1
|
Rust K, Schubert A, Peralta JM, Nystul TG. Independent signaling pathways provide a fail-safe mechanism to prevent tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640798. [PMID: 40093137 PMCID: PMC11908167 DOI: 10.1101/2025.02.28.640798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Controlled signaling activity is vital for normal tissue homeostasis and oncogenic signaling activation facilitates tumorigenesis. Here we use single-cell transcriptomics to investigate the effects of pro-proliferative signaling on epithelial homeostasis using the Drosophila follicle cell lineage. Notably, EGFR-Ras overactivation induces cell cycle defects by activating the transcription factors Pointed and E2f1 and impedes differentiation. Hh signaling simultaneously promotes an undifferentiated state and induces differentiation via activation of EMT-associated transcription factors zfh1 and Mef2. As a result, overactivation of Hh signaling generates a transcriptional hybrid state comparable to epithelial-mesenchymal-transition. Co-overactivation of Hh signaling with EGFR-Ras signaling blocks differentiation and induces key characteristics of tumor cells including a loss of tissue architecture caused by reduced expression of cell adhesion molecules, sustained proliferation and an evasion of cell cycle checkpoints. These findings provide new insight into how non-interacting signaling pathways converge at the transcriptional level to prevent malignant cell behavior.
Collapse
Affiliation(s)
- Katja Rust
- Institute of Physiology and Pathophysiology, Dept. of Molecular Cell Physiology, Philipps University Marburg, Germany
| | - Andrea Schubert
- Institute of Physiology and Pathophysiology, Dept. of Molecular Cell Physiology, Philipps University Marburg, Germany
| | - Jobelle M Peralta
- UCSF, Department of Anatomy, 513 Parnassus Ave, San Francisco, CA 94143, USA
- UCSF, Department of OB-GYN/RS, 513 Parnassus Ave, San Francisco, CA 94143, USA
- Broad Center of Regeneration Medicine and Stem Cell Research, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | - Todd G Nystul
- UCSF, Department of Anatomy, 513 Parnassus Ave, San Francisco, CA 94143, USA
- UCSF, Department of OB-GYN/RS, 513 Parnassus Ave, San Francisco, CA 94143, USA
- Broad Center of Regeneration Medicine and Stem Cell Research, 513 Parnassus Ave, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Tian S, Du S, Wang C, Zhang Y, Wang H, Fan Y, Gao Y, Gu L, Huang Q, Wang B, Ma X, Zhang X, Huang Y. Inhibition of primary cilia-hedgehog signaling axis triggers autophagic cell death and suppresses malignant progression of VHL wild-type ccRCC. Cell Death Dis 2024; 15:739. [PMID: 39389955 PMCID: PMC11466958 DOI: 10.1038/s41419-024-07085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Primary cilia are present on renal tubules and are implicated to play a pivotal role in transducing signals during development; however, the oncogenic role of cilia in clear cell renal cell carcinoma (ccRCC) has not been examined. Here we show that VHL wild-type ccRCC cell lines have a high incidence of primary cilia, and a high frequency of primary cilia is positively correlated with VHL expression and poor prognosis. Besides, the depletion of KIF3A and IFT88, genes required for ciliogenesis, significantly inhibited tumor proliferation and metastasis in vitro and in vivo. Further analysis found that mutations of key genes in hedgehog signaling are enriched in VHL wild ccRCC, its downstream signaling activation depends on ciliogenesis. Moreover, depletion of primary cilia or suppression of hedgehog pathway activation with inhibitor-induced robust autophagic cell death. Collectively, our findings revealed that primary cilia could serve as a diagnostic tool and provide new insights into the mechanism of VHL wild-type ccRCC progression. Targeting the primary cilia-hedgehog pathway may represent an effective therapeutic strategy for VHL wild-type ccRCC.
