1
|
Villanueva-Meyer JE, Bakas S, Tiwari P, Lupo JM, Calabrese E, Davatzikos C, Bi WL, Ismail M, Akbari H, Lohmann P, Booth TC, Wiestler B, Aerts HJWL, Rasool G, Tonn JC, Nowosielski M, Jain R, Colen RR, Pati S, Baid U, Vollmuth P, Macdonald D, Vogelbaum MA, Chang SM, Huang RY, Galldiks N. Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 1: review of current advancements. Lancet Oncol 2024; 25:e581-e588. [PMID: 39481414 DOI: 10.1016/s1470-2045(24)00316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 11/02/2024]
Abstract
The development, application, and benchmarking of artificial intelligence (AI) tools to improve diagnosis, prognostication, and therapy in neuro-oncology are increasing at a rapid pace. This Policy Review provides an overview and critical assessment of the work to date in this field, focusing on diagnostic AI models of key genomic markers, predictive AI models of response before and after therapy, and differentiation of true disease progression from treatment-related changes, which is a considerable challenge based on current clinical care in neuro-oncology. Furthermore, promising future directions, including the use of AI for automated response assessment in neuro-oncology, are discussed.
Collapse
Affiliation(s)
- Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Spyridon Bakas
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biostatistics & Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA; Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA
| | - Pallavi Tiwari
- Department of Radiology and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Evan Calabrese
- Duke University Center for Artificial Intelligence in Radiology, Department of Radiology, Duke University, Durham, NC, USA
| | - Christos Davatzikos
- Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Marwa Ismail
- Department of Radiology and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Hamed Akbari
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, Santa Clara University, Santa Clara, CA, USA
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich (FZJ), Juelich, Germany; Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Thomas C Booth
- Department of Neuroradiology, Ruskin Wing, King's College Hospital NHS Foundation Trust, London, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; London Regional Cancer Program, London, UK
| | - Benedikt Wiestler
- Department of Neuroradiology, University Hospital, Technical University of Munich, Munich, Germany
| | - Hugo J W L Aerts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA; Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, Netherlands
| | - Ghulam Rasool
- Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany and German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Martha Nowosielski
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Rajan Jain
- Department of Radiology and Department of Neurosurgery, New York University Langone Health, New York, NY, USA
| | - Rivka R Colen
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, Netherlands
| | - Sarthak Pati
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ujjwal Baid
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Macdonald
- Department of Neuro-Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Michael A Vogelbaum
- Department of Neurosurgery, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich (FZJ), Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
2
|
Al-Rahbi A, Al-Mahrouqi O, Al-Saadi T. Uses of artificial intelligence in glioma: A systematic review. MEDICINE INTERNATIONAL 2024; 4:40. [PMID: 38827949 PMCID: PMC11140312 DOI: 10.3892/mi.2024.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Glioma is the most prevalent type of primary brain tumor in adults. The use of artificial intelligence (AI) in glioma is increasing and has exhibited promising results. The present study performed a systematic review of the applications of AI in glioma as regards diagnosis, grading, prediction of genotype, progression and treatment response using different databases. The aim of the present study was to demonstrate the trends (main directions) of the recent applications of AI within the field of glioma, and to highlight emerging challenges in integrating AI within clinical practice. A search in four databases (Scopus, PubMed, Wiley and Google Scholar) yielded a total of 42 articles specifically using AI in glioma and glioblastoma. The articles were retrieved and reviewed, and the data were summarized and analyzed. The majority of the articles were from the USA (n=18) followed by China (n=11). The number of articles increased by year reaching the maximum number in 2022. The majority of the articles studied glioma as opposed to glioblastoma. In terms of grading, the majority of the articles were about both low-grade glioma (LGG) and high-grade glioma (HGG) (n=23), followed by HGG/glioblastoma (n=13). Additionally, three articles were about LGG only; two articles did not specify the grade. It was found that one article had the highest sample size among the other studies, reaching 897 samples. Despite the limitations and challenges that face AI, the use of AI in glioma has increased in recent years with promising results, with a variety of applications ranging from diagnosis, grading, prognosis prediction, and reaching to treatment and post-operative care.
Collapse
Affiliation(s)
- Adham Al-Rahbi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | - Omar Al-Mahrouqi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | - Tariq Al-Saadi
- Department of Neurosurgery, Khoula Hospital, Muscat 123, Sultanate of Oman
- Department of Neurology and Neurosurgery-Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
3
|
Asadi F, Angsuwatanakul T, O’Reilly JA. Evaluating synthetic neuroimaging data augmentation for automatic brain tumour segmentation with a deep fully-convolutional network. IBRO Neurosci Rep 2024; 16:57-66. [PMID: 39007088 PMCID: PMC11240293 DOI: 10.1016/j.ibneur.2023.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/11/2023] [Indexed: 07/16/2024] Open
Abstract
Gliomas observed in medical images require expert neuro-radiologist evaluation for treatment planning and monitoring, motivating development of intelligent systems capable of automating aspects of tumour evaluation. Deep learning models for automatic image segmentation rely on the amount and quality of training data. In this study we developed a neuroimaging synthesis technique to augment data for training fully-convolutional networks (U-nets) to perform automatic glioma segmentation. We used StyleGAN2-ada to simultaneously generate fluid-attenuated inversion recovery (FLAIR) magnetic resonance images and corresponding glioma segmentation masks. Synthetic data were successively added to real training data (n = 2751) in fourteen rounds of 1000 and used to train U-nets that were evaluated on held-out validation (n = 590) and test sets (n = 588). U-nets were trained with and without geometric augmentation (translation, zoom and shear), and Dice coefficients were computed to evaluate segmentation performance. We also monitored the number of training iterations before stopping, total training time, and time per iteration to evaluate computational costs associated with training each U-net. Synthetic data augmentation yielded marginal improvements in Dice coefficients (validation set +0.0409, test set +0.0355), whereas geometric augmentation improved generalization (standard deviation between training, validation and test set performances of 0.01 with, and 0.04 without geometric augmentation). Based on the modest performance gains for automatic glioma segmentation we find it hard to justify the computational expense of developing a synthetic image generation pipeline. Future work may seek to optimize the efficiency of synthetic data generation for augmentation of neuroimaging data.
Collapse
Affiliation(s)
- Fawad Asadi
- College of Biomedical Engineering, Rangsit University, Pathum Thani 12000, Thailand
| | | | - Jamie A. O’Reilly
- School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
4
|
Bathla G, Dhruba DD, Soni N, Liu Y, Larson NB, Kassmeyer BA, Mohan S, Roberts-Wolfe D, Rathore S, Le NH, Zhang H, Sonka M, Priya S. AI-based classification of three common malignant tumors in neuro-oncology: A multi-institutional comparison of machine learning and deep learning methods. J Neuroradiol 2024; 51:258-264. [PMID: 37652263 DOI: 10.1016/j.neurad.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE To determine if machine learning (ML) or deep learning (DL) pipelines perform better in AI-based three-class classification of glioblastoma (GBM), intracranial metastatic disease (IMD) and primary CNS lymphoma (PCNSL). METHODOLOGY Retrospective analysis included 502 cases for training (208 GBM, 67 PCNSL and 227 IMD), with external validation on 86 cases (27:27:32). Multiparametric MRI images (T1W, T2W, FLAIR, DWI and T1-CE) were co-registered, resampled, denoised and intensity normalized, followed by semiautomatic 3D segmentation of the enhancing tumor (ET) and peritumoral region (PTR). Model performance was assessed using several ML pipelines and 3D-convolutional neural networks (3D-CNN) using sequence specific masks, as well as combination of masks. All pipelines were trained and evaluated with 5-fold nested cross-validation on internal data followed by external validation using multi-class AUC. RESULTS Two ML models achieved similar performance on test set, one using T2-ET and T2-PTR masks (AUC: 0.885, 95% CI: [0.816, 0.935] and another using T1-CE-ET and FLAIR-PTR mask (AUC: 0.878, CI: [0.804, 0.930]). The best performing DL models achieved an AUC of 0.854, (CI [0.774, 0.914]) on external data using T1-CE-ET and T2-PTR masks, followed by model derived from T1-CE-ET, ADC-ET and FLAIR-PTR masks (AUC: 0.851, CI [0.772, 0.909]). CONCLUSION Both ML and DL derived pipelines achieved similar performance. T1-CE mask was used in three of the top four overall models. Additionally, all four models had some mask derived from PTR, either T2WI or FLAIR.
