1
|
Liang KL, Azad NS. Immune-Based Strategies for Pancreatic Cancer in the Adjuvant Setting. Cancers (Basel) 2025; 17:1246. [PMID: 40227779 PMCID: PMC11988091 DOI: 10.3390/cancers17071246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related mortality in the United States, with poor overall survival across all stages. Less than 20% of patients are eligible for curative surgical resection at diagnosis, and despite adjuvant chemotherapy, most will experience disease recurrence within two years. The incorporation of immune-based strategies in the adjuvant setting remains an area of intense investigation with unrealized promise. It offers the potential of providing durable disease control for micro-metastatic disease following curative intent surgery and enabling personalized treatments based on mutational neoantigen profiles derived from resected specimens. However, most of these attempts have failed to demonstrate significant clinical success, likely due to the immunosuppressive tumor microenvironment (TME) and individual genetic heterogeneity. Despite these challenges, immune-based strategies, such as therapeutic vaccines targeted towards neoantigens, have demonstrated promise via immune activation and induction of T-cell tumor infiltration. In this review, we will highlight the foundational lessons learned from previous clinical trials of adjuvant immunotherapy, discussing the knowledge gained from analyses of trials with disappointing results. In addition, we will discuss how these data have been incorporated to design new agents and study concepts that are proving to be exciting in more recent trials, such as shared antigen vaccines and combination therapy with immune-checkpoint inhibitors and chemotherapy. This review will evaluate novel approaches in ongoing and future clinical studies and provide insight into how these immune-based strategies might evolve to address the unique challenges for treatment of PDAC in the adjuvant setting.
Collapse
Affiliation(s)
| | - Nilofer S. Azad
- Department of Oncology, Sidney Kimmel Comprehensive Cancer, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| |
Collapse
|
2
|
Ramesh RPG, Yasmin H, Ponnachan P, Al-Ramadi B, Kishore U, Joseph AM. Phenotypic heterogeneity and tumor immune microenvironment directed therapeutic strategies in pancreatic ductal adenocarcinoma. Front Immunol 2025; 16:1573522. [PMID: 40230862 PMCID: PMC11994623 DOI: 10.3389/fimmu.2025.1573522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Pancreatic cancer is an aggressive tumor with high metastatic potential which leads to decreased survival rate and resistance to chemotherapy and immunotherapy. Nearly 90% of pancreatic cancer comprises pancreatic ductal adenocarcinoma (PDAC). About 80% of diagnoses takes place at the advanced metastatic stage when it is unresectable, which renders chemotherapy regimens ineffective. There is also a dearth of specific biomarkers for early-stage detection. Advances in next generation sequencing and single cell profiling have identified molecular alterations and signatures that play a role in PDAC progression and subtype plasticity. Most chemotherapy regimens have shown only modest survival benefits, and therefore, translational approaches for immunotherapies and combination therapies are urgently required. In this review, we have examined the immunosuppressive and dense stromal network of tumor immune microenvironment with various metabolic and transcriptional changes that underlie the pro-tumorigenic properties in PDAC in terms of phenotypic heterogeneity, plasticity and subtype co-existence. Moreover, the stromal heterogeneity as well as genetic and epigenetic changes that impact PDAC development is discussed. We also review the PDAC interaction with sequestered cellular and humoral components present in the tumor immune microenvironment that modify the outcome of chemotherapy and radiation therapy. Finally, we discuss different therapeutic interventions targeting the tumor immune microenvironment aimed at better prognosis and improved survival in PDAC.
Collapse
Affiliation(s)
- Remya P. G. Ramesh
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Pretty Ponnachan
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ann Mary Joseph
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Ohri N, Häußler J, Javakhishvili N, Vieweg D, Zourelidis A, Trojanowicz B, Haemmerle M, Esposito I, Glaß M, Sunami Y, Kleeff J. Gene expression dynamics in fibroblasts during early-stage murine pancreatic carcinogenesis. iScience 2025; 28:111572. [PMID: 39811640 PMCID: PMC11731286 DOI: 10.1016/j.isci.2024.111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/29/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive growth and metastasis, partly driven by fibroblast-mediated stromal interactions. Using RNA sequencing of fibroblasts from early-stage KPC mouse models, we identified significant upregulation of genes involved in adipogenesis, fatty acid metabolism, and the ROS pathway. ANGPTL4, a key adipogenesis regulator, was highly expressed in fibroblasts and promoted pancreatic cancer cell proliferation and migration through paracrine signaling. Notably, cancer cell-driven paracrine signals appear to regulate ANGPTL4 expression in fibroblasts, suggesting that ANGPTL4 may act as a reciprocal factor in a feedback loop that enhances tumor progression. LAMA2, an extracellular matrix gene with reduced expression, suppressed pancreatic cancer cell migration, proliferation, and invasion. This study provides the temporal transcriptional analysis of fibroblast subtypes during early PDAC, highlighting the roles of metabolic reprogramming and ECM remodeling in shaping the tumor microenvironment and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Nupur Ohri
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Johanna Häußler
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Nino Javakhishvili
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi 0162, Georgia
| | - David Vieweg
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Anais Zourelidis
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Bogusz Trojanowicz
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Monika Haemmerle
- Institute of Pathology, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06112 Halle (Saale), Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| |
Collapse
|
4
|
Dai H, Chen X, Yang J, Loiola RA, Lu A, Cheung KCP. Insights and therapeutic advances in pancreatic cancer: the role of electron microscopy in decoding the tumor microenvironment. Front Cell Dev Biol 2024; 12:1460544. [PMID: 39744013 PMCID: PMC11688199 DOI: 10.3389/fcell.2024.1460544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/23/2024] [Indexed: 01/04/2025] Open
Abstract
Pancreatic cancer is one of the most lethal cancers, with a 5-year overall survival rate of less than 10%. Despite the development of novel therapies in recent decades, current chemotherapeutic strategies offer limited clinical benefits due to the high heterogeneity and desmoplastic tumor microenvironment (TME) of pancreatic cancer as well as inefficient drug penetration. Antibody- and nucleic acid-based targeting therapies have emerged as strong contenders in pancreatic cancer drug discovery. Numerous studies have shown that these strategies can significantly enhance drug accumulation in tumors while reducing systemic toxicity. Additionally, electron microscopy (EM) has been a critical tool for high-resolution analysis of the TME, providing insights into the ultrastructural changes associated with pancreatic cancer progression and treatment responses. This review traces the current and technological advances in EM, particularly the development of ultramicrotomy and improvements in sample preparation that have facilitated the detailed visualization of cellular and extracellular components of the TME. This review highlights the contribution of EM in assessing the efficacy of therapeutic agents, from revealing apoptotic changes to characterizing the effects of novel compounds like ionophore antibiotic gramicidin A on cellular ultrastructures. Moreover, the review delves into the potential of EM in studying the interactions between the tumor microbiome and cancer cell migration, as well as in aiding the development of targeted therapies like antibody-drug conjugates (ADCs) and aptamer-drug conjugates (ApDCs).