Collapse
Affiliation(s)
- Shuo Tian
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Chinese PLA Medical School, Beijing, China
| | - Songliang Du
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chenfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Chinese PLA Medical School, Beijing, China
| | - Yu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hanfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Fan
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Gao
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Liangyou Gu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qingbo Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Baojun Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA Medical School, Beijing, China.
| | - Xu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA Medical School, Beijing, China.
| | - Yan Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Golivi Y, Kumari S, Farran B, Alam A, Peela S, Nagaraju GP. Small molecular inhibitors: Therapeutic strategies for pancreatic cancer. Drug Discov Today 2024; 29:104053. [PMID: 38849028 DOI: 10.1016/j.drudis.2024.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Pancreatic cancer (PC), a disease with high heterogeneity and a dense stromal microenvironment, presents significant challenges and a bleak prognosis. Recent breakthroughs have illuminated the crucial interplay among RAS, epidermal growth factor receptor (EGFR), and hedgehog pathways in PC progression. Small molecular inhibitors have emerged as a potential solution with their advantages of oral administration and the ability to target intracellular and extracellular sites effectively. However, despite the US FDA approving over 100 small-molecule targeted antitumor drugs, challenges such as low response rates and drug resistance persist. This review delves into the possibility of using small molecules to treat persistent or spreading PC, highlighting the challenges and the urgent need for a diverse selection of inhibitors to develop more effective treatment strategies.
Collapse
Affiliation(s)
- Yuvasri Golivi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, RJ 304 022, India
| | - Seema Kumari
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM, Visakhapatnam, Andhra Pradesh 530045, India
| | - Batoul Farran
- Department of Hematology and Oncology, Henry Ford Health, Detroit, MI 48202, USA
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, RJ 304 022, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B. R. Ambedkar University, Srikakulam, Andhra Pradesh, 532001, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
4
|
Quatannens D, Verhoeven Y, Van Dam P, Lardon F, Prenen H, Roeyen G, Peeters M, Smits ELJ, Van Audenaerde J. Targeting hedgehog signaling in pancreatic ductal adenocarcinoma. Pharmacol Ther 2022; 236:108107. [PMID: 34999181 DOI: 10.1016/j.pharmthera.2022.108107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer related death. The urgent need for effective therapies is highlighted by the lack of adequate targeting. In PDAC, hedgehog (Hh) signaling is known to be aberrantly activated, which prompted the pathway as a possible target for effective treatment for PDAC patients. Unfortunately, specific targeting of upstream molecules within the Hh signaling pathway failed to bring clinical benefit. This led to the ongoing debate on Hh targeting as a therapeutic treatment for PDAC patients. Additionally, concurrent non-canonical activation routes also result in translocation of Gli transcription factors into the nucleus. Therefore, different downstream targets of the Hh signaling pathway were identified and evaluated in preclinical and clinical research. In this review we summarize the variety of Hh signaling antagonists in different preclinical models of PDAC. Furthermore, we discuss published and ongoing clinical trials that evaluated Hh antagonists and point out the current hurdles and future perspectives in the light of redesigning Hh-targeting therapies for the treatment of PDAC patients.
Collapse
Affiliation(s)
- Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Yannick Verhoeven
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Peter Van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Unit of Gynecologic Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Geert Roeyen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Hepatobiliary Transplantation and Endocrine Surgery, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Department of Oncology, University Hospital Antwerp (UZA), Antwerp, Belgium.
