1
|
Hayakawa T, Nakano S, Inada N, Saneyoshi A, Tsujita M, Kumagaya S, Hara N. Pupillary responses to bright and dark stimuli in individuals with autism spectrum disorders. PLoS One 2025; 20:e0319406. [PMID: 40168438 PMCID: PMC11960875 DOI: 10.1371/journal.pone.0319406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/01/2025] [Indexed: 04/03/2025] Open
Abstract
Individuals with autism spectrum disorders (ASD) often exhibit difficulties in sensory processing, including visual hypersensitivity such as photophobia. This study investigates the neural mechanisms underlying photophobia in participants with ASD by analyzing pupillary responses. To achieve this, we examined the amplitude and velocity gradient (latency) of these responses. Pupillary responses were recorded using an eye-tracking system in participants with ASD (n = 17) and typically developing (TD) (n = 23). Stimuli alternated between bright (89.03 cd/m2) and dark (0.07 cd/m2) conditions following a dim state (2.75 cd/m2) with intervals of five seconds in Experiment 1 and 30 seconds in Experiment 2. The sensory profile test (AASP-J) showed that hypersensitivity was significantly defined in the ASD group than in the TD group. The pupillary response in the ASD group often featured missing values due to blinking during rapid alternation between bright and dark conditions, resulting in a decrease in the total number of participants. Specifically, only eight of the 17 participants in the ASD group and 20 of the 23 participants in the TD group remained for analysis in Experiment 1, and in Experiment 2, 15 of the 17 participants in the ASD group and 20 of the 23 participants in the TD group remained for analysis. In the dim state, pupillary diameter was large in the ASD and TD group in both experiments, while the pupil diameter decreased in the TD group in Experiment 2. In both experiments, maximum amplitude and its latency showed no significant differences between the two groups. However, the velocity gradient for the early mydriatic process in the dark condition was significantly faster in the ASD group. ASD individuals with hypersensitivity tend to have large pupil diameters under the dim state, as well as rapid dilation in the dark condition. These results may suggest a problem in the sympathetic nervous system, which controls pupil constriction.
Collapse
Affiliation(s)
- Tomoe Hayakawa
- Department of Psychology, Teikyo University, Hachioji, Tokyo, Japan,
| | - Shun Nakano
- Department of Psychology, Teikyo University, Hachioji, Tokyo, Japan,
| | - Naoko Inada
- Department of Psychology, Teikyo University, Hachioji, Tokyo, Japan,
| | - Ayako Saneyoshi
- Department of Psychology, Teikyo University, Hachioji, Tokyo, Japan,
| | - Masaki Tsujita
- Research Center for Advanced Science and Technology, the University of Tokyo, Meguro-ku, Tokyo, Japan,
| | - Shinichiro Kumagaya
- Research Center for Advanced Science and Technology, the University of Tokyo, Meguro-ku, Tokyo, Japan,
| | - Naoto Hara
- Department of Orthoptics and Visual Sciences, International University of Health and Welfare, Otawara, Tochigi, Japan
| |
Collapse
|
2
|
Bleimeister IH, Avni I, Granovetter MC, Meiri G, Ilan M, Michaelovski A, Menashe I, Behrmann M, Dinstein I. Idiosyncratic pupil regulation in autistic children. Autism Res 2024; 17:2503-2513. [PMID: 39385709 PMCID: PMC11638892 DOI: 10.1002/aur.3234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024]
Abstract
Recent neuroimaging and eye-tracking studies have suggested that children with autism exhibit more variable and idiosyncratic brain responses and eye movements than typically developing (TD) children. Here, we extended this research to pupillometry recordings. We successfully acquired pupillometry recordings from 111 children (74 with autism), 4.5-years-old on average, who viewed three 90 s movies, twice. We extracted their pupillary time-course for each movie, capturing their stimulus evoked pupillary responses. We then computed the correlation between the time-course of each child and those of all others in their group as well as between each autistic child and all children in the TD group. This yielded an average inter-subject correlation value per child, representing how similar their pupillary responses were to all others in their group or the comparison group. Children with autism exhibited significantly weaker inter-subject correlations than TD children in all comparisons. These differences were independent of previously reported differences in gaze inter-subject correlations and were largest in responses to a naturalistic movie containing footage of a social interaction between two TD children. The results demonstrate the utility of measuring the idiosyncrasy of pupil regulation, which can be performed with passive viewing of movies even by young children with co-occurring intellectual disability. These findings reveal that a considerable number of children with autism have significantly less stable, idiosyncratic pupil regulation than TD children, indicative of more variable, weakly regulated, underlying neural activity.
