamel KN, Garland SN, Gehrman P, Mao JJ. Cancer Survivors' Beliefs About the Causes of Their Insomnia: Associations of Causal Attributions With Survivor Characteristics. Behav Sleep Med 2018; 18:177-189. [PMID: 30475651 PMCID: PMC6535375 DOI: 10.1080/15402002.2018.1546708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objectives: Insomnia is common among cancer survivors, yet survivors' beliefs about their insomnia following cancer are largely unknown. This study describes cancer survivors' causal attributions of insomnia and whether these beliefs differ by sociodemographic characteristics. Participants: 160 cancer survivors meeting diagnostic criteria for insomnia disorder. Methods: Survivors endorsed how likely they believed 12 different factors were causally related to their insomnia and self-reported sociodemographics. Multinomial logistic regression tested associations between attribution endorsement and sociodemographics. Latent class analysis (LCA) examined patterns of attribution endorsement and whether sociodemographics were associated. Results: One hundred fifty-four survivors (96%) endorsed that at least 1 causal attribution was likely related to their insomnia. Most survivors endorsed that emotions (77%), thinking patterns (76%), sleep-related emotions (65%), and sleep-related thoughts (57%) were related to their insomnia, similar to data previously published among healthy persons with insomnia. Younger participants were more likely to endorse that biochemical factors related to their insomnia (ps < .02); females were more likely to endorse that hormonal factors related to their insomnia (ps < .001). LCA identified three classes (AIC = 3209.50, BIC = 3485.13). Approximately 40% of survivors endorsed most of the causal attributions were likely related to their insomnia; 13% frequently endorsed attributions were neither likely nor unlikely to be related. Older survivors were more likely to belong to the 47% who reported most attributions were unlikely related to their insomnia (p = .03). Conclusions: Cancer survivors with insomnia commonly endorsed that thoughts and emotions contributed to their sleep disturbance. Survivors' sociodemographic characteristics did not meaningfully explain individual differences for most causal attribution beliefs.
Collapse
Affiliation(s)
- Kelly M. Shaffer
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center,Department of Psychiatry and Neurobehavioral Sciences, University of Virginia
| | - Allison J. Applebaum
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center
| | - Katherine N. DuHamel
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center
| | | | - Philip Gehrman
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
| | - Jun J. Mao
- Department of Medicine, Memorial Sloan Kettering Cancer Center
| |
Collapse
|
43
|
Abstract
Insomnia is a worldwide problem with substantial deleterious health effects. Twin studies have shown a heritable basis for various sleep-related traits, including insomnia, but robust genetic risk variants have just recently begun to be identified. We conducted genome-wide association studies (GWAS) of soldiers in the Army Study To Assess Risk and Resilience in Servicemembers (STARRS). GWAS were carried out separately for each ancestral group (EUR, AFR, LAT) using logistic regression for each of the STARRS component studies (including 3,237 cases and 14,414 controls), and then meta-analysis was conducted across studies and ancestral groups. Heritability (SNP-based) for lifetime insomnia disorder was significant (h2g = 0.115, p = 1.78 × 10-4 in EUR). A meta-analysis including three ancestral groups and three study cohorts revealed a genome-wide significant locus on Chr 7 (q11.22) (top SNP rs186736700, OR = 0.607, p = 4.88 × 10-9) and a genome-wide significant gene-based association (p = 7.61 × 10-7) in EUR for RFX3 on Chr 9. Polygenic risk for sleeplessness/insomnia severity in UK Biobank was significantly positively associated with likelihood of insomnia disorder in STARRS. Genetic contributions to insomnia disorder in STARRS were significantly positively correlated with major depressive disorder (rg = 0.44, se = 0.22, p = 0.047) and type 2 diabetes (rg = 0.43, se = 0.20, p = 0.037), and negatively with morningness chronotype (rg = -0.34, se = 0.17, p = 0.039) and subjective well being (rg = -0.59, se = 0.23, p = 0.009) in external datasets. Insomnia associated loci may contribute to the genetic risk underlying a range of health conditions including psychiatric disorders and metabolic disease.
Collapse
|
44
|
Slavish DC, Graham-Engeland JE, Engeland CG, Taylor DJ, Buxton OM. Insomnia symptoms are associated with elevated C-reactive protein in young adults. Psychol Health 2018; 33:1396-1415. [PMID: 30358412 DOI: 10.1080/08870446.2018.1500577] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Insomnia is associated with elevated inflammation; however, studies have not investigated if this relationship is confounded with depression and neuroticism, which are associated with insomnia and inflammation. The current study examined the association of insomnia symptoms with C-reactive protein (CRP) and with interleukin-6 (IL-6), independently and after controlling for depressive symptoms and neuroticism. DESIGN Fifty-two young adults (mean age = 25.2 ± 3.9 years, 52% female) completed a baseline survey to assess psychological characteristics, followed by a plasma blood draw. MAIN OUTCOME MEASURES Plasma CRP and IL-6. RESULTS When examined alone, insomnia symptoms were significantly associated with elevated CRP (β = 0.52; R2 = 0.27), as was neuroticism (β = 0.41, R2 = 0.17), but not depressive symptoms (β = 0.21, R2 = 0.05). The association between insomnia symptoms and CRP remained significant when depressive symptoms and neuroticism were entered into the model simultaneously; this model did not explain more variance than the model with insomnia symptoms alone. No variables were associated with IL-6. CONCLUSIONS Results suggest that insomnia symptoms are independently associated with elevated CRP in young adults, even after controlling for presumed overlapping psychological constructs. Findings highlight the potential importance of treating insomnia to reduce systemic inflammation.