Collapse
Affiliation(s)
- Girish Bathla
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55902, USA.
| | - Durjoy Deb Dhruba
- Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242 USA
| | - Neetu Soni
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642, USA
| | - Yanan Liu
- Advanced Pulmonary Physiomic Imaging Laboratory (APPIL), University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242 USA
| | - Nicholas B Larson
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, 200 1st Street SW, Rochester, MN 55902, USA
| | - Blake A Kassmeyer
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, 200 1st Street SW, Rochester, MN 55902, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Douglas Roberts-Wolfe
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Saima Rathore
- Senior research scientist, Avid Radiopharmaceuticals, 3711 Market Street, Philadelphia, PA 19104, USA
| | - Nam H Le
- Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242 USA
| | - Honghai Zhang
- Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242 USA
| | - Milan Sonka
- Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242 USA
| | - Sarv Priya
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Park JS, Yoon T, Park SA, Lee BH, Jeun SS, Eom TJ. Delineation of three-dimensional tumor margins based on normalized absolute difference mapping via volumetric optical coherence tomography. Sci Rep 2024; 14:7984. [PMID: 38575630 PMCID: PMC10994936 DOI: 10.1038/s41598-024-56239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
The extent of surgical resection is an important prognostic factor in the treatment of patients with glioblastoma. Optical coherence tomography (OCT) imaging is one of the adjunctive methods available to achieve the maximal surgical resection. In this study, the tumor margins were visualized with the OCT image obtained from a murine glioma model. A commercialized human glioblastoma cell line (U-87) was employed to develop the orthotopic murine glioma model. A swept-source OCT (SS-OCT) system of 1300 nm was used for three-dimensional imaging. Based on the OCT intensity signal, which was obtained via accumulation of each A-scan data, an en-face optical attenuation coefficient (OAC) map was drawn. Due to the limited working distance of the focused beam, OAC values decrease with depth, and using the OAC difference in the superficial area was chosen to outline the tumor boundary, presenting a challenge in analyzing the tumor margin along the depth direction. To overcome this and enable three-dimensional tumor margin detection, we converted the en-face OAC map into an en-face difference map with x- and y-directions and computed the normalized absolute difference (NAD) at each depth to construct a volumetric NAD map, which was compared with the corresponding H&E-stained image. The proposed method successfully revealed the tumor margin along the peripheral boundaries as well as the margin depth. We believe this method can serve as a useful adjunct in glioma surgery, with further studies necessary for real-world practical applications.
Collapse
Affiliation(s)
- Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Taeil Yoon
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Soon A Park
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byeong Ha Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Tae Joong Eom
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea.
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
6
|
Alongi P, Arnone A, Vultaggio V, Fraternali A, Versari A, Casali C, Arnone G, DiMeco F, Vetrano IG. Artificial Intelligence Analysis Using MRI and PET Imaging in Gliomas: A Narrative Review. Cancers (Basel) 2024; 16:407. [PMID: 38254896 PMCID: PMC10814838 DOI: 10.3390/cancers16020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The lack of early detection and a high rate of recurrence/progression after surgery are defined as the most common causes of a very poor prognosis of Gliomas. The developments of quantification systems with special regards to artificial intelligence (AI) on medical images (CT, MRI, PET) are under evaluation in the clinical and research context in view of several applications providing different information related to the reconstruction of imaging, the segmentation of tissues acquired, the selection of features, and the proper data analyses. Different approaches of AI have been proposed as the machine and deep learning, which utilize artificial neural networks inspired by neuronal architectures. In addition, new systems have been developed using AI techniques to offer suggestions or make decisions in medical diagnosis, emulating the judgment of radiologist experts. The potential clinical role of AI focuses on the prediction of disease progression in more aggressive forms in gliomas, differential diagnosis (pseudoprogression vs. proper progression), and the follow-up of aggressive gliomas. This narrative Review will focus on the available applications of AI in brain tumor diagnosis, mainly related to malignant gliomas, with particular attention to the postoperative application of MRI and PET imaging, considering the current state of technical approach and the evaluation after treatment (including surgery, radiotherapy/chemotherapy, and prognostic stratification).
Collapse
Affiliation(s)
- Pierpaolo Alongi
- Nuclear Medicine Unit, ARNAS Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (P.A.); (V.V.); (G.A.)
| | - Annachiara Arnone
- Nuclear Medicine Unit, Azienda Unità Sanitaria Locale IRCCS, 42122 Reggio Emilia, Italy; (A.A.); (A.F.); (A.V.)
| | - Viola Vultaggio
- Nuclear Medicine Unit, ARNAS Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (P.A.); (V.V.); (G.A.)
| | - Alessandro Fraternali
- Nuclear Medicine Unit, Azienda Unità Sanitaria Locale IRCCS, 42122 Reggio Emilia, Italy; (A.A.); (A.F.); (A.V.)
| | - Annibale Versari
- Nuclear Medicine Unit, Azienda Unità Sanitaria Locale IRCCS, 42122 Reggio Emilia, Italy; (A.A.); (A.F.); (A.V.)
| | - Cecilia Casali
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (C.C.); (F.D.)
| | - Gaspare Arnone
- Nuclear Medicine Unit, ARNAS Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (P.A.); (V.V.); (G.A.)
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (C.C.); (F.D.)
- Department of Oncology and Onco-Hematology, Università di Milano, 20122 Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, MD 21218, USA
| | - Ignazio Gaspare Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (C.C.); (F.D.)
- Department of Biomedical Sciences for Health, Università di Milano, 20122 Milan, Italy
| |
Collapse
|
7
|
Aggarwal K, Manso Jimeno M, Ravi KS, Gonzalez G, Geethanath S. Developing and deploying deep learning models in brain magnetic resonance imaging: A review. NMR IN BIOMEDICINE 2023; 36:e5014. [PMID: 37539775 DOI: 10.1002/nbm.5014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
Magnetic resonance imaging (MRI) of the brain has benefited from deep learning (DL) to alleviate the burden on radiologists and MR technologists, and improve throughput. The easy accessibility of DL tools has resulted in a rapid increase of DL models and subsequent peer-reviewed publications. However, the rate of deployment in clinical settings is low. Therefore, this review attempts to bring together the ideas from data collection to deployment in the clinic, building on the guidelines and principles that accreditation agencies have espoused. We introduce the need for and the role of DL to deliver accessible MRI. This is followed by a brief review of DL examples in the context of neuropathologies. Based on these studies and others, we collate the prerequisites to develop and deploy DL models for brain MRI. We then delve into the guiding principles to develop good machine learning practices in the context of neuroimaging, with a focus on explainability. A checklist based on the United States Food and Drug Administration's good machine learning practices is provided as a summary of these guidelines. Finally, we review the current challenges and future opportunities in DL for brain MRI.