Collapse
Affiliation(s)
- Isabel H. Bleimeister
- Psychology DepartmentBen Gurion University of the NegevBeer ShevaIsrael
- Azrieli National Centre for Autism and Neurodevelopment ResearchBen Gurion University of the NegevBeer ShevaIsrael
| | - Inbar Avni
- Azrieli National Centre for Autism and Neurodevelopment ResearchBen Gurion University of the NegevBeer ShevaIsrael
- Cognitive and Brain Sciences DepartmentBen Gurion University of the NegevBeer ShevaIsrael
- Department of OphthalmologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Gal Meiri
- Azrieli National Centre for Autism and Neurodevelopment ResearchBen Gurion University of the NegevBeer ShevaIsrael
- Pre‐school Psychiatry UnitSoroka Medical CenterBeer ShevaIsrael
| | - Michal Ilan
- Psychology DepartmentBen Gurion University of the NegevBeer ShevaIsrael
- Azrieli National Centre for Autism and Neurodevelopment ResearchBen Gurion University of the NegevBeer ShevaIsrael
- Pre‐school Psychiatry UnitSoroka Medical CenterBeer ShevaIsrael
| | - Analya Michaelovski
- Azrieli National Centre for Autism and Neurodevelopment ResearchBen Gurion University of the NegevBeer ShevaIsrael
- Child Development InstituteSoroka Medical CenterBeer ShevaIsrael
| | - Idan Menashe
- Azrieli National Centre for Autism and Neurodevelopment ResearchBen Gurion University of the NegevBeer ShevaIsrael
- Public Health DepartmentBen‐Gurion UniversityBeer ShevaIsrael
| | - Marlene Behrmann
- Department of OphthalmologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ilan Dinstein
- Psychology DepartmentBen Gurion University of the NegevBeer ShevaIsrael
- Azrieli National Centre for Autism and Neurodevelopment ResearchBen Gurion University of the NegevBeer ShevaIsrael
- Cognitive and Brain Sciences DepartmentBen Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
3
|
Lee JP, Chang YH, Tseng YL, Chou TL, Chien YL. Pupillary response during social emotion tasks in autism spectrum disorder. Autism Res 2024; 17:2120-2132. [PMID: 39096024 DOI: 10.1002/aur.3206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Autistic individuals encounter challenges in recognizing emotional expressions of others. Pupillary response has been proposed as an indicator of arousal dysregulation or cognitive load. The pupillary response of autistic individuals during socio-affective tasks remains unclear. This study investigated pupillary response in autistic adults when viewing emotional faces/eyes and recognizing emotions during the Reading the Mind in the Eyes Test (RMET) and watching interpersonal touch scenes in the social touch task. The study included 98 participants diagnosed with autism spectrum disorder and 37 typically developing controls (TD). Pupil size was measured using the Tobii X2-30 Eye Tracker. The results showed that autistic adults had larger maximal pupil sizes, smaller minimal pupil sizes, and greater change rates of pupil size, particularly during the RMET Eyes task. Clinical correlations revealed that attention switching difficulty positively correlated with mean pupil size in TD participants, while social communication deficits positively correlated with mean pupil size in autistic participants. In conclusion, our findings suggest atypical pupillary responses in autistic adults during socio-affective tasks, indicating heightened cognitive demand. Further investigation is necessary to understand the underlying mechanisms and their association with autistic traits.