| | - Evelien L J Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
5
|
Choi YS, Kim MJ, Choi EA, Kim S, Lee EJ, Park MJ, Kim MJ, Kim YW, Ahn HS, Jung JY, Jang G, Kim Y, Kim H, Kim K, Kim JY, Hong SM, Kim SC, Chang S. Antibody-mediated blockade for galectin-3 binding protein in tumor secretome abrogates PDAC metastasis. Proc Natl Acad Sci U S A 2022; 119:e2119048119. [PMID: 35858411 PMCID: PMC9335190 DOI: 10.1073/pnas.2119048119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/27/2022] [Indexed: 01/21/2023] Open
Abstract
The major challenges in pancreatic ductal adenocarcinoma (PDAC) management are local or distant metastasis and limited targeted therapeutics to prevent it. To identify a druggable target in tumor secretome and to explore its therapeutic intervention, we performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of tumors obtained from a patient-derived xenograft model of PDAC. Galectin-3 binding protein (Gal-3BP) is identified as a highly secreted protein, and its overexpression is further validated in multiple PDAC tumors and primary cells. Knockdown and exogenous treatment of Gal-3BP showed that it is required for PDAC cell proliferation, migration, and invasion. Mechanistically, we revealed that Gal-3BP enhances galectin-3-mediated epidermal growth factor receptor signaling, leading to increased cMyc and epithelial-mesenchymal transition. To explore the clinical impact of these findings, two antibody clones were developed, and they profoundly abrogated the metastasis of PDAC cells in vivo. Altogether, our data demonstrate that Gal-3BP is an important therapeutic target in PDAC, and we propose its blockade by antibody as a therapeutic option for suppressing PDAC metastasis.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/secondary
- Carcinoma, Pancreatic Ductal/therapy
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chromatography, Liquid
- Epithelial-Mesenchymal Transition
- Gene Knockdown Techniques
- Humans
- Mice
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Proteomics
- Secretome
- Tandem Mass Spectrometry
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yeon-Sook Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Myung Ji Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun A. Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Sinae Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Min Ji Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Mi-Ju Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Yeon Wook Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Hee-Sung Ahn
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jae Yun Jung
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Gayoung Jang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Yongsub Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Hyori Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, South Korea
| | - Seung-Mo Hong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| |
Collapse
|
6
|
Yu B, Gu D, Zhang X, Liu B, Xie J. Regulation of pancreatic cancer metastasis through the Gli2-YAP1 axis via regulation of anoikis. Genes Dis 2022; 9:1427-1430. [PMID: 36157479 PMCID: PMC9485280 DOI: 10.1016/j.gendis.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 10/31/2022] Open
|
7
|
Liang Y, Yang L, Xie J. The Role of the Hedgehog Pathway in Chemoresistance of Gastrointestinal Cancers. Cells 2021; 10:cells10082030. [PMID: 34440799 PMCID: PMC8391142 DOI: 10.3390/cells10082030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The hedgehog pathway, which plays a significant role in embryonic development and stem cell regulation, is activated in gastrointestinal cancers. Chemotherapy is widely used in cancer treatment. However, chemoresistance becomes a substantial obstacle in cancer therapy. This review focuses on the recent advances in the hedgehog pathway's roles in drug resistance of gastrointestinal cancers and the novel drugs and strategies targeting hedgehog signaling.
Collapse
Affiliation(s)
- Yabing Liang
- Inner Mongolia Key Laboratory of Medical Cell Biology, Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China;
| | - Ling Yang
- Inner Mongolia Key Laboratory of Medical Cell Biology, Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China;
- Correspondence: (L.Y.); (J.X.)
| | - Jingwu Xie
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (L.Y.); (J.X.)
| |
Collapse
|
8
|
Zhang MY, Fang S, Gao H, Zhang X, Gu D, Liu Y, Wan J, Xie J. A critical role of AREG for bleomycin-induced skin fibrosis. Cell Biosci 2021; 11:40. [PMID: 33622407 PMCID: PMC7903615 DOI: 10.1186/s13578-021-00553-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
We report our discovery of an important player in the development of skin fibrosis, a hallmark of scleroderma. Scleroderma is a fibrotic disease, affecting 70,000 to 150,000 Americans. Fibrosis is a pathological wound healing process that produces an excessive extracellular matrix to interfere with normal organ function. Fibrosis contributes to nearly half of human mortality. Scleroderma has heterogeneous phenotypes, unpredictable outcomes, no validated biomarkers, and no effective treatment. Thus, strategies to slow down scleroderma progression represent an urgent medical need. While a pathological wound healing process like fibrosis leaves scars and weakens organ function, oral mucosa wound healing is a scarless process. After re-analyses of gene expression datasets from oral mucosa wound healing and skin fibrosis, we discovered that several pathways constitutively activated in skin fibrosis are transiently induced during oral mucosa wound healing process, particularly the amphiregulin (Areg) gene. Areg expression is upregulated ~ 10 folds 24hrs after oral mucosa wound but reduced to the basal level 3 days later. During bleomycin-induced skin fibrosis, a commonly used mouse model for skin fibrosis, Areg is up-regulated throughout the fibrogenesis and is associated with elevated cell proliferation in the dermis. To demonstrate the role of Areg for skin fibrosis, we used mice with Areg knockout, and found that Areg deficiency essentially prevents bleomycin-induced skin fibrosis. We further determined that bleomycin-induced cell proliferation in the dermis was not observed in the Areg null mice. Furthermore, we found that inhibiting MEK, a downstream signaling effector of Areg, by selumetinib also effectively blocked bleomycin-based skin fibrosis model. Based on these results, we concluded that the Areg-EGFR-MEK signaling axis is critical for skin fibrosis development. Blocking this signaling axis may be effective in treating scleroderma.