Collapse
Affiliation(s)
- Hong Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Xingxuan Chen
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Jiawen Yang
- School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | | | - Aiping Lu
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Kenneth C. P. Cheung
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Li M, Freeman S, Franco-Barraza J, Cai KQ, Kim A, Jin S, Cukierman E, Ye K. A bioprinted sea-and-island multicellular model for dissecting human pancreatic tumor-stroma reciprocity and adaptive metabolism. Biomaterials 2024; 310:122631. [PMID: 38815457 PMCID: PMC11186049 DOI: 10.1016/j.biomaterials.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable clinical challenge due to its intricate microenvironment characterized by desmoplasia and complex tumor-stroma interactions. Conventional models hinder studying cellular crosstalk for therapeutic development. To recapitulate key features of PDAC masses, this study creates a novel sea-and-island PDAC tumor construct (s&i PTC). The s&i PTC consists of 3D-printed islands of human PDAC cells positioned within an interstitial extracellular matrix (ECM) populated by human cancer-associated fibroblasts (CAFs). This design closely mimics the in vivo desmoplastic architecture and nutrient-poor conditions. The model enables studying dynamic tumor-stroma crosstalk and signaling reciprocity, revealing both known and yet-to-be-discovered multicellular metabolic adaptations. Using the model, we discovered the orchestrated dynamic alterations of CAFs under nutrient stress, resembling critical in vivo human tumor niches, such as the secretion of pro-tumoral inflammatory factors. Additionally, nutrient scarcity induces dynamic alterations in the ECM composition and exacerbates poor cancer cell differentiation-features well-established in PDAC progression. Proteomic analysis unveiled the enrichment of proteins associated with aggressive tumor behavior and ECM remodeling in response to poor nutritional conditions, mimicking the metabolic stresses experienced by avascular pancreatic tumor cores. Importantly, the model's relevance to patient outcomes is evident through an inverse correlation between biomarker expression patterns in the s&i PTCs and PDAC patient survival rates. Key findings include upregulated MMPs and key ECM proteins (such as collagen 11 and TGFβ) under nutrient-avid conditions, known to be regulated by CAFs, alongside the concomitant reduction in E-cadherin expression associated with a poorly differentiated PDAC state under nutrient deprivation. Furthermore, elevated levels of hyaluronic acid (HA) and integrins in response to nutrient deprivation underscore the model's fidelity to the PDAC microenvironment. We also observed increased IL-6 and reduced α-SMA expression under poor nutritional conditions, suggesting a transition of CAFs from myofibroblastic to inflammatory phenotypes under a nutrient stress akin to in vivo niches. In conclusion, the s&i PTC represents a significant advancement in engineering clinically relevant 3D models of PDAC masses. It offers a promising platform for elucidating tumor-stroma interactions and guiding future therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Ming Li
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Sebastian Freeman
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA
| | - Kathy Q Cai
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA
| | - Amy Kim
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Sha Jin
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA.
| | - Kaiming Ye
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA.
| |
Collapse
|
6
|
Rahman M, Sahoo A, Almalki WH, Salman Almujri S, Aodah A, Alnofei AA, Alhamyani A. Three-dimensional cell culture: Future scope in cancer vaccine development. Drug Discov Today 2024; 29:104114. [PMID: 39067612 DOI: 10.1016/j.drudis.2024.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Three-dimensional (3D) cell culture techniques, which are superior to 2D methods in viability and functionality, are being used to develop innovative cancer vaccines. Tumor spheroids, which are structurally and functionally similar to actual tumors, can be developed using 3D cell culture. These spheroid vaccines have shown superior antitumor immune responses to 2D cell-based vaccines. Dendritic cell vaccines can also be produced more efficiently using 3D cell culture. Personalized cancer vaccines are being developed using 3D cell culture, providing substantial benefits over 2D methods. The more natural conditions of 3D cell culture might promote the expression of tumor antigens not expressed in 2D culture, potentially allowing for more targeted vaccines by co-culturing tumor cells with other cell types. Advanced cancer vaccines using 3D cell cultures are expected soon.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India.
| | - Ankit Sahoo
- College of Pharmacy, J.S. University, Shikohabad, Firozabad, Uttar Pradesh, 283135, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Alhussain Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Abdulrahman A Alnofei
- Psychological Measurement and Evaluation, Department of Psychology, Faculty of Education, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| |
Collapse
|
7
|
Li D, Chen X, Dai W, Jin Q, Wang D, Ji J, Tang BZ. Photo-Triggered Cascade Therapy: A NIR-II AIE Luminogen Collaborating with Nitric Oxide Facilitates Efficient Collagen Depletion for Boosting Pancreatic Cancer Phototheranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306476. [PMID: 38157423 DOI: 10.1002/adma.202306476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/05/2023] [Indexed: 01/03/2024]
Abstract
The dense extracellular matrix (ECM) in the pancreatic cancer severely hampers the penetration of nanodrugs, which causes inferior therapeutic efficacy. To address this issue, a multifunctional liposome, namely, Lip-DTI/NO, integrating a type-I photosensitizer DTITBT with glutathione (GSH) or heat-responsive nitric oxide (NO) donor S-nitroso-N-acetyl-D-penicillamine (SNAP) is constructed to deplete the tumor ECM, leading to enhanced drug delivery and consequently improved phototherapy. The loaded DTITBT possesses multiple functions including NIR-II fluorescence imaging, efficient superoxide radical (O2 •- ) generation and excellent photothermal conversion efficiency, making it feasible for precisely pinpointing the tumor in the phototherapy process. Responding to the intracellular overexpressed glutathione or heat produced by photothermal effect of DTITBT, NO can be released from SNAP. Upon 808 nm laser irradiation, Lip-DTI/NO could selectively induce in situ generation of peroxynitrite anion (ONOO- ) in tumor after cascade processes including O2 •- production, GSH or heat-triggered NO release, and rapid reaction between O2 •- and NO. The generated ONOO- could activate the expression of endogenous matrix metalloproteinases which could efficiently digest collagen of tumor ECM, thus facilitating enhanced penetration and accumulation of Lip-DTI/NO in tumor. In vivo evaluation demonstrates the notable therapeutic efficacy via ONOO- -potentiated synergistic photodynamic-photothermal therapies on both subcutaneous and orthotopic pancreatic cancer model.
Collapse
Affiliation(s)
- Dan Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenbin Dai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
8
|
Gao D, Fang L, Liu C, Yang M, Yu X, Wang L, Zhang W, Sun C, Zhuang J. Microenvironmental regulation in tumor progression: Interactions between cancer-associated fibroblasts and immune cells. Biomed Pharmacother 2023; 167:115622. [PMID: 37783155 DOI: 10.1016/j.biopha.2023.115622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
The tumor microenvironment (TME), the "soil" on which tumor cells grow, has an important role in regulating the proliferation and metastasis of tumor cells as well as their response to treatment. Cancer-associated fibroblasts (CAFs), as the most abundant stromal cells of the TME, can not only directly alter the immunosuppressive effect of the TME through their own metabolism, but also influence the aggregation and function of immune cells by secreting a large number of cytokines and chemokines, reducing the body's immune surveillance of tumor cells and making them more prone to immune escape. Our study provides a comprehensive review of fibroblast chemotaxis, malignant transformation, metabolic characteristics, and interactions with immune cells. In addition, the current small molecule drugs targeting CAFs have been summarized, including both natural small molecules and targeted drugs for current clinical therapeutic applications. A complete review of the role of fibroblasts in TME from an immune perspective is presented, which has important implications in improving the efficiency of immunotherapy by targeting fibroblasts.