Collapse
Affiliation(s)
- Kunal Aggarwal
- Accessible MR Laboratory, Biomedical Engineering and Imaging Institute, Department of Diagnostic, Molecular and Interventional Radiology, Mount Sinai Hospital, New York, USA
- Department of Electrical and Computer Engineering, Technical University Munich, Munich, Germany
| | - Marina Manso Jimeno
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York, USA
- Columbia Magnetic Resonance Research Center, Columbia University in the City of New York, New York, New York, USA
| | - Keerthi Sravan Ravi
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York, USA
- Columbia Magnetic Resonance Research Center, Columbia University in the City of New York, New York, New York, USA
| | - Gilberto Gonzalez
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sairam Geethanath
- Accessible MR Laboratory, Biomedical Engineering and Imaging Institute, Department of Diagnostic, Molecular and Interventional Radiology, Mount Sinai Hospital, New York, USA
| |
Collapse
|
8
|
Pemberton HG, Wu J, Kommers I, Müller DMJ, Hu Y, Goodkin O, Vos SB, Bisdas S, Robe PA, Ardon H, Bello L, Rossi M, Sciortino T, Nibali MC, Berger MS, Hervey-Jumper SL, Bouwknegt W, Van den Brink WA, Furtner J, Han SJ, Idema AJS, Kiesel B, Widhalm G, Kloet A, Wagemakers M, Zwinderman AH, Krieg SM, Mandonnet E, Prados F, de Witt Hamer P, Barkhof F, Eijgelaar RS. Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms. Sci Rep 2023; 13:18911. [PMID: 37919354 PMCID: PMC10622563 DOI: 10.1038/s41598-023-44794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models using a multi-center dataset of varying image quality and incomplete MRI datasets. In this retrospective study, DeepMedic, no-new-Unet (nn-Unet), and NVIDIA-net (nv-Net) were trained and tested using manual segmentations from preoperative MRI of glioblastoma (GBM) and low-grade gliomas (LGG) from the BraTS 2021 dataset (1251 in total), in addition to 275 GBM and 205 LGG acquired clinically across 12 hospitals worldwide. Data was split into 80% training, 5% validation, and 15% internal test data. An additional external test-set of 158 GBM and 69 LGG was used to assess generalisability to other hospitals' data. All models' median Dice similarity coefficient (DSC) for both test sets were within, or higher than, previously reported human inter-rater agreement (range of 0.74-0.85). For both test sets, nn-Unet achieved the highest DSC (internal = 0.86, external = 0.93) and the lowest Hausdorff distances (10.07, 13.87 mm, respectively) for all tumor classes (p < 0.001). By applying Sparsified training, missing MRI sequences did not statistically affect the performance. nn-Unet achieves accurate segmentations in clinical settings even in the presence of incomplete MRI datasets. This facilitates future clinical adoption of automated glioma segmentation, which could help inform treatment planning and glioma monitoring.
Collapse
Affiliation(s)
- Hugh G Pemberton
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jiaming Wu
- Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - Ivar Kommers
- Neurosurgical Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Domenique M J Müller
- Neurosurgical Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Yipeng Hu
- Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - Olivia Goodkin
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sjoerd B Vos
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sotirios Bisdas
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Pierre A Robe
- Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hilko Ardon
- Department of Neurosurgery, St. Elisabeth Hospital, Tilburg, The Netherlands
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Wim Bouwknegt
- Department of Neurosurgery, Medical Center Slotervaart, Amsterdam, The Netherlands
| | | | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Seunggu J Han
- Department of Neurological Surgery, Stanford University, Stanford, USA
| | - Albert J S Idema
- Department of Neurosurgery, Northwest Clinics, Alkmaar, The Netherlands
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Alfred Kloet
- Department of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands
| | - Michiel Wagemakers
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
| | - Sandro M Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Ferran Prados
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Philip de Witt Hamer
- Neurosurgical Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
- Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Roelant S Eijgelaar
- Neurosurgical Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Zhang S, Yin L, Ma L, Sun H. Artificial Intelligence Applications in Glioma With 1p/19q Co-Deletion: A Systematic Review. J Magn Reson Imaging 2023; 58:1338-1352. [PMID: 37083159 DOI: 10.1002/jmri.28737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
As an important genomic marker for oligodendrogliomas, early determination of 1p/19q co-deletion status is critical for guiding therapy and predicting prognosis in patients with glioma. The purpose of this study is to systematically review the literature concerning the magnetic resonance imaging (MRI) with artificial intelligence (AI) methods for predicting 1p/19q co-deletion status in glioma. PubMed, Scopus, Embase, and IEEE Xplore were searched in accordance with the Preferred Reporting Items for systematic reviews and meta-analyses guidelines. Methodological quality of studies was assessed according to the Quality Assessment of Diagnostic Accuracy Studies-2. Finally, 28 studies were included in the quantitative analysis. Diagnostic test accuracy reached an area under the ROC curve of 0.71-0.98 were reported in 24 studies. The remaining four studies with no available AUC provided an accuracy of 0.75-0. 89. The included studies varied widely in terms of imaging sequences, input features, and modeling methods. The current review highlighted that integrating MRI with AI technology is a potential tool for determination 1p/19q status pre-operatively and noninvasively, which can possibly help clinical decision-making. However, the reliability and feasibility of this approach still need to be further validated and improved in a real clinical setting. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: 2.
Collapse
Affiliation(s)
- Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Yin
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zhong S, Ren JX, Yu ZP, Peng YD, Yu CW, Deng D, Xie Y, He ZQ, Duan H, Wu B, Li H, Yang WZ, Bai Y, Sai K, Chen YS, Guo CC, Li DP, Cheng Y, Zhang XH, Mou YG. Predicting glioblastoma molecular subtypes and prognosis with a multimodal model integrating convolutional neural network, radiomics, and semantics. J Neurosurg 2023; 139:305-314. [PMID: 36461822 DOI: 10.3171/2022.10.jns22801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to build a convolutional neural network (CNN)-based prediction model of glioblastoma (GBM) molecular subtype diagnosis and prognosis with multimodal features. METHODS In total, 222 GBM patients were included in the training set from Sun Yat-sen University Cancer Center (SYSUCC) and 107 GBM patients were included in the validation set from SYSUCC, Xuanwu Hospital Capital Medical University, and the First Hospital of Jilin University. The multimodal model was trained with MR images (pre- and postcontrast T1-weighted images and T2-weighted images), corresponding MRI impression, and clinical patient information. First, the original images were segmented using the Multimodal Brain Tumor Image Segmentation Benchmark toolkit. Convolutional features were extracted using 3D residual deep neural network (ResNet50) and convolutional 3D (C3D). Radiomic features were extracted using pyradiomics. Report texts were converted to word embedding using word2vec. These three types of features were then integrated to train neural networks. Accuracy, precision, recall, and F1-score were used to evaluate the model performance. RESULTS The C3D-based model yielded the highest accuracy of 91.11% in the prediction of IDH1 mutation status. Importantly, the addition of semantics improved precision by 11.21% and recall in MGMT promoter methylation status prediction by 14.28%. The areas under the receiver operating characteristic curves of the C3D-based model in the IDH1, ATRX, MGMT, and 1-year prognosis groups were 0.976, 0.953, 0.955, and 0.976, respectively. In external validation, the C3D-based model showed significant improvement in accuracy in the IDH1, ATRX, MGMT, and 1-year prognosis groups, which were 88.30%, 76.67%, 85.71%, and 85.71%, respectively (compared with 3D ResNet50: 83.51%, 66.67%, 82.14%, and 70.79%, respectively). CONCLUSIONS The authors propose a novel multimodal model integrating C3D, radiomics, and semantics, which had a great performance in predicting IDH1, ATRX, and MGMT molecular subtypes and the 1-year prognosis of GBM.