Collapse
Affiliation(s)
- Juei-Po Lee
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hsuan Chang
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Li Tseng
- Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
4
|
McCall A, Forouhandehpour R, Celebi S, Richard-Malenfant C, Hamati R, Guimond S, Tuominen L, Weinshenker D, Jaworska N, McQuaid RJ, Shlik J, Robillard R, Kaminsky Z, Cassidy CM. Evidence for Locus Coeruleus-Norepinephrine System Abnormality in Military Posttraumatic Stress Disorder Revealed by Neuromelanin-Sensitive Magnetic Resonance Imaging. Biol Psychiatry 2024; 96:268-277. [PMID: 38296219 DOI: 10.1016/j.biopsych.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND The complex neurobiology of posttraumatic stress disorder (PTSD) calls for the characterization of specific disruptions in brain functions that require targeted treatment. One such alteration could be an overactive locus coeruleus (LC)-norepinephrine system, which may be linked to hyperarousal symptoms, a characteristic and burdensome aspect of the disorder. METHODS Study participants were Canadian Armed Forces veterans with PTSD related to deployment to combat zones (n = 34) and age- and sex-matched healthy control participants (n = 32). Clinical measures included the Clinician-Administered PTSD Scale for DSM-5, and neuroimaging measures included a neuromelanin-sensitive magnetic resonance imaging scan to measure the LC signal. Robust linear regression analyses related the LC signal to clinical measures. RESULTS Compared with control participants, the LC signal was significantly elevated in the PTSD group (t62 = 2.64, p = .010), and this group difference was most pronounced in the caudal LC (t56 = 2.70, Cohen's d = 0.72). The caudal LC signal was also positively correlated with the severity of Clinician-Administered PTSD Scale for DSM-5 hyperarousal symptoms in the PTSD group (t26 = 2.16, p = .040). CONCLUSIONS These findings are consistent with a growing body of evidence indicative of elevated LC-norepinephrine system function in PTSD. Furthermore, they indicate the promise of neuromelanin-sensitive magnetic resonance imaging as a noninvasive method to probe the LC-norepinephrine system that has the potential to support subtyping and treatment of PTSD or other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Adelina McCall
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Seyda Celebi
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Rami Hamati
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Synthia Guimond
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Département de psychoéducation et de psychologie, Université du Québec en Outaouais, Gatineau, Quebec, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Robyn J McQuaid
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jakov Shlik
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Rebecca Robillard
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Zachary Kaminsky
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Clifford M Cassidy
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| |
Collapse
|
5
|
McKee C, Matthews M, Rankin A, Bleakley C. The Role of Concussion History and Biological Sex on Pupillary Light Reflex Metrics in Adolescent Rugby Players: A Cross-Sectional Study. Sports (Basel) 2024; 12:56. [PMID: 38393276 PMCID: PMC10893417 DOI: 10.3390/sports12020056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Background: Concussion examination is based primarily on clinical evaluation and symptomatic reporting. Pupillary light reflex (PLR) metrics may provide an objective physiological marker to inform concussion diagnosis and recovery, but few studies have assessed PLR, and normative data are lacking, particularly for adolescents. Aim: To capture PLR data in adolescent rugby players and examine the effects of concussion history and biological sex. Design: Cross-sectional. Methods: Male and female adolescent rugby union players aged 16 to 18 years were recruited at the start of the 2022-2023 playing season. PLR was recorded using a handheld pupillometer which provided seven different metrics relating to pupil diameter, constriction/dilation latency, and velocity. Data were analysed using a series of 2 × 2 ANOVAs to examine the main effects of independent variables: biological sex, concussion history, and their interactions, using adjusted p-values (p < 0.05). Results: 149 participants (75% male) were included. A total of 42% reported at least one previous concussion. Most metrics were unaffected by the independent variables. There were however significant main effects for concussion history (F = 4.11 (1); p = 0.05) and sex (F = 5.42 (1); p = 0.02) in end pupil diameters, and a main effect for sex in initial pupil diameters (F = 4.45 (1); p = 0.04). Although no significant interaction effects were found, on average, females with a concussion history presented with greater pupillary diameters and velocity metrics, with many pairwise comparisons showing large effects (SMD > 0.8). Conclusions: Pupillary diameters in adolescent athletes were significantly affected by concussion history and sex. The most extreme PLR metrics were recorded in females with a history of concussion (higher pupillary diameters and velocities). This highlights the importance of establishing baseline PLR metrics prior to interpretation of the PLR post-concussion. Long-standing PLR abnormalities post-concussion may reflect ongoing autonomic nervous system dysfunction. This warrants further investigation in longitudinal studies.
Collapse
Affiliation(s)
- Connor McKee
- Faculty of Life and Health Sciences, Ulster University, Belfast BT15 1ED, UK; (C.M.); (M.M.)
| | - Mark Matthews
- Faculty of Life and Health Sciences, Ulster University, Belfast BT15 1ED, UK; (C.M.); (M.M.)
| | - Alan Rankin
- Sports Institute of Northern Ireland, Jordanstown BT9 5LA, UK;
- Sport Medicine NI Ltd., Belfast BT6 9HL, UK
| | - Chris Bleakley
- Faculty of Life and Health Sciences, Ulster University, Belfast BT15 1ED, UK; (C.M.); (M.M.)