Collapse
Affiliation(s)
- Dandan Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Liguang Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Mengrui Yang
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
9
|
Nihashi Y, Song X, Yamamoto M, Setoyama D, Kida YS. Decoding Metabolic Symbiosis between Pancreatic Cancer Cells and Cancer-Associated Fibroblasts Using Cultured Tumor Microenvironment. Int J Mol Sci 2023; 24:11015. [PMID: 37446193 DOI: 10.3390/ijms241311015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a poor prognosis, largely due to its unique tumor microenvironment (TME) and dense fibrotic stroma. Cancer-associated fibroblasts (CAFs) play a crucial role in promoting tumor growth and metastasis, contributing to the metabolic adaptation of PDAC cells. However, the metabolic interactions between PDAC cells and CAFs are not well-understood. In this study, an in vitro co-culture model was used to investigate these metabolic interactions. Metabolomic analysis was performed under monoculture conditions of Capan-1 PDAC cells and CAF precursor cells, as well as co-culture conditions of PDAC cells and differentiated inflammatory CAF (iCAF). Co-cultured Capan-1 cells displayed significant metabolic changes, such as increased 2-oxoglutaric acid and lauric acid and decreased amino acids. The metabolic profiles of co-cultured Capan-1 and CAFs revealed differences in intracellular metabolites. Analysis of extracellular metabolites in the culture supernatant showed distinct differences between Capan-1 and CAF precursors, with the co-culture supernatant exhibiting the most significant changes. A comparison of the culture supernatants of Capan-1 and CAF precursors revealed different metabolic processes while co-culturing the two cell types demonstrated potential metabolic interactions. In conclusion, this study emphasizes the importance of metabolic interactions between cancer cells and CAFs in tumor progression and highlights the role of TME in metabolic reprogramming.
Collapse
Affiliation(s)
- Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Xiaoyu Song
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- Tsukuba Life Science Innovation Program (T-LSI), School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Kishibe-Shimmachi, Suita 564-8565, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yasuyuki S Kida
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
10
|
Minini M, Fouassier L. Cancer-Associated Fibroblasts and Extracellular Matrix: Therapeutical Strategies for Modulating the Cholangiocarcinoma Microenvironment. Curr Oncol 2023; 30:4185-4196. [PMID: 37185432 PMCID: PMC10137461 DOI: 10.3390/curroncol30040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
During the last decade, immunotherapy has radically changed perspectives on anti-tumor treatments. However, solid tumor treatment by immunotherapy has not met expectations. Indeed, poor clinical response to treatment has highlighted the need to understand and avoid immunotherapy resistance. Cholangiocarcinoma (CCA) is the second cause of hepatic cancer-related deaths because of drug inefficacy and chemo-resistance in a majority of patients. Thus, intense research is ongoing to better understand the mechanisms involved in the chemo-resistance processes. The tumor microenvironment (TME) may be involved in tumor therapy resistance by limiting drug access. Indeed, cells such as cancer-associated fibroblasts (CAFs) alter TME by producing in excess an aberrant extracellular matrix (ECM). Interestingly, CAFs are the dominant stromal component in CCA that secrete large amounts of stiff ECM. Stiff ECM could contribute to immune exclusion by limiting anti-tumor T-cells drop-in. Herein, we summarize features, functions, and interactions among CAFs, tumor-associated ECM, and immune cells in TME. Moreover, we discuss the strategies targeting CAFs and the remodeling of the ECM to improve immunotherapy and drug therapies.
Collapse
Affiliation(s)
- Mirko Minini
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, 75012 Paris, France
| | - Laura Fouassier
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, 75012 Paris, France
- Association Pour L'étude des Cancers et Affections des Voies Biliaires (ACABi), 75012 Paris, France
| |
Collapse
|
11
|
Padinharayil H, Rai V, George A. Mitochondrial Metabolism in Pancreatic Ductal Adenocarcinoma: From Mechanism-Based Perspectives to Therapy. Cancers (Basel) 2023; 15:1070. [PMID: 36831413 PMCID: PMC9954550 DOI: 10.3390/cancers15041070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourteenth most common malignancy, is a major contributor to cancer-related death with the utmost case fatality rate among all malignancies. Functional mitochondria, regardless of their complex ecosystem relative to normal cells, are essential in PDAC progression. Tumor cells' potential to produce ATP as energy, despite retaining the redox potential optimum, and allocating materials for biosynthetic activities that are crucial for cell growth, survival, and proliferation, are assisted by mitochondria. The polyclonal tumor cells with different metabolic profiles may add to carcinogenesis through inter-metabolic coupling. Cancer cells frequently possess alterations in the mitochondrial genome, although they do not hinder metabolism; alternatively, they change bioenergetics. This can further impart retrograde signaling, educate cell signaling, epigenetic modifications, chromatin structures, and transcription machinery, and ultimately satisfy cancer cellular and nuclear demands. To maximize the tumor microenvironment (TME), tumor cells remodel nearby stromal cells and extracellular matrix. These changes initiate polyclonality, which is crucial for growth, stress response, and metastasis. Here, we evaluate all the intrinsic and extrinsic pathways drawn by mitochondria in carcinogenesis, emphasizing the perspectives of mitochondrial metabolism in PDAC progression and treatment.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| |
Collapse
|
12
|
Geyer M, Schreyer D, Gaul LM, Pfeffer S, Pilarsky C, Queiroz K. A microfluidic-based PDAC organoid system reveals the impact of hypoxia in response to treatment. Cell Death Dis 2023; 9:20. [PMID: 36681673 PMCID: PMC9867742 DOI: 10.1038/s41420-023-01334-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is estimated to become the second leading cause of cancer-related deaths by 2030 with mortality rates of up to 93%. Standard of care chemotherapeutic treatment only prolongs the survival of patients for a short timeframe. Therefore, it is important to understand events driving treatment failure in PDAC as well as identify potential more effective treatment opportunities. PDAC is characterized by a high-density stroma, high interstitial pressure and very low oxygen tension. The aim of this study was to establish a PDAC platform that supported the understanding of treatment response of PDAC organoids in mono-, and co-culture with pancreatic stellate cells (PSCs) under hypoxic and normoxic conditions. Cultures were exposed to Gemcitabine in combination with molecules targeting relevant molecular programs that could explain treatment specific responses under different oxygen pressure conditions. Two groups of treatment responses were identified, showing either a better effect in monoculture or co-culture. Moreover, treatment response also differed between normoxia and hypoxia. Modulation of response to Gemcitabine was also observed in presence of a Hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) inhibitor and HIF inhibitors. Altogether this highlights the importance of adjusting experimental conditions to include relevant oxygen levels in drug response studies in PDAC.
Collapse
Affiliation(s)
- Marlene Geyer
- grid.474144.60000 0004 9414 4776MIMETAS BV, De Limes 7, 2342DH Oegstgeest, The Netherlands
| | - Daniel Schreyer
- grid.8756.c0000 0001 2193 314XSchool of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1BD Glasgow, United Kingdom
| | - Lisa-Marie Gaul
- grid.474144.60000 0004 9414 4776MIMETAS BV, De Limes 7, 2342DH Oegstgeest, The Netherlands
| | - Susanne Pfeffer
- grid.411668.c0000 0000 9935 6525Universitätsklinikum Erlangen, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Christian Pilarsky
- grid.411668.c0000 0000 9935 6525Universitätsklinikum Erlangen, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Karla Queiroz
- grid.474144.60000 0004 9414 4776MIMETAS BV, De Limes 7, 2342DH Oegstgeest, The Netherlands
| |
Collapse
|
13
|
Liu Z, Hayashi H, Matsumura K, Uemura N, Shiraishi Y, Sato H, Baba H. Biological and Clinical Impacts of Glucose Metabolism in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15020498. [PMID: 36672448 PMCID: PMC9856866 DOI: 10.3390/cancers15020498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer type as it is prone to metastases and is difficult to diagnose at an early stage. Despite advances in molecular detection, its clinical prognosis remains poor and it is expected to become the second leading cause of cancer-related deaths. Approximately 85% of patients develop glucose metabolism disorders, most commonly diabetes mellitus, within three years prior to their pancreatic cancer diagnosis. Diabetes, or glucose metabolism disorders related to PDAC, are typically associated with insulin resistance, and beta cell damage, among other factors. From the perspective of molecular regulatory mechanisms, glucose metabolism disorders are closely related to PDAC initiation and development and to late invasion and metastasis. In particular, abnormal glucose metabolism impacts the nutritional status and prognosis of patients with PDAC. Meanwhile, preliminary research has shown that metformin and statins are effective for the prevention or treatment of malignancies; however, no such effect has been shown in clinical trials. Hence, the causes underlying these conflicting results require further exploration. This review focuses on the clinical significance of glucose metabolism disorders in PDAC and the mechanisms behind this relationship, while also summarizing therapeutic approaches that target glycolysis.