Collapse
Affiliation(s)
- Sheng Zhong
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- 2Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- 3Department of Bioinformatics, Harvard Medical School, Boston, Massachusetts
| | - Jia-Xin Ren
- 4Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Ze-Peng Yu
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Da Peng
- 5College of Computer Science and Technology, Jilin University, Changchun, China
| | - Cheng-Wei Yu
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Davy Deng
- 2Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - YangYiran Xie
- 6Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Zhen-Qiang He
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Duan
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bo Wu
- Departments of7Orthopaedics
| | | | - Wen-Zhuo Yang
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Bai
- 9Neurosurgery, The First Hospital of Jilin University, Changchun, China; and
| | - Ke Sai
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yin-Sheng Chen
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cheng-Cheng Guo
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - De-Pei Li
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ye Cheng
- 10Department of Neurosurgery, The Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xiang-Heng Zhang
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Gao Mou
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
11
|
Al-Zoghby AM, Al-Awadly EMK, Moawad A, Yehia N, Ebada AI. Dual Deep CNN for Tumor Brain Classification. Diagnostics (Basel) 2023; 13:2050. [PMID: 37370945 PMCID: PMC10297724 DOI: 10.3390/diagnostics13122050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Brain tumor (BT) is a serious issue and potentially deadly disease that receives much attention. However, early detection and identification of tumor type and location are crucial for effective treatment and saving lives. Manual diagnoses are time-consuming and depend on radiologist experts; the increasing number of new cases of brain tumors makes it difficult to process massive and large amounts of data rapidly, as time is a critical factor in patients' lives. Hence, artificial intelligence (AI) is vital for understanding disease and its various types. Several studies proposed different techniques for BT detection and classification. These studies are on machine learning (ML) and deep learning (DL). The ML-based method requires handcrafted or automatic feature extraction algorithms; however, DL becomes superior in self-learning and robust in classification and recognition tasks. This research focuses on classifying three types of tumors using MRI imaging: meningioma, glioma, and pituitary tumors. The proposed DCTN model depends on dual convolutional neural networks with VGG-16 architecture concatenated with custom CNN (convolutional neural networks) architecture. After conducting approximately 22 experiments with different architectures and models, our model reached 100% accuracy during training and 99% during testing. The proposed methodology obtained the highest possible improvement over existing research studies. The solution provides a revolution for healthcare providers that can be used as a different disease classification in the future and save human lives.
Collapse
Affiliation(s)
- Aya M. Al-Zoghby
- Faculty of Computers and Artificial Intelligence, Damietta University, Damietta 34517, Egypt; (A.M.A.-Z.); (E.M.K.A.-A.)
| | - Esraa Mohamed K. Al-Awadly
- Faculty of Computers and Artificial Intelligence, Damietta University, Damietta 34517, Egypt; (A.M.A.-Z.); (E.M.K.A.-A.)
| | - Ahmad Moawad
- Faculty of Computers and Artificial Intelligence, Damietta University, Damietta 34517, Egypt; (A.M.A.-Z.); (E.M.K.A.-A.)
| | - Noura Yehia
- Computer Science Department, Faculty of Computer and Information Science, Mansoura University, Mansoura 35511, Egypt;
| | - Ahmed Ismail Ebada
- Faculty of Computers and Artificial Intelligence, Damietta University, Damietta 34517, Egypt; (A.M.A.-Z.); (E.M.K.A.-A.)
| |
Collapse
|
12
|
Hu P, Xu L, Qi Y, Yan T, Ye L, Wen S, Yuan D, Zhu X, Deng S, Liu X, Xu P, You R, Wang D, Liang S, Wu Y, Xu Y, Sun Q, Du S, Yuan Y, Deng G, Cheng J, Zhang D, Chen Q, Zhu X. Combination of multi-modal MRI radiomics and liquid biopsy technique for preoperatively non-invasive diagnosis of glioma based on deep learning: protocol for a double-center, ambispective, diagnostical observational study. Front Mol Neurosci 2023; 16:1183032. [PMID: 37201155 PMCID: PMC10185782 DOI: 10.3389/fnmol.2023.1183032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
Background 2021 World Health Organization (WHO) Central Nervous System (CNS) tumor classification increasingly emphasizes the important role of molecular markers in glioma diagnoses. Preoperatively non-invasive "integrated diagnosis" will bring great benefits to the treatment and prognosis of these patients with special tumor locations that cannot receive craniotomy or needle biopsy. Magnetic resonance imaging (MRI) radiomics and liquid biopsy (LB) have great potential for non-invasive diagnosis of molecular markers and grading since they are both easy to perform. This study aims to build a novel multi-task deep learning (DL) radiomic model to achieve preoperative non-invasive "integrated diagnosis" of glioma based on the 2021 WHO-CNS classification and explore whether the DL model with LB parameters can improve the performance of glioma diagnosis. Methods This is a double-center, ambispective, diagnostical observational study. One public database named the 2019 Brain Tumor Segmentation challenge dataset (BraTS) and two original datasets, including the Second Affiliated Hospital of Nanchang University, and Renmin Hospital of Wuhan University, will be used to develop the multi-task DL radiomic model. As one of the LB techniques, circulating tumor cell (CTC) parameters will be additionally applied in the DL radiomic model for assisting the "integrated diagnosis" of glioma. The segmentation model will be evaluated with the Dice index, and the performance of the DL model for WHO grading and all molecular subtype will be evaluated with the indicators of accuracy, precision, and recall. Discussion Simply relying on radiomics features to find the correlation with the molecular subtypes of gliomas can no longer meet the need for "precisely integrated prediction." CTC features are a promising biomarker that may provide new directions in the exploration of "precision integrated prediction" based on the radiomics, and this is the first original study that combination of radiomics and LB technology for glioma diagnosis. We firmly believe that this innovative work will surely lay a good foundation for the "precisely integrated prediction" of glioma and point out further directions for future research. Clinical trail registration This study was registered on ClinicalTrails.gov on 09/10/2022 with Identifier NCT05536024.
Collapse
Affiliation(s)
- Ping Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Xu
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tengfeng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liguo Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shen Wen
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Dalong Yuan
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Xinyi Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuhang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xun Liu
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Panpan Xu
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Ran You
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Dongfang Wang
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Shanwen Liang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Senlin Du
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong Zhang
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Noor J, Chaudhry A, Batool S. Microfluidic Technology, Artificial Intelligence, and Biosensors As Advanced Technologies in Cancer Screening: A Review Article. Cureus 2023; 15:e39634. [PMID: 37388583 PMCID: PMC10305590 DOI: 10.7759/cureus.39634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Cancer screening techniques aim to detect premalignant lesions and enable early intervention to delay the onset of cancer while keeping incidence constant. Technology advancements have led to the development of powerful tools such as microfluidic technology, artificial intelligence, machine learning algorithms, and electrochemical biosensors to aid in early cancer detection. Non-invasive cancer screening methods like virtual colonoscopy and endoscopic ultrasonography have also been developed to provide comprehensive pictures of organs and detect cancer early. This review article provides an overview of recent advances in cancer screening in microfluidic technology, artificial intelligence, and biomarkers through a narrative literature search. Microfluidic devices enable easy handling of sub-microliter volumes and have become a promising tool for cancer detection, drug screening, and modeling angiogenesis and metastasis in cancer research. Machine learning and artificial intelligence have shown high accuracy in oncology-related diagnostic imaging, reducing the manual steps in lesion detection and providing standardized and accurate results, with potential for global standardization in areas like colon polyps, breast cancer, and primary and metastatic brain cancer. A biomarker-based cancer diagnosis is promising for early detection and effective therapy, and electrochemical biosensors integrated with nanoparticles offer multiplexing and amplification capabilities. Understanding these advanced technologies' basics, achievements, and challenges is crucial for advancing their use in oncology.