Collapse
Affiliation(s)
- Mary Yinghua Zhang
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shuyi Fang
- Department of BioHealth Informatics, School of Informatics and Computing At IUPUI, Indiana University, Indianapolis, IN, USA
| | - Hongyu Gao
- The IU Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Xiaoli Zhang
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dongsheng Gu
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Department of BioHealth Informatics, School of Informatics and Computing At IUPUI, Indiana University, Indianapolis, IN, USA
- The IU Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, USA
- The Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jun Wan
- Department of BioHealth Informatics, School of Informatics and Computing At IUPUI, Indiana University, Indianapolis, IN, USA
- The IU Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, USA
- The Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jingwu Xie
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- The IU Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Hamada S, Matsumoto R, Tanaka Y, Taguchi K, Yamamoto M, Masamune A. Nrf2 Activation Sensitizes K-Ras Mutant Pancreatic Cancer Cells to Glutaminase Inhibition. Int J Mol Sci 2021; 22:1870. [PMID: 33672789 PMCID: PMC7918355 DOI: 10.3390/ijms22041870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer remains intractable owing to the lack of effective therapy for unresectable cases. Activating mutations of K-ras are frequently found in pancreatic cancers, but these have not yet been targeted by cancer therapies. The Keap1-Nrf2 system plays a crucial role in mediating the oxidative stress response, which also contributes to cancer progression. Nrf2 activation reprograms the metabolic profile to promote the proliferation of cancer cells. A recent report suggested that K-ras- and Nrf2-active lung cancer cells are sensitive to glutamine depletion. This finding led to the recognition of glutaminase inhibitors as novel anticancer agents. In the current study, we used murine pancreatic cancer tissues driven by mutant K-ras and p53 to establish cell lines expressing constitutively activated Nrf2. Genetic or pharmacological Nrf2 activation in cells via Keap1 deletion or Nrf2 activation sensitized cells to glutaminase inhibition. This phenomenon was confirmed to be dependent on K-ras activation in human pancreatic cancer cell lines harboring mutant K-ras, i.e., Panc-1 and MiaPaCa-2 in response to DEM pretreatment. This phenomenon was not observed in BxPC3 cells harboring wildtype K-ras. These results indicate the possibility of employing Nrf2 activation and glutaminase inhibition as novel therapeutic interventions for K-ras mutant pancreatic cancers.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; (R.M.); (Y.T.); (A.M.)
| | - Ryotaro Matsumoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; (R.M.); (Y.T.); (A.M.)
| | - Yu Tanaka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; (R.M.); (Y.T.); (A.M.)
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; (K.T.); (M.Y.)
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; (K.T.); (M.Y.)