Collapse
|
14
|
FU-coating pH-sensitive liposomes for improving the release of gemcitabine by endosome escape in pancreatic cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Rathje F, Klingler S, Aberger F. Organoids for Modeling (Colorectal) Cancer in a Dish. Cancers (Basel) 2022; 14:cancers14215416. [PMID: 36358834 PMCID: PMC9655999 DOI: 10.3390/cancers14215416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Despite remarkable progress in the treatment of cancer patients, the medical need for drugs with better efficacy is still unmet and high. In addition to accurate prediction of drug efficacy for individual patients, pathophysiologically relevant preclinical model systems with increased predictive power are urgently needed to reduce the high rate of clinical trial failure in oncology. Organoids grown from patient material represent exceptionally valuable model systems to mimic and study human diseased tissues such as tumors. Here, we elaborate an overview of innovative and advanced organoid model systems and highlight the exciting opportunities of organoids for personalized precision medicine and the field of immuno-oncology drug development. Abstract Functional studies of primary cancer have been limited to animal models for a long time making it difficult to study aspects specific to human cancer biology. The development of organoid technology enabled us to culture human healthy and tumor cells as three-dimensional self-organizing structures in vitro for a prolonged time. Organoid cultures conserve the heterogeneity of the originating epithelium regarding cell types and tumor clonality. Therefore, organoids are considered an invaluable tool to study and genetically dissect various aspects of human cancer biology. In this review, we describe the applications, advantages, and limitations of organoids as human cancer models with the main emphasis on colorectal cancer.
Collapse
|
16
|
Girish BP, Dariya B, Mannarapu M, Nagaraju GP, Raju GSR. Targeting the tumor microenvironment of pancreatic ductal adenocarcinoma using nano-phytomedicines. Semin Cancer Biol 2022; 86:1155-1162. [PMID: 34147639 DOI: 10.1016/j.semcancer.2021.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Abstract
Despite advanced therapeutic strategies, the mortality and morbidity of pancreatic cancer (PC) have been increasing. This is due to the anomalous proliferation activity of stromal cells, like cancer-associated fibroblasts (CAFs), in the tumor microenvironment (TME). These cells develop resistance in the tumor cells, blocking the drug from entering the target tumor site, ultimately resulting in tumor metastasis. Additionally, the current conventional adjuvant techniques, including chemo and radiotherapy, carry higher risk due to their excess toxicity against normal healthy cells. Phytochemicals including curcumin, irinotecan and paclitaxel are anti-oxidants, less toxic, and have anti-cancerous properties; however, the use of phytochemicals is limited due to their less solubility and bioavailability. Nanotechnology offers the resources to directly target the drug to the tumor site, thereby enhancing the therapeutic efficacy of the current treatment modalities. This review focuses on the importance of nanotechnology for pancreatic ductal adenocarcinoma (PDAC) therapy and on delivering the nano-formulated phytochemicals to the target site.
Collapse
Affiliation(s)
- Bala Prabhakar Girish
- Nanotechnology Laboratory, Institute of Frontier Technology, Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Tirupati, 517502, India
| | - Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali, 304022, Rajasthan, India
| | - Mastan Mannarapu
- Department of Biotechnology, Dravidian University, Kuppam, Chittoor, Andra Pradesh, 517 426, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
17
|
Cannone S, Greco MR, Carvalho TMA, Guizouarn H, Soriani O, Di Molfetta D, Tomasini R, Zeeberg K, Reshkin SJ, Cardone RA. Cancer Associated Fibroblast (CAF) Regulation of PDAC Parenchymal (CPC) and CSC Phenotypes Is Modulated by ECM Composition. Cancers (Basel) 2022; 14:3737. [PMID: 35954400 PMCID: PMC9367491 DOI: 10.3390/cancers14153737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of all cancers, having one of the lowest five-year survival rates. One of its hallmarks is a dense desmoplastic stroma consisting in the abnormal accumulation of extracellular matrix (ECM) components, especially Collagen I. This highly fibrotic stroma embeds the bulk cancer (parenchymal) cells (CPCs), cancer stem cells (CSCs) and the main producers of the stromal reaction, the Cancer Associated Fibroblasts (CAFs). Little is known about the role of the acellular ECM in the interplay of the CAFs with the different tumor cell types in determining their phenotypic plasticity and eventual cell fate. METHODS Here, we analyzed the role of ECM collagen I in modulating the effect of CAF-derived signals by incubating PDAC CPCs and CSCs grown on ECM mimicking early (low collagen I levels) and late (high collagen I levels) stage PDAC stroma with conditioned medium from primary cultured CAFs derived from patients with PDAC in a previously described three-dimensional (3D) organotypic model of PDAC. RESULTS We found that CAFs (1) reduced CPC growth while favoring CSC growth independently of the ECM; (2) increased the invasive capacity of only CPCs on the ECM mimicking the early tumor; and (3) favored vasculogenic mimicry (VM) especially of the CSCs on the ECM mimicking an early tumor. CONCLUSIONS We conclude that the CAFs and acellular stromal components interact to modulate the tumor behaviors of the PDAC CPC and CSC cell types and drive metastatic progression by stimulating the phenotypic characteristics of each tumor cell type that contribute to metastasis.
Collapse
Affiliation(s)
- Stefania Cannone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (D.D.M.); (K.Z.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (D.D.M.); (K.Z.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (D.D.M.); (K.Z.)
| | - Helene Guizouarn
- Institute of Biology de Valrose, CNRS UMR 7277, University of Nice, 06108 Nice, France; (H.G.); (O.S.)
| | - Olivier Soriani
- Institute of Biology de Valrose, CNRS UMR 7277, University of Nice, 06108 Nice, France; (H.G.); (O.S.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (D.D.M.); (K.Z.)
| | - Richard Tomasini
- INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, 13009 Marseille, France;
| | - Katrine Zeeberg
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (D.D.M.); (K.Z.)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (D.D.M.); (K.Z.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (D.D.M.); (K.Z.)
| |
Collapse
|
18
|
Monti N, Verna R, Piombarolo A, Querqui A, Bizzarri M, Fedeli V. Paradoxical Behavior of Oncogenes Undermines the Somatic Mutation Theory. Biomolecules 2022; 12:662. [PMID: 35625590 PMCID: PMC9138429 DOI: 10.3390/biom12050662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
The currently accepted theory on the influence of DNA mutations on carcinogenesis (the Somatic Mutation Theory, SMT) is facing an increasing number of controversial results that undermine the explanatory power of mutated genes considered as "causative" factors. Intriguing results have demonstrated that several critical genes may act differently, as oncogenes or tumor suppressors, while phenotypic reversion of cancerous cells/tissues can be achieved by modifying the microenvironment, the mutations they are carrying notwithstanding. Furthermore, a high burden of mutations has been identified in many non-cancerous tissues without any apparent pathological consequence. All things considered, a relevant body of unexplained inconsistencies calls for an in depth rewiring of our theoretical models. Ignoring these paradoxes is no longer sustainable. By avoiding these conundrums, the scientific community will deprive itself of the opportunity to achieve real progress in this important biomedical field. To remedy this situation, we need to embrace new theoretical perspectives, taking the cell-microenvironment interplay as the privileged pathogenetic level of observation, and by assuming new explanatory models based on truly different premises. New theoretical frameworks dawned in the last two decades principally focus on the complex interaction between cells and their microenvironment, which is thought to be the critical level from which carcinogenesis arises. Indeed, both molecular and biophysical components of the stroma can dramatically drive cell fate commitment and cell outcome in opposite directions, even in the presence of the same stimulus. Therefore, such a novel approach can help in solving apparently inextricable paradoxes that are increasingly observed in cancer biology.