| |
Collapse
|
6
|
Bleimeister I, Avni I, Granovetter M, Meiri G, Ilan M, Michaelovski A, Menashe I, Behrmann M, Dinstein I. Idiosyncratic pupil regulation in autistic children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575072. [PMID: 38260528 PMCID: PMC10802609 DOI: 10.1101/2024.01.10.575072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Recent neuroimaging and eye tracking studies have suggested that children with autism spectrum disorder (ASD) may exhibit more variable and idiosyncratic brain responses and eye movements than typically developing (TD) children. Here we extended this research for the first time to pupillometry recordings. We successfully completed pupillometry recordings with 103 children (66 with ASD), 4.5-years-old on average, who viewed three 90 second movies, twice. We extracted their pupillary time-course for each movie, capturing their stimulus evoked pupillary responses. We then computed the correlation between the time-course of each child and those of all others in their group. This yielded an average inter-subject correlation value per child, representing how similar their pupillary responses were to all others in their group. ASD participants exhibited significantly weaker inter-subject correlations than TD participants, reliably across all three movies. Differences across groups were largest in responses to a naturalistic movie containing footage of a social interaction between two TD children. This measure enabled classification of ASD and TD children with a sensitivity of 0.82 and specificity of 0.73 when trained and tested on independent datasets. Using the largest ASD pupillometry dataset to date, we demonstrate the utility of a new technique for measuring the idiosyncrasy of pupil regulation, which can be completed even by young children with co-occurring intellectual disability. These findings reveal that a considerable subgroup of ASD children have significantly more unstable, idiosyncratic pupil regulation than TD children, indicative of more variable, weakly regulated, underlying neural activity.
Collapse
Affiliation(s)
- Isabel Bleimeister
- Psychology Department, Ben Gurion University of the Negev, Beer Sheva, Israel 84105
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Inbar Avni
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben Gurion University of the Negev, Beer Sheva, Israel
- Cognitive and Brain Sciences Department, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Granovetter
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, U.S.A 15213
| | - Gal Meiri
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben Gurion University of the Negev, Beer Sheva, Israel
- Pre-school Psychiatry Unit, Soroka Medical Center, Beer Sheva, Israel 84105
| | - Michal Ilan
- Psychology Department, Ben Gurion University of the Negev, Beer Sheva, Israel 84105
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben Gurion University of the Negev, Beer Sheva, Israel
- Pre-school Psychiatry Unit, Soroka Medical Center, Beer Sheva, Israel 84105
| | - Analya Michaelovski
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben Gurion University of the Negev, Beer Sheva, Israel
- Child Development Institute, Soroka Medical Center, Beer Sheva, Israel 84105
| | - Idan Menashe
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben Gurion University of the Negev, Beer Sheva, Israel
- Public Health Department, Ben-Gurion University, Beer Sheva, Israel 84105
| | - Marlene Behrmann
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, U.S.A 15213
| | - Ilan Dinstein
- Psychology Department, Ben Gurion University of the Negev, Beer Sheva, Israel 84105
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben Gurion University of the Negev, Beer Sheva, Israel
- Cognitive and Brain Sciences Department, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
de Vries LM, Amelynck S, Nyström P, van Esch L, Van Lierde T, Warreyn P, Roeyers H, Noens I, Naulaers G, Boets B, Steyaert J. Investigating the development of the autonomic nervous system in infancy through pupillometry. J Neural Transm (Vienna) 2023; 130:723-734. [PMID: 36906867 PMCID: PMC10008146 DOI: 10.1007/s00702-023-02616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
We aim to investigate early developmental trajectories of the autonomic nervous system (ANS) as indexed by the pupillary light reflex (PLR) in infants with (i.e. preterm birth, feeding difficulties, or siblings of children with autism spectrum disorder) and without (controls) increased likelihood for atypical ANS development. We used eye-tracking to capture the PLR in 216 infants in a longitudinal follow-up study spanning 5 to 24 months of age, and linear mixed models to investigate effects of age and group on three PLR parameters: baseline pupil diameter, latency to constriction and relative constriction amplitude. An increase with age was found in baseline pupil diameter (F(3,273.21) = 13.15, p < 0.001, [Formula: see text] = 0.13), latency to constriction (F(3,326.41) = 3.84, p = 0.010, [Formula: see text] = 0.03) and relative constriction amplitude(F(3,282.53) = 3.70, p = 0.012, [Formula: see text] = 0.04). Group differences were found for baseline pupil diameter (F(3,235.91) = 9.40, p < 0.001, [Formula: see text] = 0.11), with larger diameter in preterms and siblings than in controls, and for latency to constriction (F(3,237.10) = 3.48, p = 0.017, [Formula: see text] = 0.04), with preterms having a longer latency than controls. The results align with previous evidence, with development over time that could be explained by ANS maturation. To better understand the cause of the group differences, further research in a larger sample is necessary, combining pupillometry with other measures to further validate its value.