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; (R.M.); (Y.T.); (A.M.)
| |
Collapse
|
10
|
Abrams SL, Akula SM, Martelli AM, Cocco L, Ratti S, Libra M, Candido S, Montalto G, Cervello M, Gizak A, Rakus D, Steelman LS, McCubrey JA. Sensitivity of pancreatic cancer cells to chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals can be regulated by WT-TP53. Adv Biol Regul 2021; 79:100780. [PMID: 33451973 DOI: 10.1016/j.jbior.2020.100780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic malignancy. Approximately 85% of pancreatic cancers are classified as PDACs. The survival of PDAC patients is very poor and only 5-10% of patients survive 5 years after diagnosis. Mutations at the KRAS and TP53 gene are frequently observed in PDAC patients. The PANC-28 cell line lacks wild-type (WT) TP53. In the following study, we have investigated the effects of restoration of WT TP53 activity on the sensitivity of PANC-28 pancreatic cancer cells to various drugs which are used to treat PDAC patients as well as other cancer patients. In addition, we have examined the effects of signal transduction inhibitors which target critical pathways frequently deregulated in cancer. The effects of the anti-diabetes drug metformin and the anti-malarial drug chloroquine were also examined as these drugs may be repurposed to treat other diseases. Finally, the effects of certain nutraceuticals which are used to treat various ailments were also examined. Introduction of WT-TP53 activity in PANC-28 PDAC cells, can increase their sensitivity to various drugs. Attempts are being made clinically to increase TP53 activity in various cancer types which will often inhibit cell growth by multiple mechanisms.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Massimo Libra
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Department of Health Promotion, Maternal and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834.
| |
Collapse
|
11
|
Abstract
Pancreatic cancer is the third leading cause of cancer death in the USA, and pancreatic ductal adenocarcinoma (PDA) constitutes 85% of pancreatic cancer diagnoses. PDA frequently metastasizes to the peritoneum, but effective treatment of peritoneal metastasis remains a clinical challenge. Despite this unmet need, understanding of the biological mechanisms that contribute to development and progression of PDA peritoneal metastasis is sparse. By contrast, a vast number of studies have investigated mechanisms of peritoneal metastasis in ovarian and gastric cancers. Here, we contrast similarities and differences between peritoneal metastasis in PDA as compared with those in gastric and ovarian cancer by outlining molecular mediators involved in each step of the peritoneal metastasis cascade. This review aims to provide mechanistic insights that could be translated into effective targeted therapies for patients with peritoneal metastasis from PDA.
Collapse
|
12
|
Li B, Lv L, Li W. 1,25-Dihydroxy vitamin D3 inhibits the Ras-MEK-ERK pathway and regulates proliferation and apoptosis of papillary thyroid carcinoma. Steroids 2020; 159:108585. [PMID: 31982425 DOI: 10.1016/j.steroids.2020.108585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/03/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To explore the effects of 1,25-dihydroxy vitamin D3 [1,25-(OH)2D3] on the proliferation and apoptosis of papillary thyroid carcinoma and to investigate its possible mechanism. MATERIALS AND METHODS The papillary thyroid carcinoma cell line TPC-1 was cultured, and the cells were divided into control group, the 1,25-(OH)2D3 group, and the 1,25-(OH)2D3 + ML-098 (Ras agonist) group. Cell proliferation was observed by MTT. The colony formation viability of cells was detected by the plate cloning assay. Cell migration was observed by the scratch assay. Apoptosis was detected by flow cytometry. The expression of Ki67 and Caspase-3, and the activity of Ras-MEK-ERK pathway were detected by western blot. RESULTS Compared with the Control group, the proliferation, colony formation and migration ability of cells in the drug group were significantly decreased. The number of apoptotic cells was significantly increased, the expression of Ki67 protein was decreased, and the expression of Caspase-3 protein was upregulated. The phosphorylation levels of Ras, p-ERK1/2, and p-MEK were decreased. Compared with the drug group, the cloning and migration biological activity of cells in the 1,25-(OH)2D3 + ML-098 group was significantly enhanced (p < 0.05). The number of apoptotic cells was decreased, while the Ki67 protein level was increased. In addition, the Caspase-3 protein level was decreased, and the Ras-MEK-ERK level was also enhanced. Furthermore, the antitumor activity of 1,25-(OH)2D3 was reversed by the Ras agonist ML-098. CONCLUSION 1,25-(OH)2D3 can inhibit the activity and promote apoptosis of the papillary thyroid carcinoma cell line TPC-1, and its mechanism may be related to the inhibition of the Ras-MEK-ERK pathway activity, thus affecting the proliferation and expression of apoptosis-related proteins.