Collapse
Affiliation(s)
| | | | | | | | | | - Valeria Fedeli
- Systems Biology Group Lab, Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (N.M.); (R.V.); (A.P.); (A.Q.); (M.B.)
| |
Collapse
|
19
|
Periyasamy L, Muruganantham B, Park WY, Muthusami S. Phyto-targeting the CEMIP Expression as a Strategy to Prevent Pancreatic Cancer Metastasis. Curr Pharm Des 2022; 28:922-946. [PMID: 35236267 DOI: 10.2174/1381612828666220302153201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Metastasis of primary pancreatic cancer (PC) to adjacent or distant organs is responsible for the poor survival rate of affected individuals. Chemotherapy, radiotherapy, and immunotherapy are currently being prescribed to treat PC in addition to surgical resection. Surgical resection is the preferred treatment for PC that leads to 20% of 5-year survival, but only less than 20% of patients are eligible for surgical resection because of the poor prognosis. To improve the prognosis and clinical outcome, early diagnostic markers need to be identified, and targeting them would be of immense benefit to increase the efficiency of the treatment. Cell migration-inducing hyaluronan-binding protein (CEMIP) is identified as an important risk factor for the metastasis of various cancers, including PC. Emerging studies have pointed out the crucial role of CEMIP in the regulation of various signaling mechanisms, leading to enhanced migration and metastasis of PC. METHODS The published findings on PC metastasis, phytoconstituents, and CEMIP were retrieved from Pubmed, ScienceDirect, and Cochrane Library. Computational tools, such as gene expression profiling interactive analysis (GEPIA) and Kaplan-Meier (KM) plotter, were used to study the relationship between CEMIP expression and survival of PC individuals. RESULTS Gene expression analysis using the GEPIA database identified a stupendous increase in the CEMIP transcript in PC compared to adjacent normal tissues. KM plotter analysis revealed the impact of CEMIP on the overall survival (OS) and disease-free survival (DFS) among PC patients. Subsequently, several risk factors associated with PC development were screened, and their ability to regulate CEMIP gene expression was analyzed using computational tools. CONCLUSION The current review is focused on gathering information regarding the regulatory role of phytocomponents in PC migration and exploring their possible impact on the CEMIP expression.
Collapse
Affiliation(s)
- Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| |
Collapse
|
20
|
Cortesi M, Zanoni M, Pirini F, Tumedei MM, Ravaioli S, Rapposelli IG, Frassineti GL, Bravaccini S. Pancreatic Cancer and Cellular Senescence: Tumor Microenvironment under the Spotlight. Int J Mol Sci 2021; 23:ijms23010254. [PMID: 35008679 PMCID: PMC8745092 DOI: 10.3390/ijms23010254] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the most dismal prognoses of all cancers due to its late manifestation and resistance to current therapies. Accumulating evidence has suggested that the malignant behavior of this cancer is mainly influenced by the associated strongly immunosuppressive, desmoplastic microenvironment and by the relatively low mutational burden. PDAC develops and progresses through a multi-step process. Early in tumorigenesis, cancer cells must evade the effects of cellular senescence, which slows proliferation and promotes the immune-mediated elimination of pre-malignant cells. The role of senescence as a tumor suppressor has been well-established; however, recent evidence has revealed novel pro-tumorigenic paracrine functions of senescent cells towards their microenvironment. Understanding the interactions between tumors and their microenvironment is a growing research field, with evidence having been provided that non-tumoral cells composing the tumor microenvironment (TME) influence tumor proliferation, metabolism, cell death, and therapeutic resistance. Simultaneously, cancer cells shape a tumor-supportive and immunosuppressive environment, influencing both non-tumoral neighboring and distant cells. The overall intention of this review is to provide an overview of the interplay that occurs between senescent and non-senescent cell types and to describe how such interplay may have an impact on PDAC progression. Specifically, the effects and the molecular changes occurring in non-cancerous cells during senescence, and how these may contribute to a tumor-permissive microenvironment, will be discussed. Finally, senescence targeting strategies will be briefly introduced, highlighting their potential in the treatment of PDAC.
Collapse
Affiliation(s)
- Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
- Correspondence:
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Francesca Pirini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Maria Maddalena Tumedei
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Sara Ravaioli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (G.L.F.)
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (G.L.F.)
| | - Sara Bravaccini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| |
Collapse
|
21
|
Dall’Ora M, Rovesti G, Reggiani Bonetti L, Casari G, Banchelli F, Fabbiani L, Veronesi E, Petrachi T, Magistri P, Di Benedetto F, Spallanzani A, Chiavelli C, Spano MC, Maiorana A, Dominici M, Grisendi G. TRAIL receptors are expressed in both malignant and stromal cells in pancreatic ductal adenocarcinoma. Am J Cancer Res 2021; 11:4500-4514. [PMID: 34659901 PMCID: PMC8493377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023] Open
Abstract
This study assesses the expression of all TNF-related apoptosis-inducing ligand (TRAIL) receptors in pancreatic ductal adenocarcinoma (PDAC) tumor tissue. We aimed to include TRAIL receptor expression as an inclusion parameter in a future clinical study using a TRAIL-based therapy approach for PDAC patients. Considering the emerging influence of PDAC desmoplastic stroma on the efficacy of anti-PDAC therapies, this analysis was extended to tumor stromal cells. Additionally, we performed PDAC stroma characterization. Our retrospective cohort study (N=50) included patients with histologically confirmed PDAC who underwent surgery. The expression of TRAIL receptors (DR4, DR5, DcR1, DcR2, and OPG) in tumor and stromal cells was evaluated by immunohistochemistry (IHC). The amount of tumor stroma was assessed by anti-vimentin IHC and Mallory's trichrome staining. The prognostic impact was determined by the univariate Cox proportional hazards regression model. An extensive expression of functional receptors DR4 and DR5 and a variable expression of decoy receptors were detected in PDAC tumor and stromal cells. Functional receptors were detected also in metastatic tumor and stromal cells. A poor prognosis was associated with low or absent expression of decoy receptors in tumor cells of primary PDAC. After assessing that almost 80% of tumor mass was composed of stroma, we correlated a cellular-dense stroma in primary PDAC with reduced relapse-free survival. We demonstrated that TRAIL functional receptors are widely expressed in PDAC, representing a promising target for TRAIL-based therapies. Further, we demonstrated that a low expression of DcR1 and the absence of OPG in tumor cells, as well as a cellular-dense tumor stroma, could negatively impact the prognosis of PDAC patients.