Collapse
Affiliation(s)
- Lyssa M de Vries
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Herestraat 49 Box 1029, 3000, Louvain, Belgium.
- University Hospital Leuven, Louvain, Belgium.
- Leuven Autism Research (LAuRes), KU Leuven, Louvain, Belgium.
| | - Steffie Amelynck
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Herestraat 49 Box 1029, 3000, Louvain, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Louvain, Belgium
| | - Pär Nyström
- Developmental Psychology, Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Lotte van Esch
- Leuven Autism Research (LAuRes), KU Leuven, Louvain, Belgium
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Louvain, Belgium
| | - Thijs Van Lierde
- RIDDL Lab, Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Petra Warreyn
- RIDDL Lab, Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Herbert Roeyers
- RIDDL Lab, Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Ilse Noens
- Leuven Autism Research (LAuRes), KU Leuven, Louvain, Belgium
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Louvain, Belgium
| | - Gunnar Naulaers
- University Hospital Leuven, Louvain, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, Louvain, Belgium
| | - Bart Boets
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Herestraat 49 Box 1029, 3000, Louvain, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Louvain, Belgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Herestraat 49 Box 1029, 3000, Louvain, Belgium
- University Hospital Leuven, Louvain, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Louvain, Belgium
| |
Collapse
|
8
|
Martínez-Lorca M, Gómez Fernández D. Rendimiento de los estímulos visuales en el diagnóstico del TEA por Eye Tracking: Revisión Sistemática. REVISTA DE INVESTIGACIÓN EN LOGOPEDIA 2023. [DOI: 10.5209/rlog.83937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
El eye-tracking es una herramienta diagnóstica que tiene como fin el estudio del comportamiento de la mirada a través del escaneo de ojos para observar el seguimiento ocular, cómo se distribuye la mirada y la precisión de los movimientos oculares. Este sistema se ha utilizado con niños/as del Trastorno del Espectro Autista. El objetivo de esta revisión sistemática ha sido analizar el rendimiento de los estímulos visuales en el diagnóstico del TEA por método eye tracking. Para ello, se siguió la metodología PRISMA, realizando una búsqueda en las bases de datos PubMed, Science Direct y Scopus, así como, Reseach Gate. Se seleccionaron 22 artículos que cumplían los criterios de inclusión con experimentos unifactoriales, experimentales factoriales y cuasiexperimentales. Todos los experimentos han tenido un grupo control compuesto de muestra con participantes con desarrollo normotípico y de un grupo de caso compuesto de muestra con participantes TEA. Esta revisión sintetiza en tres categorías en base a las características del estímulo usado en el diagnóstico (estímulos sociales, no sociales y por confrontación), el análisis del rendimiento de los estímulos visuales, de manera que los estímulos sociales y los estímulos por confrontación van a ser eficaces para establecer un diagnóstico preciso de TEA puesto que permiten realizar un cribado de ambos grupos y establecer un riesgo temprano del trastorno.
Collapse
|
9
|
Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci 2023; 16:1078586. [PMID: 36685234 PMCID: PMC9853424 DOI: 10.3389/fnins.2022.1078586] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social impairments and restricted, repetitive behaviors. Treatment of ASD is notoriously difficult and might benefit from identification of underlying mechanisms that overlap with those disturbed in other developmental disorders, for which treatment options are more obvious. One example of the latter is attention-deficit hyperactivity disorder (ADHD), given the efficacy of especially stimulants in treatment of ADHD. Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine (NE)] in ADHD are obvious targets for stimulant treatment. Recent findings suggest that dysfunction in catecholaminergic systems may also be a factor in at least a subgroup of ASD. In this review we scrutinize the evidence for catecholaminergic mechanisms underlying ASD symptoms, and also include in this analysis a third classic ascending arousing system, the acetylcholinergic (ACh) network. We complement this with a comprehensive review of DA-, NE-, and ACh-targeted interventions in ASD, and an exploratory search for potential treatment-response predictors (biomarkers) in ASD, genetically or otherwise. Based on this review and analysis we propose that (1) stimulant treatment may be a viable option for an ASD subcategory, possibly defined by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively small ADHD subgroup but much more common in ASD and in both cases may point toward NE- or ACh-directed intervention; (3) deficiency of the cortical salience network is sizable in subgroups of both disorders, and biomarkers such as eye blink rate and pupillometric data may predict the efficacy of targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands,*Correspondence: Damian Koevoet,