Collapse
Affiliation(s)
- Danica C Slavish
- a Department of Psychology , University of North Texas , Denton , TX , USA
| | | | - Christopher G Engeland
- b Department of Biobehavioral Health , The Pennsylvania State University , University Park , PA , USA.,c The College of Nursing , The Pennsylvania State University , University Park , PA , USA
| | - Daniel J Taylor
- a Department of Psychology , University of North Texas , Denton , TX , USA
| | - Orfeu M Buxton
- b Department of Biobehavioral Health , The Pennsylvania State University , University Park , PA , USA.,d Division of Sleep Medicine , Harvard Medical School , Boston , MA , USA.,e Sleep Health Institute, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology , Brigham and Women's Hospital , Boston , MA , USA.,f Department of Social and Behavioral Sciences , Harvard Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
45
|
Kalmbach DA, Cuamatzi-Castelan AS, Tonnu CV, Tran KM, Anderson JR, Roth T, Drake CL. Hyperarousal and sleep reactivity in insomnia: current insights. Nat Sci Sleep 2018; 10:193-201. [PMID: 30046255 PMCID: PMC6054324 DOI: 10.2147/nss.s138823] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hyperarousal is a key component in all modern etiological models of insomnia disorder. Overall patterns in the literature suggest that over-active neurobiological and psychological systems contribute to difficulty sleeping. Even so, mixed results regarding the specific mechanisms linking hyperarousal to sleep disturbance limit current etiological conceptualizations. Similar basal arousal profiles between individuals with high vs low risk for insomnia in the absence of stress exposure suggest that dysregulated stress "response" rather than general hyperarousal may be a more pertinent marker of risk. In this report, we discuss evidence for hyperarousal in insomnia and explore the role of sleep reactivity. A trait characteristic, sleep reactivity is the degree to which stress disrupts sleep, manifesting as difficulty falling and staying asleep. Premorbid sleep reactivity has been shown to identify individuals at risk for future insomnia disorder, such as highly reactive sleepers (whose sleep systems are sensitive to stress) who are at elevated disease risk. Research points to genetics, family history of insomnia, gender, and environmental stress as factors that influence sleep reactivity. Importantly, stress-related cognitive-emotional reactivity (e.g., rumination, worry) may exploit the vulnerability of a highly reactive sleep system. We propose that sleep reactivity and cognitive-emotional reactivity may share a bidirectional relationship, conferring an insalubrious environment for sleep in response to stress. Future research on sleep reactivity is needed to identify its neurobiology, characterize its relationship with cognitive-emotional reactivity, and explore the potential clinical utility of sleep reactivity in treatment planning.
Collapse
Affiliation(s)
- David A Kalmbach
- Thomas Roth Sleep Disorders and Research Center, Henry Ford Health System, Detroit, MI, USA,
| | | | - Christine V Tonnu
- Thomas Roth Sleep Disorders and Research Center, Henry Ford Health System, Detroit, MI, USA,
| | - Kieulinh Michelle Tran
- Thomas Roth Sleep Disorders and Research Center, Henry Ford Health System, Detroit, MI, USA,
| | - Jason R Anderson
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
| | - Thomas Roth
- Thomas Roth Sleep Disorders and Research Center, Henry Ford Health System, Detroit, MI, USA,
| | - Christopher L Drake
- Thomas Roth Sleep Disorders and Research Center, Henry Ford Health System, Detroit, MI, USA,
| |
Collapse
|
46
|
Seugnet L, Dissel S, Thimgan M, Cao L, Shaw PJ. Identification of Genes that Maintain Behavioral and Structural Plasticity during Sleep Loss. Front Neural Circuits 2017; 11:79. [PMID: 29109678 PMCID: PMC5660066 DOI: 10.3389/fncir.2017.00079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/05/2017] [Indexed: 11/23/2022] Open
Abstract
Although patients with primary insomnia experience sleep disruption, they are able to maintain normal performance on a variety of cognitive tasks. This observation suggests that insomnia may be a condition where predisposing factors simultaneously increase the risk for insomnia and also mitigate against the deleterious consequences of waking. To gain insight into processes that might regulate sleep and buffer neuronal circuits during sleep loss, we manipulated three genes, fat facet (faf), highwire (hiw) and the GABA receptor Resistance to dieldrin (Rdl), that were differentially modulated in a Drosophila model of insomnia. Our results indicate that increasing faf and decreasing hiw or Rdl within wake-promoting large ventral lateral clock neurons (lLNvs) induces sleep loss. As expected, sleep loss induced by decreasing hiw in the lLNvs results in deficits in short-term memory and increases of synaptic growth. However, sleep loss induced by knocking down Rdl in the lLNvs protects flies from sleep-loss induced deficits in short-term memory and increases in synaptic markers. Surprisingly, decreasing hiw and Rdl within the Mushroom Bodies (MBs) protects against the negative effects of sleep deprivation (SD) as indicated by the absence of a subsequent homeostatic response, or deficits in short-term memory. Together these results indicate that specific genes are able to disrupt sleep and protect against the negative consequences of waking in a circuit dependent manner.
Collapse
Affiliation(s)
- Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, U1028/UMR 5292, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Lyon, France
| | - Stephane Dissel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew Thimgan
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, United States
| | - Lijuan Cao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Paul J Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|