Collapse
Affiliation(s)
| | - Giulia Rovesti
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Luca Reggiani Bonetti
- Department of Medical and Surgical Sciences of Children & Adults, Pathology Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Giulia Casari
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Federico Banchelli
- Department of Medical and Surgical Sciences of Children & Adults, Statistics Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Luca Fabbiani
- Department of Medical and Surgical Sciences of Children & Adults, Pathology Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Elena Veronesi
- Scientific and Technological Park of Medicine “Mario Veronesi”Mirandola 41037, Italy
| | - Tiziana Petrachi
- Scientific and Technological Park of Medicine “Mario Veronesi”Mirandola 41037, Italy
| | - Paolo Magistri
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Fabrizio Di Benedetto
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Andrea Spallanzani
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Chiara Chiavelli
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | | | - Antonino Maiorana
- Department of Medical and Surgical Sciences of Children & Adults, Pathology Unit, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio EmiliaModena 41124, Italy
| |
Collapse
|
22
|
Gutiérrez ML, Muñoz-Bellvís L, Orfao A. Genomic Heterogeneity of Pancreatic Ductal Adenocarcinoma and Its Clinical Impact. Cancers (Basel) 2021; 13:4451. [PMID: 34503261 PMCID: PMC8430663 DOI: 10.3390/cancers13174451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer death due to limited advances in recent years in early diagnosis and personalized therapy capable of overcoming tumor resistance to chemotherapy. In the last decades, significant advances have been achieved in the identification of recurrent genetic and molecular alterations of PDAC including those involving the KRAS, CDKN2A, SMAD4, and TP53 driver genes. Despite these common genetic traits, PDAC are highly heterogeneous tumors at both the inter- and intra-tumoral genomic level, which might contribute to distinct tumor behavior and response to therapy, with variable patient outcomes. Despite this, genetic and genomic data on PDAC has had a limited impact on the clinical management of patients. Integration of genomic data for classification of PDAC into clinically defined entities-i.e., classical vs. squamous subtypes of PDAC-leading to different treatment approaches has the potential for significantly improving patient outcomes. In this review, we summarize current knowledge about the most relevant genomic subtypes of PDAC including the impact of distinct patterns of intra-tumoral genomic heterogeneity on the classification and clinical and therapeutic management of PDAC.
Collapse
Affiliation(s)
- María Laura Gutiérrez
- Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain;
- Cancer Research Center (IBMCC-CSIC/USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, 28029 Madrid, Spain
| | - Luis Muñoz-Bellvís
- Cancer Research Center (IBMCC-CSIC/USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, 28029 Madrid, Spain
- Service of General and Gastrointestinal Surgery, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain;
- Cancer Research Center (IBMCC-CSIC/USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, 28029 Madrid, Spain
| |
Collapse
|
23
|
The role of S100A9 in the interaction between pancreatic ductal adenocarcinoma cells and stromal cells. Cancer Immunol Immunother 2021; 71:705-718. [PMID: 34374812 PMCID: PMC8854169 DOI: 10.1007/s00262-021-03026-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/29/2021] [Indexed: 10/25/2022]
Abstract
BACKGROUND A major feature of the microenvironment in pancreatic ductal adenocarcinoma (PDAC) is the significant amount of extracellular matrix produced by pancreatic stellate cells (PSCs), which have been reported to enhance the invasiveness of pancreatic cancer cells and negatively impact the prognosis. METHODS We analyzed the data from two publicly available microarray datasets deposited in the Gene Expression Omnibus and found candidate genes that were differentially expressed in PDAC cells with metastatic potential and PDAC cells cocultured with PSCs. We studied the interaction between PDAC cells and PSCs in vitro and verified our finding with the survival data of patients with PDAC from the website of The Human Protein Atlas. RESULTS We found that PSCs stimulated PDAC cells to secrete S100A9, which attracted circulatory monocytes into cancer tissue and enhanced the expression of programmed death-ligand 1 (PD-L1) on macrophages. When analyzing the correlation of S100A9 and PD-L1 expression with the clinical outcomes of patients with PDAC, we ascertained that high expression of S100A9 and PD-L1 was associated with poor survival in patients with PDAC. CONCLUSIONS PSCs stimulated PDAC cells to secrete S100A9, which acts as a chemoattractant to attract circulatory monocytes into cancer microenvironment and induces expression of PD-L1 on macrophages. High expression of S100A9 and PD-L1 was associated with worse overall survival in a cohort of patients with PDAC.
Collapse
|
24
|
Edwards P, Kang BW, Chau I. Targeting the Stroma in the Management of Pancreatic Cancer. Front Oncol 2021; 11:691185. [PMID: 34336679 PMCID: PMC8316993 DOI: 10.3389/fonc.2021.691185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) presents extremely aggressive tumours and is associated with poor survival. This is attributed to the unique features of the tumour microenvironment (TME), which is known to create a dense stromal formation and poorly immunogenic condition. In particular, the TME of PC, including the stromal cells and extracellular matrix, plays an essential role in the progression and chemoresistance of PC. Consequently, several promising agents that target key components of the stroma have already been developed and are currently in multiple stages of clinical trials. Therefore, the authors review the latest available evidence on novel stroma-targeting approaches, highlighting the potential impact of the stroma as a key component of the TME in PC.
Collapse
Affiliation(s)
- Penelope Edwards
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| | - Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
25
|
Pape J, Emberton M, Cheema U. 3D Cancer Models: The Need for a Complex Stroma, Compartmentalization and Stiffness. Front Bioeng Biotechnol 2021; 9:660502. [PMID: 33912551 PMCID: PMC8072339 DOI: 10.3389/fbioe.2021.660502] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
The use of tissue-engineered 3D models of cancer has grown in popularity with recent advances in the field of cancer research. 3D models are inherently more biomimetic compared to 2D cell monolayers cultured on tissue-culture plastic. Nevertheless 3D models still lack the cellular and matrix complexity of native tissues. This review explores different 3D models currently used, outlining their benefits and limitations. Specifically, this review focuses on stiffness and collagen density, compartmentalization, tumor-stroma cell population and extracellular matrix composition. Furthermore, this review explores the methods utilized in different models to directly measure cancer invasion and growth. Of the models evaluated, with PDX and in vivo as a relative "gold standard", tumoroids were deemed as comparable 3D cancer models with a high degree of biomimicry, in terms of stiffness, collagen density and the ability to compartmentalize the tumor and stroma. Future 3D models for different cancer types are proposed in order to improve the biomimicry of cancer models used for studying disease progression.
Collapse
Affiliation(s)
- Judith Pape
- Division of Surgery and Interventional Science, Department of Targeted Intervention, Centre for 3D Models of Health and Disease, University College London, London, United Kingdom
| | - Mark Emberton
- Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Umber Cheema
- Division of Surgery and Interventional Science, Department of Targeted Intervention, Centre for 3D Models of Health and Disease, University College London, London, United Kingdom
| |
Collapse
|
26
|
Roy S, Singh AP, Gupta D. Unsupervised subtyping and methylation landscape of pancreatic ductal adenocarcinoma. Heliyon 2021; 7:e06000. [PMID: 33521362 PMCID: PMC7820567 DOI: 10.1016/j.heliyon.2021.e06000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/14/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive form of pancreatic cancer that typically manifests itself at an advanced stage and does not respond to most treatment modalities. The survival rate of a PDAC patient is less than 5%, with a median survival of just a couple of months. A better understanding of the molecular pathology of PDAC is needed to guide research for the development of better clinical treatment modalities for PDAC patients. Gene expression studies performed to date have identified different subtypes of PDAC with prognostic and clinical relevance. Subtypes identified to date are highly heterogeneous since pancreatic cancer is heterogeneous cancer. Tumor microenvironment and stroma constitute a major chunk of PDAC and contribute to the heterogeneity. Better subtyping methods are need of the hour for better prognosis and classification of PDAC for future personalized treatment. In this work, we have performed an integrated analysis of DNA methylation and gene expression datasets to provide better mechanistic and molecular insights into Pancreatic cancers, especially PDAC. The use of varied and diverse datasets has provided valuable insights into different cancer types and can play an integral role in revealing the complex nature of underlying biological mechanisms. We performed subtyping of TCGA-PAAD gene expression and methylation datasets into different subtypes using state-of-the-art normalization methods and unsupervised clustering methods that reveal latent hidden factors, leading to additional insights for subtyping. Differential expression and differential methylation were performed for each of the subtypes obtained from clustering. Our analysis gave a consensus of five cluster solution with relevant pathways like MAPK, MET. The five subtypes corresponded to the tumor and stromal subtypes. This analysis helps in distinguishing and identifying different subtypes based on enriched putative genes. These results help propose novel experimentally-verifiable PDAC subtyping and demonstrate that using varied data sets and integrated methods can contribute to disease prognostication and precision medicine in PDAC treatment.