| | - P. K. H. Deschamps
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. L. Kenemans
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Ghauri MS, Ueno A, Mohammed S, Miulli DE, Siddiqi J. Evaluating the Reliability of Neurological Pupillary Index as a Prognostic Measurement of Neurological Function in Critical Care Patients. Cureus 2022; 14:e28901. [PMID: 36237784 PMCID: PMC9544528 DOI: 10.7759/cureus.28901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Neurological pupil index (NPi) is a novel method of assessing pupillary size and reactivity using pupillometry to reduce human subjectivity. This paper aims to evaluate the use of NPi as a potential prognostic tool in a broad population of neurocritical care patients by observing the correlation between NPi, modified Rankin Scale (mRS), and Glasgow Coma Scale (GCS). Methods Our data was collected from 194 patients in the neurosurgical intensive care unit (ICU) at Arrowhead Regional Medical Center (ARMC), as determined by the power calculation. We utilized the Kolmogorov-Smirnova and Shapiro-Wilk normality tests with Lilliefors significance correction. Pearson product-moment correlation was performed between average final NPi and final GCS. Multi-variate linear regression and analysis of variance (ANOVA) were used to evaluate the association and predictive capabilities of NPi on GCS and discharge mRS. Finally, we evaluated whether age, ethnicity, sex, length of stay (LOS), or discharge location were significantly associated with NPi. Results We observed a significant correlation between final GCS and NPi (r=0.609, p<0.001). Our regression analysis revealed that NPi significantly predicted GCS and mRS scores; however, no associations were found between age, ethnicity, sex, LOS, or discharge location. Limitations of our study include a single institutional study with a lack of disease subtyping and the inability to quantify the predictive ability of NPi. Conclusion The analysis revealed a strong correlation between final GCS and average final NPi. NPi was also able to significantly predict GCS and mRS scores. The correlation between NPi and established methods to determine neurological function, such as mRS and GCS, suggests that NPi can be a good prognostication tool for neurological diseases.
Collapse
|
11
|
Serpell BG, Cook CJ. Exploring Finger Digit Ratios (2D:4D) in Surgeons, Professional Rugby Players, and Political Journalists to Form a Directional Hypothesis: Could Finger Length Predict Attention and Focus? Front Behav Neurosci 2022; 16:873129. [PMID: 35571284 PMCID: PMC9093682 DOI: 10.3389/fnbeh.2022.873129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
In this short report we explore the predictive nature of finger digit ratio (i.e., second/index finger length divided by fourth/ring finger length; 2D:4D) and achievement. This research, with niche and specialized populations, was intended to support and grow on knowledge obtained from other large population 2D:4D studies and help form a directional hypothesis for future work exploring finger digit ratio and “success.” Twenty-nine professional rugby players aged 25.1 ± 4.2 years, height 185.2 ± 6.3 cm and weight 101.9 ± 11.8 kg; n = 16 orthopedic surgeons aged 55.3 ± 9.3 years with height 183.8 ± 10.2 cm and weight 90.8 ± 14.0 kg; and n = 18 political journalists with age, height and weight of 38.8 ± 7.3 years, 182.8 ± 7.8 cm, and 84.4 ± 11.4 kg, respectively, were recruited. Three experiments were conducted where we (1) explored relationships for 2D:4D with testosterone and cortisol responsiveness to low stress exercise, (2) explored relationships for 2D:4D with pupil constriction and pupil constriction latency (pupillometry measures related to testosterone and cortisol responsiveness and to attentiveness), and (3) compared 2D:4D between rugby players, surgeons, and journalists. Our results revealed 2D:4D was not predictive of testosterone and cortisol responsiveness to low-level exercise stress. However, relationships exist for 2D:4D and pupillometry measures (p < 0.05). Journalists right minus left 2D:4D difference was significantly different to rugby players’ and surgeons (p < 0.05). We argue 2D:4D is likely predictive of testosterone sensitivity and associated ability to focus attention; a skill important to high achievement in various contexts.