Collapse
Affiliation(s)
- Jawad Noor
- Internal Medicine, St. Dominic Hospital, Jackson, USA
| | | | - Saima Batool
- Pathology, Nishtar Medical University, Multan, PAK
| |
Collapse
|
14
|
Investigating the Impact of Two Major Programming Environments on the Accuracy of Deep Learning-Based Glioma Detection from MRI Images. Diagnostics (Basel) 2023; 13:diagnostics13040651. [PMID: 36832138 PMCID: PMC9955350 DOI: 10.3390/diagnostics13040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Brain tumors have been the subject of research for many years. Brain tumors are typically classified into two main groups: benign and malignant tumors. The most common tumor type among malignant brain tumors is known as glioma. In the diagnosis of glioma, different imaging technologies could be used. Among these techniques, MRI is the most preferred imaging technology due to its high-resolution image data. However, the detection of gliomas from a huge set of MRI data could be challenging for the practitioners. In order to solve this concern, many Deep Learning (DL) models based on Convolutional Neural Networks (CNNs) have been proposed to be used in detecting glioma. However, understanding which CNN architecture would work efficiently under various conditions including development environment or programming aspects as well as performance analysis has not been studied so far. In this research work, therefore, the purpose is to investigate the impact of two major programming environments (namely, MATLAB and Python) on the accuracy of CNN-based glioma detection from Magnetic Resonance Imaging (MRI) images. To this end, experiments on the Brain Tumor Segmentation (BraTS) dataset (2016 and 2017) consisting of multiparametric magnetic MRI images are performed by implementing two popular CNN architectures, the three-dimensional (3D) U-Net and the V-Net in the programming environments. From the results, it is concluded that the use of Python with Google Colaboratory (Colab) might be highly useful in the implementation of CNN-based models for glioma detection. Moreover, the 3D U-Net model is found to perform better, attaining a high accuracy on the dataset. The authors believe that the results achieved from this study would provide useful information to the research community in their appropriate implementation of DL approaches for brain tumor detection.
Collapse
|
15
|
Liao J, Li X, Gan Y, Han S, Rong P, Wang W, Li W, Zhou L. Artificial intelligence assists precision medicine in cancer treatment. Front Oncol 2023; 12:998222. [PMID: 36686757 PMCID: PMC9846804 DOI: 10.3389/fonc.2022.998222] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cancer is a major medical problem worldwide. Due to its high heterogeneity, the use of the same drugs or surgical methods in patients with the same tumor may have different curative effects, leading to the need for more accurate treatment methods for tumors and personalized treatments for patients. The precise treatment of tumors is essential, which renders obtaining an in-depth understanding of the changes that tumors undergo urgent, including changes in their genes, proteins and cancer cell phenotypes, in order to develop targeted treatment strategies for patients. Artificial intelligence (AI) based on big data can extract the hidden patterns, important information, and corresponding knowledge behind the enormous amount of data. For example, the ML and deep learning of subsets of AI can be used to mine the deep-level information in genomics, transcriptomics, proteomics, radiomics, digital pathological images, and other data, which can make clinicians synthetically and comprehensively understand tumors. In addition, AI can find new biomarkers from data to assist tumor screening, detection, diagnosis, treatment and prognosis prediction, so as to providing the best treatment for individual patients and improving their clinical outcomes.
Collapse
Affiliation(s)
- Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Zhuo Z, Zhang J, Duan Y, Qu L, Feng C, Huang X, Cheng D, Xu X, Sun T, Li Z, Guo X, Gong X, Wang Y, Jia W, Tian D, Zhang X, Shi F, Haller S, Barkhof F, Ye C, Liu Y. Automated Classification of Intramedullary Spinal Cord Tumors and Inflammatory Demyelinating Lesions Using Deep Learning. Radiol Artif Intell 2022; 4:e210292. [PMID: 36523644 PMCID: PMC9745442 DOI: 10.1148/ryai.210292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 05/13/2023]
Abstract
Accurate differentiation of intramedullary spinal cord tumors and inflammatory demyelinating lesions and their subtypes are warranted because of their overlapping characteristics at MRI but with different treatments and prognosis. The authors aimed to develop a pipeline for spinal cord lesion segmentation and classification using two-dimensional MultiResUNet and DenseNet121 networks based on T2-weighted images. A retrospective cohort of 490 patients (118 patients with astrocytoma, 130 with ependymoma, 101 with multiple sclerosis [MS], and 141 with neuromyelitis optica spectrum disorders [NMOSD]) was used for model development, and a prospective cohort of 157 patients (34 patients with astrocytoma, 45 with ependymoma, 33 with MS, and 45 with NMOSD) was used for model testing. In the test cohort, the model achieved Dice scores of 0.77, 0.80, 0.50, and 0.58 for segmentation of astrocytoma, ependymoma, MS, and NMOSD, respectively, against manual labeling. Accuracies of 96% (area under the receiver operating characteristic curve [AUC], 0.99), 82% (AUC, 0.90), and 79% (AUC, 0.85) were achieved for the classifications of tumor versus demyelinating lesion, astrocytoma versus ependymoma, and MS versus NMOSD, respectively. In a subset of radiologically difficult cases, the classifier showed an accuracy of 79%-95% (AUC, 0.78-0.97). The established deep learning pipeline for segmentation and classification of spinal cord lesions can support an accurate radiologic diagnosis. Supplemental material is available for this article. © RSNA, 2022 Keywords: Spinal Cord MRI, Astrocytoma, Ependymoma, Multiple Sclerosis, Neuromyelitis Optica Spectrum Disorder, Deep Learning.
Collapse
|
17
|
Mitusova K, Peltek OO, Karpov TE, Muslimov AR, Zyuzin MV, Timin AS. Overcoming the blood-brain barrier for the therapy of malignant brain tumor: current status and prospects of drug delivery approaches. J Nanobiotechnology 2022; 20:412. [PMID: 36109754 PMCID: PMC9479308 DOI: 10.1186/s12951-022-01610-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/18/2022] [Indexed: 01/06/2023] Open
Abstract
Besides the broad development of nanotechnological approaches for cancer diagnosis and therapy, currently, there is no significant progress in the treatment of different types of brain tumors. Therapeutic molecules crossing the blood-brain barrier (BBB) and reaching an appropriate targeting ability remain the key challenges. Many invasive and non-invasive methods, and various types of nanocarriers and their hybrids have been widely explored for brain tumor treatment. However, unfortunately, no crucial clinical translations were observed to date. In particular, chemotherapy and surgery remain the main methods for the therapy of brain tumors. Exploring the mechanisms of the BBB penetration in detail and investigating advanced drug delivery platforms are the key factors that could bring us closer to understanding the development of effective therapy against brain tumors. In this review, we discuss the most relevant aspects of the BBB penetration mechanisms, observing both invasive and non-invasive methods of drug delivery. We also review the recent progress in the development of functional drug delivery platforms, from viruses to cell-based vehicles, for brain tumor therapy. The destructive potential of chemotherapeutic drugs delivered to the brain tumor is also considered. This review then summarizes the existing challenges and future prospects in the use of drug delivery platforms for the treatment of brain tumors.
Collapse
Affiliation(s)
- Ksenia Mitusova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Oleksii O Peltek
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Timofey E Karpov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Albert R Muslimov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
- Sirius University of Science and Technology, Olympic Ave 1, Sirius, 354340, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Alexander S Timin
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation.