Collapse
Affiliation(s)
- Baoyuan Li
- Department of Thyroid, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Liping Lv
- Department of Nuclear Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Weilong Li
- Department of Nuclear Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China.
| |
Collapse
|
13
|
Qian J, Yang J, Liu X, Chen Z, Yan X, Gu H, Xue Q, Zhou X, Gai L, Lu P, Shi Y, Yao N. Analysis of lncRNA-mRNA networks after MEK1/2 inhibition based on WGCNA in pancreatic ductal adenocarcinoma. J Cell Physiol 2019; 235:3657-3668. [PMID: 31583713 PMCID: PMC6972678 DOI: 10.1002/jcp.29255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) responds poorly to treatment. Efforts have been exerted to prolong the survival time of PDA, but the 5-year survival rates remain disappointing. Understanding the molecular mechanisms of PDA development is significant. MEK/ERK pathway signaling has been proven to be important in PDA. lncRNA-mRNA networks have become a vital part of molecular mechanisms in the MEK/ERK pathway. Herein, weighted gene coexpression network analysis was used to investigate the coexpressed lncRNA-mRNA networks in the MEK/ERK pathway based on GSE45765. Differently expressed long noncoding RNA (lncRNA) and messenger RNA (mRNA) were found and 10 modules were identified based on coexpression profiles. Gene ontology and Kyoto Encyclopedia of Genes and Genomes were then performed to analyze the coexpressed lncRNA and mRNA in different modules. PDA cells and tissues were used to validate the analysis results. Finally, we found that NONHSAT185150.1 and B4GALT6 were negatively correlated with MEK1/2. By analyzing GSE45765, the genome-wide profiles of lncRNA-mRNA network after MEK1/2 was established, which might aid the development of drug-targeting MEK1/2 and the investigation of diagnostic markers.
Collapse
Affiliation(s)
- Jing Qian
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianxin Yang
- Department of General Surgery, Qidong People's Hospital, Qidong, Jiangsu, China
| | - Xianchen Liu
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiming Chen
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaodi Yan
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hongmei Gu
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qiang Xue
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xingqin Zhou
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ling Gai
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Pengpeng Lu
- Department of Oncology, Nantong University, Nantong, Jiangsu, China
| | - Yu Shi
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ninghua Yao
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
14
|
Song Q, Wang B, Liu M, Ren Z, Fu Y, Zhang P, Yang M. MTA1 promotes the invasion and migration of oral squamous carcinoma by inducing epithelial-mesenchymal transition via the hedgehog signaling pathway. Exp Cell Res 2019; 382:111450. [PMID: 31152708 DOI: 10.1016/j.yexcr.2019.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
The metastasis-associated gene 1 (MTA1) has previously been recognized as an oncogene in many tumors, and aberrant MTA1 expression has been related to invasion and migration; however, its role and underlying molecular mechanism in oral squamous carcinoma (OSCC) remain largely unexplored. In this work, we determined the expression of MTA1 in OSCC tissues and cell lines. The effect of MTA1 on metastasis and the role of MTA1 in the epithelial-to-mesenchymal transition (EMT) of OSCC cells were evaluated by assays both in vitro and in vivo. We also identified the key Hedgehog signaling pathway-related protein involved in the MTA1-induced EMT. We found that MTA1 expression was upregulated and positively related to the metastasis in OSCC tissues and cell lines. MTA1 overexpression promoted OSCC invasion, migration, and induced EMT, while its silencing had the opposite effect both in vitro and in vivo. Additionally, our data further revealed the relevant molecular mechanism, Hedgehog(Hh) signaling pathway contributed to the effect of MTA1 on the aggressive phenotypes of OSCC cells.These findings indicate that MTA1 enhances OSCC cells invasion and migration by inducing EMT via the Hedgehog signaling pathway, which suggests MTA1 may be an effective anti-OSCC therapeutic target.