Collapse
Affiliation(s)
- Benjamin G. Serpell
- ACT Brumbies, Canberra, ACT, Australia
- Geelong Cats Football Club, Geelong, VIC, Australia
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- *Correspondence: Benjamin G. Serpell,
| | - Christian J. Cook
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- Hamlyn Centre, Imperial College, London, United Kingdom
| |
Collapse
|
12
|
Soker-Elimaliah S, Lehrfield A, Scarano SR, Wagner JB. Associations between the pupil light reflex and the broader autism phenotype in children and adults. Front Hum Neurosci 2022; 16:1052604. [PMID: 36895201 PMCID: PMC9990758 DOI: 10.3389/fnhum.2022.1052604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/16/2022] [Indexed: 02/25/2023] Open
Abstract
The pupil light reflex (PLR), a marker of neuronal response to light, is a well-studied index of autonomic functioning. Studies have found that autistic children and adults have slower and weaker PLR responses compared to non-autistic peers, suggesting lower autonomic control. Altered autonomic control has also been associated with increased sensory difficulties in autistic children. With autistic traits varying in the general population, recent studies have begun to examine similar questions in non-autistic individuals. The current study looked at the PLR in relation to individual differences in autistic traits in non-autistic children and adults, asking how differences in the PLR could lead to variation in autistic traits, and how this might change across development. Children and adults completed a PLR task as a measure of sensitivity to light and autonomic response. Results showed that, in adults, increased levels of restricted and repetitive behaviors (RRB) were associated with a weaker and slower PLR. However, in children, PLR responses were not associated with autistic traits. Differences in PLR were also found across age groups, with adults showing smaller baseline pupil diameter and stronger PLR constriction as compared with children. The current study expanded on past work to examine the PLR and autistic traits in non-autistic children and adults, and the relevance of these findings to sensory processing difficulties is discussed. Future studies should continue to examine the neural pathways that might underlie the links between sensory processing and challenging behaviors.
Collapse
Affiliation(s)
- Sapir Soker-Elimaliah
- Department of Psychology, College of Staten Island, City University of New York, New York, NY, United States.,Department of Psychology, The Graduate Center, City University of New York, New York, NY, United States.,Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Aviva Lehrfield
- Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Samuel R Scarano
- Department of Psychology, College of Staten Island, City University of New York, New York, NY, United States
| | - Jennifer B Wagner
- Department of Psychology, College of Staten Island, City University of New York, New York, NY, United States.,Department of Psychology, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
13
|
Beversdorf DQ, Anagnostou E, Hardan A, Wang P, Erickson CA, Frazier TW, Veenstra-VanderWeele J. Editorial: Precision medicine approaches for heterogeneous conditions such as autism spectrum disorders (The need for a biomarker exploration phase in clinical trials - Phase 2m). Front Psychiatry 2022; 13:1079006. [PMID: 36741580 PMCID: PMC9893852 DOI: 10.3389/fpsyt.2022.1079006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023] Open
Affiliation(s)
- David Q Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri, Columbia, MO, United States
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| | - Antonio Hardan
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Paul Wang
- Clinical Research Associates LLC, Simons Foundation, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Thomas W Frazier
- Department of Psychology, John Carroll University, University Heights, OH, United States.,Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeremy Veenstra-VanderWeele
- Departments of Psychiatry and Pediatrics, New York State Psychiatric Institute, Columbia University, New York, NY, United States.,NewYork-Presbyterian Center for Autism and the Developing Brain, New York, NY, United States
| |
Collapse
|
14
|
Fish LA, Nyström P, Gliga T, Gui A, Begum Ali J, Mason L, Garg S, Green J, Johnson MH, Charman T, Harrison R, Meaburn E, Falck-Ytter T, Jones EJH. Development of the pupillary light reflex from 9 to 24 months: association with common autism spectrum disorder (ASD) genetic liability and 3-year ASD diagnosis. J Child Psychol Psychiatry 2021; 62:1308-1319. [PMID: 34492739 DOI: 10.1111/jcpp.13518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Although autism spectrum disorder (ASD) is heritable, the mechanisms through which genes contribute to symptom emergence remain unclear. Investigating candidate intermediate phenotypes such as the pupillary light reflex (PLR) prospectively from early in development could bridge genotype and behavioural phenotype. METHODS Using eye tracking, we longitudinally measured the PLR at 9, 14 and 24 months in a sample of infants (N = 264) enriched for a family history of ASD; 27 infants received an ASD diagnosis at 3 years. We examined the 9- to 24-month developmental trajectories of PLR constriction latency (onset; ms) and amplitude (%) and explored their relation to categorical 3-year ASD outcome, polygenic liability for ASD and dimensional 3-year social affect (SA) and repetitive/restrictive behaviour (RRB) traits. Polygenic scores for ASD (PGSASD ) were calculated for 190 infants. RESULTS While infants showed a decrease in latency between 9 and 14 months, higher PGSASD was associated with a smaller decrease in latency in the first year (β = -.16, 95% CI = -0.31, -0.002); infants with later ASD showed a significantly steeper decrease in latency (a putative 'catch-up') between 14 and 24 months relative to those with other outcomes (typical: β = .54, 95% CI = 0.08, 0.99; other: β = .53, 95% CI = 0.02, 1.04). Latency development did not associate with later dimensional variation in ASD-related traits. In contrast, change in amplitude was not related to categorical ASD or genetics, but decreasing 9- to 14-month amplitude was associated with higher SA (β = .08, 95% CI = 0.01, 0.14) and RRB (β = .05, 95% CI = 0.004, 0.11) traits. CONCLUSIONS These findings corroborate PLR development as possible intermediate phenotypes being linked to both genetic liability and phenotypic outcomes. Future work should incorporate alternative measures (e.g. functionally informed structural and genetic measures) to test whether distinct neural mechanisms underpin PLR alterations.