Collapse
Affiliation(s)
- Shikha Roy
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amar Pratap Singh
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
27
|
Molecular and Metabolic Subtypes Correspondence for Pancreatic Ductal Adenocarcinoma Classification. J Clin Med 2020; 9:jcm9124128. [PMID: 33371431 PMCID: PMC7767410 DOI: 10.3390/jcm9124128] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, is an extremely lethal disease due to late diagnosis, aggressiveness and lack of effective therapies. Considering its intrinsic heterogeneity, patient stratification models based on transcriptomic and genomic signatures, with partially overlapping subgroups, have been established. Besides molecular alterations, PDAC tumours show a strong desmoplastic response, resulting in profound metabolic reprogramming involving increased glucose and amino acid consumption, as well as lipid scavenging and biosynthesis. Interestingly, recent works have also revealed the existence of metabolic subtypes with differential prognosis within PDAC, which correlated to defined molecular subclasses in patients: lipogenic subtype correlated with a classical/progenitor signature, while glycolytic tumours associated with the highly aggressive basal/squamous profile. Bioinformatic analyses have demonstrated that the representative genes of each metabolic subtype are up-regulated in PDAC samples and predict patient survival. This suggests a relationship between the genetic signature, metabolic profile, and aggressiveness of the tumour. Considering all this, defining metabolic subtypes represents a clear opportunity for patient stratification considering tumour functional behaviour independently of their mutational background.
Collapse
|
28
|
Hydroxy-Propil-β-Cyclodextrin Inclusion Complexes of two Biphenylnicotinamide Derivatives: Formulation and Anti-Proliferative Activity Evaluation in Pancreatic Cancer Cell Models. Int J Mol Sci 2020; 21:ijms21186545. [PMID: 32906812 PMCID: PMC7576480 DOI: 10.3390/ijms21186545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with poor outcomes largely due to its unique microenvironment, which is responsible for the low response to drugs and drug-resistance phenomena. This clinical need led us to explore new therapeutic approaches for systemic PDAC treatment by the utilization of two newly synthesized biphenylnicotinamide derivatives, PTA73 and PTA34, with remarkable antitumor activity in an in vitro PDAC model. Given their poor water solubility, inclusion complexes of PTA34 and PTA73 in Hydroxy-Propil-β-Cyclodextrin (HP-β-CD) were prepared in solution and at the solid state. Complexation studies demonstrated that HP-β-CD is able to form stable host–guest inclusion complexes with PTA34 and PTA73, characterized by a 1:1 apparent formation constant of 503.9 M−1 and 369.2 M−1, respectively (also demonstrated by the Job plot), and by an increase in aqueous solubility of about 150 times (from 1.95 µg/mL to 292.5 µg/mL) and 106 times (from 7.16 µg/mL to 762.5 µg/mL), in the presence of 45% w/v of HP-β-CD, respectively. In vitro studies confirmed the high antitumor activity of the complexed PTA34 and PTA73 towards PDAC cells, the strong G2/M phase arrest followed by induction of apoptosis, and thus their eligibility for PDAC therapy.
Collapse
|
29
|
Stopa KB, Kusiak AA, Szopa MD, Ferdek PE, Jakubowska MA. Pancreatic Cancer and Its Microenvironment-Recent Advances and Current Controversies. Int J Mol Sci 2020; 21:E3218. [PMID: 32370075 PMCID: PMC7246785 DOI: 10.3390/ijms21093218] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) causes annually well over 400,000 deaths world-wide and remains one of the major unresolved health problems. This exocrine pancreatic cancer originates from the mutated epithelial cells: acinar and ductal cells. However, the epithelia-derived cancer component forms only a relatively small fraction of the tumor mass. The majority of the tumor consists of acellular fibrous stroma and diverse populations of the non-neoplastic cancer-associated cells. Importantly, the tumor microenvironment is maintained by dynamic cell-cell and cell-matrix interactions. In this article, we aim to review the most common drivers of PDAC. Then we summarize the current knowledge on PDAC microenvironment, particularly in relation to pancreatic cancer therapy. The focus is placed on the acellular stroma as well as cell populations that inhabit the matrix. We also describe the altered metabolism of PDAC and characterize cellular signaling in this cancer.
Collapse
Affiliation(s)
- Kinga B. Stopa
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Agnieszka A. Kusiak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Mateusz D. Szopa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Monika A. Jakubowska
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| |
Collapse
|
30
|
Tomás-Bort E, Kieler M, Sharma S, Candido JB, Loessner D. 3D approaches to model the tumor microenvironment of pancreatic cancer. Theranostics 2020; 10:5074-5089. [PMID: 32308769 PMCID: PMC7163433 DOI: 10.7150/thno.42441] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/19/2020] [Indexed: 01/18/2023] Open
Abstract
In tumor engineering, 3D approaches are used to model components of the tumor microenvironment and to test new treatments. Pancreatic cancers are a cancer of substantial unmet need and survival rates are lower compared to any other cancer. Bioengineering techniques are increasingly applied to understand the unique biology of pancreatic tumors and to design patient-specific models. Here we summarize how extracellular and cellular elements of the pancreatic tumor microenvironment and their interactions have been studied in 3D cell cultures. We review selected clinical trials, assess the benefits of therapies interfering with the tumor microenvironment and address their limitations and future perspectives.
Collapse
|
31
|
Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol 2019; 14:141. [PMID: 31395068 PMCID: PMC6688256 DOI: 10.1186/s13014-019-1345-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/24/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence. Late detection and a particularly aggressive biology are the major challenges which determine therapeutic failure. In this review, we present the current status and the recent advances in PDAC treatment together with the biological and immunological hallmarks of this cancer entity. On this basis, we discuss new concepts combining distinct treatment modalities in order to improve therapeutic efficacy and clinical outcome - with a specific focus on protocols involving radio(chemo)therapeutic approaches.
Collapse
|
32
|
Farran B, Nagaraju GP. The dynamic interactions between the stroma, pancreatic stellate cells and pancreatic tumor development: Novel therapeutic targets. Cytokine Growth Factor Rev 2019; 48:11-23. [PMID: 31331827 DOI: 10.1016/j.cytogfr.2019.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023]
|
33
|
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, Sivajothi S, Armstrong TD, Engle DD, Yu KH, Hao Y, Wolfgang CL, Park Y, Preall J, Jaffee EM, Califano A, Robson P, Tuveson DA. Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts. Cancer Discov 2019; 9:1102-1123. [PMID: 31197017 DOI: 10.1158/2159-8290.cd-19-0094] [Citation(s) in RCA: 1272] [Impact Index Per Article: 212.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/18/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Abstract
Cancer-associated fibroblasts (CAF) are major players in the progression and drug resistance of pancreatic ductal adenocarcinoma (PDAC). CAFs constitute a diverse cell population consisting of several recently described subtypes, although the extent of CAF heterogeneity has remained undefined. Here we use single-cell RNA sequencing to thoroughly characterize the neoplastic and tumor microenvironment content of human and mouse PDAC tumors. We corroborate the presence of myofibroblastic CAFs and inflammatory CAFs and define their unique gene signatures in vivo. Moreover, we describe a new population of CAFs that express MHC class II and CD74, but do not express classic costimulatory molecules. We term this cell population "antigen-presenting CAFs" and find that they activate CD4+ T cells in an antigen-specific fashion in a model system, confirming their putative immune-modulatory capacity. Our cross-species analysis paves the way for investigating distinct functions of CAF subtypes in PDAC immunity and progression. SIGNIFICANCE: Appreciating the full spectrum of fibroblast heterogeneity in pancreatic ductal adenocarcinoma is crucial to developing therapies that specifically target tumor-promoting CAFs. This work identifies MHC class II-expressing CAFs with a capacity to present antigens to CD4+ T cells, and potentially to modulate the immune response in pancreatic tumors.See related commentary by Belle and DeNardo, p. 1001.This article is highlighted in the In This Issue feature, p. 983.