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation.
| |
Collapse
|
18
|
Li B, Yang C, Zhu Z, Chen H, Qi B. Hypoxic glioma-derived extracellular vesicles harboring MicroRNA-10b-5p enhance M2 polarization of macrophages to promote the development of glioma. CNS Neurosci Ther 2022; 28:1733-1747. [PMID: 36052751 PMCID: PMC9532931 DOI: 10.1111/cns.13905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/16/2022] [Accepted: 06/19/2022] [Indexed: 12/26/2022] Open
Abstract
Introduction The delivery of biomolecules by tumor cell‐secreted extracellular vesicles (EVs) is linked to the development of glioma. Here, the present study was implemented to explore the functional significance of hypoxic glioma cell‐derived EVs carrying microRNA‐10b‐5 (miR‐10b‐5p) on glioma with the involvement of polarization of M2 macrophages. Methods EVs were isolated from hypoxia‐stimulated glioma cells, and their role in polarization of M2 macrophages was studied by co‐culturing with macrophages. miR‐10b‐5p expression in glioma tissues, glioma‐derived EVs, and macrophages co‐cultured with EVs was characterized. Interaction among miR‐10b‐5p, NEDD4L, and PIK3CA was analyzed. The macrophages or glioma cells were transfected with overexpressing plasmid or shRNA to study the effects of miR‐10b‐5p/NEDD4L/PIK3CA on M2 macrophage polarization, and glioma cell proliferation, migration, and invasion in vitro and in vivo. Results Promotive role of hypoxia‐stimulated glioma‐derived EVs in macrophage M2 polarization was confirmed. Elevation of miR‐10b‐5p occurred in glioma tissues, glioma‐derived EVs and macrophages co‐cultured with EVs, and stimulated M2 polarization of macrophages. NEDD4L was a target gene of miR‐10b‐5p. Overexpression of NEDD4L could inhibit PI3K/AKT pathway through increase in ubiquitination and degradation of PIK3CA. Hypoxic glioma‐derived EVs harboring upregulated miR‐10b‐5p triggered an M2 phenotype in macrophages as well as enhanced aggressive tumor biology of glioma cells via inhibition of PIK3CA/PI3K/AKT pathway by targeting NEDD4L. Conclusions In summary, miR‐10b‐5p delivered by hypoxic glioma‐derived EVs accelerated macrophages M2 polarization to promote the progression of glioma via NEDD4L/PIK3CA/PI3K/AKT axis.
Collapse
Affiliation(s)
- Bingzhen Li
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, P. R. China
| | - Cheng Yang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, P. R. China
| | - Zhanpeng Zhu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, P. R. China
| | - Hao Chen
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, P. R. China
| | - Bin Qi
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, P. R. China
| |
Collapse
|
19
|
Swin Transformer Improves the IDH Mutation Status Prediction of Gliomas Free of MRI-Based Tumor Segmentation. J Clin Med 2022; 11:jcm11154625. [PMID: 35956236 PMCID: PMC9369996 DOI: 10.3390/jcm11154625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Deep learning (DL) could predict isocitrate dehydrogenase (IDH) mutation status from MRIs. Yet, previous work focused on CNNs with refined tumor segmentation. To bridge the gap, this study aimed to evaluate the feasibility of developing a Transformer-based network to predict the IDH mutation status free of refined tumor segmentation. Methods: A total of 493 glioma patients were recruited from two independent institutions for model development (TCIA; N = 259) and external test (AHXZ; N = 234). IDH mutation status was predicted directly from T2 images with a Swin Transformer and conventional ResNet. Furthermore, to investigate the necessity of refined tumor segmentation, seven strategies for the model input image were explored: (i) whole tumor slice; (ii-iii) tumor mask and/or not edema; (iv-vii) tumor bounding box of 0.8, 1.0, 1.2, 1.5 times. Performance comparison was made among the networks of different architectures along with different image input strategies, using area under the curve (AUC) and accuracy (ACC). Finally, to further boost the performance, a hybrid model was built by incorporating the images with clinical features. Results: With the seven proposed input strategies, seven Swin Transformer models and seven ResNet models were built, respectively. Based on the seven Swin Transformer models, an averaged AUC of 0.965 (internal test) and 0.842 (external test) were achieved, outperforming 0.922 and 0.805 resulting from the seven ResNet models, respectively. When a bounding box of 1.0 times was used, Swin Transformer (AUC = 0.868, ACC = 80.7%), achieved the best results against the one that used tumor segmentation (Tumor + Edema, AUC = 0.862, ACC = 78.5%). The hybrid model that integrated age and location features into images yielded improved performance (AUC = 0.878, Accuracy = 82.0%) over the model that used images only. Conclusions: Swin Transformer outperforms the CNN-based ResNet in IDH prediction. Using bounding box input images benefits the DL networks in IDH prediction and makes the IDH prediction free of refined glioma segmentation feasible.
Collapse
|
20
|
Le Fèvre C, Sun R, Cebula H, Thiery A, Antoni D, Schott R, Proust F, Constans JM, Noël G. Ellipsoid calculations versus manual tumor delineations for glioblastoma tumor volume evaluation. Sci Rep 2022; 12:10502. [PMID: 35732848 PMCID: PMC9217851 DOI: 10.1038/s41598-022-13739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
In glioblastoma, the response to treatment assessment is essentially based on the 2D tumor size evolution but remains disputable. Volumetric approaches were evaluated for a more accurate estimation of tumor size. This study included 57 patients and compared two volume measurement methods to determine the size of different glioblastoma regions of interest: the contrast-enhancing area, the necrotic area, the gross target volume and the volume of the edema area. The two methods, the ellipsoid formula (the calculated method) and the manual delineation (the measured method) showed a high correlation to determine glioblastoma volume and a high agreement to classify patients assessment response to treatment according to RANO criteria. This study revealed that calculated and measured methods could be used in clinical practice to estimate glioblastoma volume size and to evaluate tumor size evolution.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Roger Sun
- Department of Radiotherapy, Institut Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Hélène Cebula
- Department of Neurosurgery, Hôpital d'Hautepierre, 1, Avenue Molière, 67200, Strasbourg, France
| | - Alicia Thiery
- Department of Public Health, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Delphine Antoni
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Roland Schott
- Department of Medical Oncology, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - François Proust
- Department of Neurosurgery, Hôpital d'Hautepierre, 1, Avenue Molière, 67200, Strasbourg, France
| | - Jean-Marc Constans
- Department of Radiology, Centre Hospitalier Universitaire d' Amiens, 1 Rond-Point du Professeur Christian Cabrol, 80054, Amiens Cedex 1, France
| | - Georges Noël
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| |
Collapse
|
21
|
Chen S, Xu Y, Ye M, Li Y, Sun Y, Liang J, Lu J, Wang Z, Zhu Z, Zhang X, Zhang B. Predicting MGMT Promoter Methylation in Diffuse Gliomas Using Deep Learning with Radiomics. J Clin Med 2022; 11:jcm11123445. [PMID: 35743511 PMCID: PMC9224690 DOI: 10.3390/jcm11123445] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the feasibility of predicting oxygen 6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in diffuse gliomas by developing a deep learning approach using MRI radiomics. A total of 111 patients with diffuse gliomas participated in the retrospective study (56 patients with MGMT promoter methylation and 55 patients with MGMT promoter unmethylation). The radiomics features of the two regions of interest (ROI) (the whole tumor area and the tumor core area) for four sequences, including T1 weighted image (T1WI), T2 weighted image (T2WI), apparent diffusion coefficient (ADC) maps, and T1 contrast-enhanced (T1CE) MR images were extracted and jointly fed into the residual network. Then the deep learning method was developed and evaluated with a five-fold cross-validation, where in each fold, the dataset was randomly divided into training (80%) and validation (20%) cohorts. We compared the performance of all models using area under the curve (AUC) and average accuracy of validation cohorts and calculated the 10 most important features of the best model via a class activation map. Based on the ROI of the whole tumor, the predictive capacity of the T1CE and ADC model achieved the highest AUC value of 0.85. Based on the ROI of the tumor core, the T1CE and ADC model achieved the highest AUC value of 0.90. After comparison, the T1CE combined with the ADC model based on the ROI of the tumor core exhibited the best performance, with the highest average accuracy (0.91) and AUC (0.90) among all models. The deep learning method using MRI radiomics has excellent diagnostic performance with a high accuracy in predicting MGMT promoter methylation in diffuse gliomas.