Collapse
Affiliation(s)
- Laurel A Fish
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Pär Nyström
- Uppsala Child & Babylab, Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Teodora Gliga
- School of Psychology, University of East Anglia, Norwich, UK
| | - Anna Gui
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Jannath Begum Ali
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Luke Mason
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Shruti Garg
- Neuroscience & Experimental Psychology, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jonathan Green
- Neuroscience & Experimental Psychology, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Mark H Johnson
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK.,Department of Psychology, Cambridge University, Cambridge, UK
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Harrison
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Emma Meaburn
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Terje Falck-Ytter
- Development and Neurodiversity Lab (DIVE), Department of Psychology, Uppsala University, Uppsala, Sweden.,Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Emily J H Jones
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | | |
Collapse
|
15
|
Abstract
We measured the pupil response to a light stimulus subject to a size illusion and found that stimuli perceived as larger evoke a stronger pupillary response. The size illusion depends on combining retinal signals with contextual 3D information; contextual processing is thought to vary across individuals, being weaker in individuals with stronger autistic traits. Consistent with this theory, autistic traits correlated negatively with the magnitude of pupil modulations in our sample of neurotypical adults; however, psychophysical measurements of the illusion did not correlate with autistic traits, or with the pupil modulations. This shows that pupillometry provides an accurate objective index of complex perceptual processes, particularly useful for quantifying interindividual differences, and potentially more informative than standard psychophysical measures.
Collapse
|
16
|
Zivan M, Morag I, Yarmolovsky J, Geva R. Hyper-Reactivity to Salience Limits Social Interaction Among Infants Born Pre-term and Infant Siblings of Children With ASD. Front Psychiatry 2021; 12:646838. [PMID: 34054606 PMCID: PMC8160104 DOI: 10.3389/fpsyt.2021.646838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The ability to engage attention with selected stimuli is essential for infants to explore the world and process information relating to their surroundings. There are two main populations with a higher risk to develop attentional and social deficits whose deficits may arise from difficulties in regulating attention to salient cues: (1) siblings of children diagnosed with Autism; and (2) infants who were born pre-term. This study investigated infants' (N = 97) attention-engagement and pupil-dilation (PD) at 9 months of age, using a gaze-contingent paradigm and a structured social interaction. Specifically, we explored attention to stimuli with simple salient features (e.g., clear defined shapes, colors, and motions) vs. more complex non-social cues (amorphous shapes, colors, and motions) and social interaction in typically developing infants (TD, N = 25) and among two groups of infants at-risk to develop social difficulties (pre-terms, N = 56; siblings of children with Autism, N = 16). Findings show that the two risk groups preferred stimuli with simple features (F = 11.306, p < 0.001), accompanied by increased PD (F = 6.6, p < 0.001). Specifically, pre-term infants showed increased PD toward simple vs. complex stimuli (p < 0.001), while siblings showed a pervasive hyper-arousal to both simple and complex stimuli. Infants in the TD group preferred complex stimuli with no change in PD. Finally, the preference for the simple stimulus mediated the relationship between increased risk for social difficulties and decreased engagement duration in face-to-face interaction with the experimenter. Results suggest that activation of the attention-salience network shapes social abilities at infancy. Further, hyper-reactivity to salient stimuli limits social interaction among infants born pre-term and siblings of children with ASD.
Collapse
Affiliation(s)
- Michal Zivan
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Iris Morag
- Assaf Harofeh Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jessica Yarmolovsky
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.,The Department of Psychology, Bar Ilan University, Ramat Gan, Israel
| | - Ronny Geva
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.,The Department of Psychology, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|