Collapse
Affiliation(s)
- Ela Elyada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Mohan Bolisetty
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,Bristol-Myers Squibb, Pennington, New Jersey
| | - Pasquale Laise
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Elise T Courtois
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Richard A Burkhart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Jonathan A Teinor
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Pascal Belleau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Matthew S Lucito
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | | | - Todd D Armstrong
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Dannielle D Engle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York.,Salk institute for Biological Studies, La Jolla, California
| | - Kenneth H Yu
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Christopher L Wolfgang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | | | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York.,J.P. Sulzberger Columbia Genome Center, Columbia University, New York, New York.,Department of Biomedical Informatics, Columbia University, New York, New York.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut. .,Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut, Farmington, Connecticut
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. .,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
34
|
Misra S, Moro CF, Del Chiaro M, Pouso S, Sebestyén A, Löhr M, Björnstedt M, Verbeke CS. Ex vivo organotypic culture system of precision-cut slices of human pancreatic ductal adenocarcinoma. Sci Rep 2019; 9:2133. [PMID: 30765891 PMCID: PMC6376017 DOI: 10.1038/s41598-019-38603-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, which is mainly due to late diagnosis and profound resistance to treatment. The latter is to a large extent attributed to the tumor stroma that is exceedingly prominent in PDAC and engages in complex interactions with the cancer cells. Hence, relevant preclinical models of PDAC should also include the tumor stroma. We herein describe the establishment and functional validation of an ex vivo organotypic culture of human PDAC that is based on precision-cut tissue slices from surgical specimens and reproducibly recapitulates the complex cellular and acellular composition of PDAC, including its microenvironment. The cancer cells, tumor microenvironment and interspersed remnants of nonneoplastic pancreas contained in these 350 µm thick slices maintained their structural integrity, phenotypic characteristics and functional activity when in culture for at least 4 days. In particular, tumor cell proliferation persisted and the grade of differentiation and morphological phenotype remained unaltered. Cultured tissue slices were metabolically active and responsive to rapamycin, an mTOR inhibitor. This culture system is to date the closest surrogate to the parent carcinoma and harbors great potential as a drug sensitivity testing system for the personalized treatment of PDAC.
Collapse
Affiliation(s)
- Sougat Misra
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Carlos F Moro
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
- Department of Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, SE-141 86, Sweden
| | - Marco Del Chiaro
- Department of Clinical Intervention and Technology (CLINTEC), Center for Digestive Diseases, Karolinska University Hospital and Division of Surgery, Karolinska Institutet, Stockholm, 14186, Sweden
| | - Soledad Pouso
- Department of Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, SE-141 86, Sweden
| | - Anna Sebestyén
- Tumour Biology Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, 1085 Ulloi ut 26., Hungary
| | - Matthias Löhr
- Department of Clinical Intervention and Technology (CLINTEC), Center for Digestive Diseases, Karolinska University Hospital and Division of Surgery, Karolinska Institutet, Stockholm, 14186, Sweden
| | - Mikael Björnstedt
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Caroline S Verbeke
- Department of Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, SE-141 86, Sweden.
- Institute of Clinical Medicine, University of Oslo, Postbox 1171 Blindern, Oslo, 0318, Norway.
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Postbox 4956 Nydalen, Oslo, 0424, Norway.
| |
Collapse
|
35
|
Yuza K, Nakajima M, Nagahashi M, Tsuchida J, Hirose Y, Miura K, Tajima Y, Abe M, Sakimura K, Takabe K, Wakai T. Different Roles of Sphingosine Kinase 1 and 2 in Pancreatic Cancer Progression. J Surg Res 2018; 232:186-194. [PMID: 30463717 DOI: 10.1016/j.jss.2018.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Indexed: 02/08/2023]
|
36
|
García-Reyes B, Kretz AL, Ruff JP, von Karstedt S, Hillenbrand A, Knippschild U, Henne-Bruns D, Lemke J. The Emerging Role of Cyclin-Dependent Kinases (CDKs) in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2018; 19:E3219. [PMID: 30340359 PMCID: PMC6214075 DOI: 10.3390/ijms19103219] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The family of cyclin-dependent kinases (CDKs) has critical functions in cell cycle regulation and controlling of transcriptional elongation. Moreover, dysregulated CDKs have been linked to cancer initiation and progression. Pharmacological CDK inhibition has recently emerged as a novel and promising approach in cancer therapy. This idea is of particular interest to combat pancreatic ductal adenocarcinoma (PDAC), a cancer entity with a dismal prognosis which is owed mainly to PDAC's resistance to conventional therapies. Here, we review the current knowledge of CDK biology, its role in cancer and the therapeutic potential to target CDKs as a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Balbina García-Reyes
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Jan-Philipp Ruff
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
37
|
Inamura K, Takazawa Y, Inoue Y, Yokouchi Y, Kobayashi M, Saiura A, Shibutani T, Ishikawa Y. Tumor B7-H3 (CD276) Expression and Survival in Pancreatic Cancer. J Clin Med 2018; 7:E172. [PMID: 29996538 PMCID: PMC6069252 DOI: 10.3390/jcm7070172] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 12/15/2022] Open
Abstract
B7-H3 (CD276), a member of the family of immune modulators, orchestrates antitumor immunity. To date, only small-sized studies have examined the association of B7-H3 expression with survival in pancreatic cancer, yielding inconclusive results. We evaluated tumor B7-H3 expression in 150 consecutive patients with pancreatic ductal adenocarcinoma using immunohistochemistry. B7-H3 expression was positive (≥10% tumor cells) in 99 of 150 (66%) cases of pancreatic cancer. We classified the tumors into four groups depending on B7-H3 expression (negative, low, intermediate, and high) and found that higher B7-H3 expression was independently associated with lower disease-free survival (DFS; for high vs. negative B7-H3 expression: multivariable hazard ratio (HR) = 3.12; 95% confidence interval (CI) = 1.48⁻6.15; Ptrend = 0.0026). Furthermore, the association of B7-H3 expression with survival differed according to the pathological stage (p-stage) (Pinteraction = 0.048, between p-stages I⁻II and III⁻IV). The association of B7-H3 positivity with lower DFS was stronger in tumors with p-stage I⁻II (multivariable HR = 3.10, 95% CI = 1.75⁻5.69; P < 0.0001) than in those with p-stage III⁻IV (multivariable HR = 1.20, 95% CI = 0.67⁻2.28; P = 0.55). We demonstrated that tumor high B7-H3 expression is independently associated with poor survival in patients with pancreatic cancer and that this association is stronger in tumors with p-stage I⁻II than in those with p-stage III⁻IV. B7-H3 expression may be a useful prognostic biomarker for identifying aggressive early-stage pancreatic cancer.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| | - Yutaka Takazawa
- Division of Pathology, The Cancer Institute, Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| | - Yosuke Inoue
- Department of hepato-biliary-pancreatic surgery, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.
| | - Yusuke Yokouchi
- Biomarker Department, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan.
| | - Maki Kobayashi
- Division of Pathology, The Cancer Institute, Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| | - Akio Saiura
- Department of hepato-biliary-pancreatic surgery, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.
| | - Tomoko Shibutani
- Biomarker Department, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan.
| | - Yuichi Ishikawa
- Division of Pathology, The Cancer Institute, Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|