Collapse
Affiliation(s)
- Sixuan Chen
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; (S.C.); (M.Y.); (Y.L.); (J.L.); (Z.W.); (Z.Z.); (B.Z.)
| | - Yue Xu
- National Institute of Healthcare Data Science, Nanjing University, Nanjing 210023, China;
| | - Meiping Ye
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; (S.C.); (M.Y.); (Y.L.); (J.L.); (Z.W.); (Z.Z.); (B.Z.)
| | - Yang Li
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; (S.C.); (M.Y.); (Y.L.); (J.L.); (Z.W.); (Z.Z.); (B.Z.)
| | - Yu Sun
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; (Y.S.); (J.L.)
| | - Jiawei Liang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; (Y.S.); (J.L.)
| | - Jiaming Lu
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; (S.C.); (M.Y.); (Y.L.); (J.L.); (Z.W.); (Z.Z.); (B.Z.)
| | - Zhengge Wang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; (S.C.); (M.Y.); (Y.L.); (J.L.); (Z.W.); (Z.Z.); (B.Z.)
| | - Zhengyang Zhu
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; (S.C.); (M.Y.); (Y.L.); (J.L.); (Z.W.); (Z.Z.); (B.Z.)
| | - Xin Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; (S.C.); (M.Y.); (Y.L.); (J.L.); (Z.W.); (Z.Z.); (B.Z.)
- Correspondence:
| | - Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; (S.C.); (M.Y.); (Y.L.); (J.L.); (Z.W.); (Z.Z.); (B.Z.)
- Institute of Brain Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Dang H, Zhang J, Wang R, Liu J, Fu H, Lin M, Xu B. Glioblastoma Recurrence Versus Radiotherapy Injury: Combined Model of Diffusion Kurtosis Imaging and 11C-MET Using PET/MRI May Increase Accuracy of Differentiation. Clin Nucl Med 2022; 47:e428-e436. [PMID: 35439178 DOI: 10.1097/rlu.0000000000004167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To evaluate the diagnostic potential of decision-tree model of diffusion kurtosis imaging (DKI) and 11C-methionine (11C-MET) PET, for the differentiation of radiotherapy (RT) injury from glioblastoma recurrence. METHODS Eighty-six glioblastoma cases with suspected lesions after RT were retrospectively enrolled. Based on histopathology or follow-up, 48 patients were diagnosed with local glioblastoma recurrence, and 38 patients had RT injury between April 2014 and December 2019. All the patients underwent PET/MRI examinations. Multiple parameters were derived based on the ratio of tumor to normal control (TNR), including SUVmax and SUVmean, mean value of kurtosis and diffusivity (MK, MD) from DKI, and histogram parameters. The diagnostic models were established by decision trees. Receiver operating characteristic analysis was used for evaluating the diagnostic accuracy of each independent parameter and all the diagnostic models. RESULTS The intercluster correlations of DKI, PET, and texture parameters were relatively weak, whereas the intracluster correlations were strong. Compared with models of DKI alone (sensitivity =1.00, specificity = 0.70, area under the curve [AUC] = 0.85) and PET alone (sensitivity = 0.83, specificity = 0.90, AUC = 0.89), the combined model demonstrated the best diagnostic accuracy (sensitivity = 1.00, specificity = 0.90, AUC = 0.95). CONCLUSIONS Diffusion kurtosis imaging, 11C-MET PET, and histogram parameters provide complementary information about tissue. The decision-tree model combined with these parameters has the potential to further increase diagnostic accuracy for the discrimination between RT injury and glioblastoma recurrence over the standard Response Assessment in Neuro-Oncology criteria. 11C-MET PET/MRI may thus contribute to the management of glioblastoma patients with suspected lesions after RT.
Collapse
Affiliation(s)
- Haodan Dang
- From the Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Beijing
| | - Jinming Zhang
- From the Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Beijing
| | - Ruimin Wang
- From the Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Beijing
| | - Jiajin Liu
- From the Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Beijing
| | - Huaping Fu
- From the Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Beijing
| | - Mu Lin
- MR Collaboration, Diagnostic Imaging, Siemens Healthineers Ltd, Shanghai, China
| | - Baixuan Xu
- From the Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Beijing
| |
Collapse
|
23
|
Egger J, Gsaxner C, Pepe A, Pomykala KL, Jonske F, Kurz M, Li J, Kleesiek J. Medical deep learning-A systematic meta-review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106874. [PMID: 35588660 DOI: 10.1016/j.cmpb.2022.106874] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 05/22/2023]
Abstract
Deep learning has remarkably impacted several different scientific disciplines over the last few years. For example, in image processing and analysis, deep learning algorithms were able to outperform other cutting-edge methods. Additionally, deep learning has delivered state-of-the-art results in tasks like autonomous driving, outclassing previous attempts. There are even instances where deep learning outperformed humans, for example with object recognition and gaming. Deep learning is also showing vast potential in the medical domain. With the collection of large quantities of patient records and data, and a trend towards personalized treatments, there is a great need for automated and reliable processing and analysis of health information. Patient data is not only collected in clinical centers, like hospitals and private practices, but also by mobile healthcare apps or online websites. The abundance of collected patient data and the recent growth in the deep learning field has resulted in a large increase in research efforts. In Q2/2020, the search engine PubMed returned already over 11,000 results for the search term 'deep learning', and around 90% of these publications are from the last three years. However, even though PubMed represents the largest search engine in the medical field, it does not cover all medical-related publications. Hence, a complete overview of the field of 'medical deep learning' is almost impossible to obtain and acquiring a full overview of medical sub-fields is becoming increasingly more difficult. Nevertheless, several review and survey articles about medical deep learning have been published within the last few years. They focus, in general, on specific medical scenarios, like the analysis of medical images containing specific pathologies. With these surveys as a foundation, the aim of this article is to provide the first high-level, systematic meta-review of medical deep learning surveys.
Collapse
Affiliation(s)
- Jan Egger
- Institute of Computer Graphics and Vision, Faculty of Computer Science and Biomedical Engineering, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Styria, Austria; Department of Oral &Maxillofacial Surgery, Medical University of Graz, Auenbruggerplatz 5/1, 8036 Graz, Styria, Austria; Computer Algorithms for Medicine Laboratory, Graz, Styria, Austria; Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, 45131 Essen, Germany; Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, 45147 Essen, Germany.
| | - Christina Gsaxner
- Institute of Computer Graphics and Vision, Faculty of Computer Science and Biomedical Engineering, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Styria, Austria; Department of Oral &Maxillofacial Surgery, Medical University of Graz, Auenbruggerplatz 5/1, 8036 Graz, Styria, Austria; Computer Algorithms for Medicine Laboratory, Graz, Styria, Austria
| | - Antonio Pepe
- Institute of Computer Graphics and Vision, Faculty of Computer Science and Biomedical Engineering, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Styria, Austria; Computer Algorithms for Medicine Laboratory, Graz, Styria, Austria
| | - Kelsey L Pomykala
- Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, 45131 Essen, Germany
| | - Frederic Jonske
- Computer Algorithms for Medicine Laboratory, Graz, Styria, Austria; Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, 45131 Essen, Germany
| | - Manuel Kurz
- Institute of Computer Graphics and Vision, Faculty of Computer Science and Biomedical Engineering, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Styria, Austria; Computer Algorithms for Medicine Laboratory, Graz, Styria, Austria
| | - Jianning Li
- Institute of Computer Graphics and Vision, Faculty of Computer Science and Biomedical Engineering, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Styria, Austria; Computer Algorithms for Medicine Laboratory, Graz, Styria, Austria; Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, 45131 Essen, Germany
| | - Jens Kleesiek
- Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, 45131 Essen, Germany; Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, 45147 Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
24
|
Merkaj S, Bahar RC, Zeevi T, Lin M, Ikuta I, Bousabarah K, Cassinelli Petersen GI, Staib L, Payabvash S, Mongan JT, Cha S, Aboian MS. Machine Learning Tools for Image-Based Glioma Grading and the Quality of Their Reporting: Challenges and Opportunities. Cancers (Basel) 2022; 14:cancers14112623. [PMID: 35681603 PMCID: PMC9179416 DOI: 10.3390/cancers14112623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Technological innovation has enabled the development of machine learning (ML) tools that aim to improve the practice of radiologists. In the last decade, ML applications to neuro-oncology have expanded significantly, with the pre-operative prediction of glioma grade using medical imaging as a specific area of interest. We introduce the subject of ML models for glioma grade prediction by remarking upon the models reported in the literature as well as by describing their characteristic developmental workflow and widely used classifier algorithms. The challenges facing these models-including data sources, external validation, and glioma grade classification methods -are highlighted. We also discuss the quality of how these models are reported, explore the present and future of reporting guidelines and risk of bias tools, and provide suggestions for the reporting of prospective works. Finally, this review offers insights into next steps that the field of ML glioma grade prediction can take to facilitate clinical implementation.