Collapse
Affiliation(s)
- Qingcui Song
- Department of Oncology, Liaocheng People's Hospital, Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, 252000, PR China.
| | - Baozhong Wang
- Department of Oncology, Liaocheng People's Hospital, Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, 252000, PR China.
| | - Meirong Liu
- Department of Oncology, Liaocheng People's Hospital, Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, 252000, PR China.
| | - Zhongxi Ren
- Department of Mammary and Thyroidology, Liaocheng People's Hospital, Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, 252000, PR China.
| | - Ying Fu
- Department of Oncology, Liaocheng People's Hospital, Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, 252000, PR China.
| | - Pu Zhang
- Department of Oncology, Liaocheng People's Hospital, Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, 252000, PR China.
| | - Mengxiang Yang
- Department of Oncology, Liaocheng People's Hospital, Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, 252000, PR China.
| |
Collapse
|
15
|
Wu SZ, Xu HC, Wu XL, Liu P, Shi YC, Pang P, Deng L, Zhou GX, Chen XY. Dihydrosanguinarine suppresses pancreatic cancer cells via regulation of mut-p53/WT-p53 and the Ras/Raf/Mek/Erk pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152895. [PMID: 30913453 DOI: 10.1016/j.phymed.2019.152895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND There have been some reports implicating the pharmacologic action of Dihydrosanguinarine (DHSA), but little research including the effects of it on cancer cells. PANC-1 cells have mutations in K-Ras and TP53, which respectively express mutant K-Ras and p53 protein, and the mutations in Ras/p53 have been believed with closely relationship to the occurrence of various tumors. PURPOSE To reveal the inhibition of Dihydrosanguinarine on pancreatic cancer cells (PANC-1 and SW1990) proliferation by inducing G0/G1 and G2/M phase arrest via the downregulation of mut-p53 protein, inducing apoptosis and inhibiting invasiveness through the Ras/Mek/Erk signaling pathway. METHODS Human pancreatic cancer cell lines were cultured with cisplatin and DHSA. Then, cell proliferation, the cell cycle and apoptosis were measured by CCK-8 and flow cytometry. The migratory and invasive abilities of pancreatic cancer cells were evaluated by transwell assay. The expression levels of mRNA and protein were measured by RT-PCR and western blotting. RESULTS The results showed that DHSA treatment inhibited cell proliferation, migration and invasion in a time- and dose-dependent manner and led to induction of cell cycle arrest and apoptosis. G0/G1 and G2/M phase arrest inhibited the viability of PANC-1 cells by downregulating the expression of mut-p53 protein. Decreased levels of C-Raf and Erk phosphorylation in DHSA-treated PANC-1 and SW1990 cells were observed in a time- and dose-dependent manner. However, the total expression of p53 and Ras proteins had a different change in PANC-1 and SW1990 cells. CONCLUSIONS Our findings offer the novel perspective that DHSA inhibits pancreatic cancer cells through a bidirectional regulation between mut-p53/-Ras and WT-p53/-Ras to restore the dynamic balance by Ras and p53 proteins.
Collapse
Affiliation(s)
- Si-Zhi Wu
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China.
| | - Hua-Chong Xu
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China.
| | - Xian-Lin Wu
- Department of Pancreatic Disease, the First Affiliated Hospital of Jinan University, Guangzhou, China; Clinical Medicine Research Institute, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pei Liu
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China.
| | - Yu-Cong Shi
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China.
| | - Peng Pang
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China.
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China
| | - Guang-Xiong Zhou
- Department of Pharmacology, Pharmaceutical College of Jinan University, Guangzhou, China.
| | - Xiao-Yin Chen
- College of Traditional Chinese Medicine, Jinan University, No. 601, West Huang-pu Avenue, Guangzhou, Guangdong CN510632, China.
| |
Collapse
|