Collapse
Affiliation(s)
- Sara Merkaj
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
- Department of Neurosurgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Ryan C. Bahar
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - Tal Zeevi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
- Visage Imaging, Inc., 12625 High Bluff Dr, Suite 205, San Diego, CA 92130, USA
| | - Ichiro Ikuta
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | | | - Gabriel I. Cassinelli Petersen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - Lawrence Staib
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
| | - John T. Mongan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., San Francisco, CA 94143, USA; (J.T.M.); (S.C.)
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., San Francisco, CA 94143, USA; (J.T.M.); (S.C.)
| | - Mariam S. Aboian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, P.O. Box 208042, New Haven, CT 06520, USA; (S.M.); (R.C.B.); (T.Z.); (M.L.); (I.I.); (G.I.C.P.); (L.S.); (S.P.)
- Correspondence: ; Tel.: +650-285-7577
| |
Collapse
|
25
|
Farina E, Nabhen JJ, Dacoregio MI, Batalini F, Moraes FY. An overview of artificial intelligence in oncology. Future Sci OA 2022; 8:FSO787. [PMID: 35369274 PMCID: PMC8965797 DOI: 10.2144/fsoa-2021-0074] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer is associated with significant morbimortality globally. Advances in screening, diagnosis, management and survivorship were substantial in the last decades, however, challenges in providing personalized and data-oriented care remain. Artificial intelligence (AI), a branch of computer science used for predictions and automation, has emerged as potential solution to improve the healthcare journey and to promote precision in healthcare. AI applications in oncology include, but are not limited to, optimization of cancer research, improvement of clinical practice (eg., prediction of the association of multiple parameters and outcomes - prognosis and response) and better understanding of tumor molecular biology. In this review, we examine the current state of AI in oncology, including fundamentals, current applications, limitations and future perspectives.
Collapse
Affiliation(s)
- Eduardo Farina
- Department of Radiology, Federal University of São Paulo, SP, 04021-001, Brazil; Diagnósticos da America SA (Dasa), 05425-020, Brazil
| | - Jacqueline J Nabhen
- School of Medicine, Federal University of Paraná, Curitiba, PR, 80060-000, Brazil
| | - Maria Inez Dacoregio
- School of Medicine, State University of Centro-Oeste, Guarapuava, PR, 85040-167, Brazil
| | - Felipe Batalini
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Fabio Y Moraes
- Department of Oncology, Division of Radiation Oncology, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
26
|
Vobugari N, Raja V, Sethi U, Gandhi K, Raja K, Surani SR. Advancements in Oncology with Artificial Intelligence-A Review Article. Cancers (Basel) 2022; 14:1349. [PMID: 35267657 PMCID: PMC8909088 DOI: 10.3390/cancers14051349] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Well-trained machine learning (ML) and artificial intelligence (AI) systems can provide clinicians with therapeutic assistance, potentially increasing efficiency and improving efficacy. ML has demonstrated high accuracy in oncology-related diagnostic imaging, including screening mammography interpretation, colon polyp detection, glioma classification, and grading. By utilizing ML techniques, the manual steps of detecting and segmenting lesions are greatly reduced. ML-based tumor imaging analysis is independent of the experience level of evaluating physicians, and the results are expected to be more standardized and accurate. One of the biggest challenges is its generalizability worldwide. The current detection and screening methods for colon polyps and breast cancer have a vast amount of data, so they are ideal areas for studying the global standardization of artificial intelligence. Central nervous system cancers are rare and have poor prognoses based on current management standards. ML offers the prospect of unraveling undiscovered features from routinely acquired neuroimaging for improving treatment planning, prognostication, monitoring, and response assessment of CNS tumors such as gliomas. By studying AI in such rare cancer types, standard management methods may be improved by augmenting personalized/precision medicine. This review aims to provide clinicians and medical researchers with a basic understanding of how ML works and its role in oncology, especially in breast cancer, colorectal cancer, and primary and metastatic brain cancer. Understanding AI basics, current achievements, and future challenges are crucial in advancing the use of AI in oncology.
Collapse
Affiliation(s)
- Nikitha Vobugari
- Department of Internal Medicine, Medstar Washington Hospital Center, Washington, DC 20010, USA; (N.V.); (K.G.)
| | - Vikranth Raja
- Department of Medicine, P.S.G Institute of Medical Sciences and Research, Coimbatore 641004, Tamil Nadu, India;
| | - Udhav Sethi
- School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Kejal Gandhi
- Department of Internal Medicine, Medstar Washington Hospital Center, Washington, DC 20010, USA; (N.V.); (K.G.)
| | - Kishore Raja
- Department of Pediatric Cardiology, University of Minnesota, Minneapolis, MN 55454, USA;
| | - Salim R. Surani
- Department of Pulmonary and Critical Care, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
27
|
Fluorescent diagnostics with chlorin e6 in surgery of low-grade glioma. BIOMEDICAL PHOTONICS 2022. [DOI: 10.24931/2413-9432-2021-10-4-35-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intraoperative fluorescence diagnostics of high-grade gliomas is widely used in neurosurgical practice. This work analyzes the possibilities of fluorescence diagnostics for low-grade gliomas (LGG) using chlorin e6 photosensitizer. The study included patients with newly diagnosed LGG, for whom chlorin e6 was used for intraoperative fluorescence control at a dose of 1 mg/kg. During the operation, the fluorescence intensity of various areas of the putative tumor tissue was analyzed using the RSS Cam – Endo 1.4.313 software. Tissue samples with various degrees of fluorescence intensity were compared with the results of their histopathological analysis (WHO tumor diagnosis, Ki-67 index, P53, VEGF). Fluorescence was detected in more than half of the cases, but in most cases had a focal character and low fluorescence intensity. The fluorescence intensity directly correlated with the data of histopathological examination of tumor tissues (Ki-67 index (p=0.002), expression of P53 (p=0.0015) and VEGF (p=0.001)). The sensitivity of the method for LGG surgery was 72%, the specificity was 56,7%. Intraoperative fluorescence diagnostics with chlorin e6 can be used in LGG surgery, especially to visualize intratumoral areas with a higher degree of anaplasia.
Collapse
|
28
|
Krauze AV, Zhuge Y, Zhao R, Tasci E, Camphausen K. AI-Driven Image Analysis in Central Nervous System Tumors-Traditional Machine Learning, Deep Learning and Hybrid Models. JOURNAL OF BIOTECHNOLOGY AND BIOMEDICINE 2022; 5:1-19. [PMID: 35106480 PMCID: PMC8802234 DOI: 10.26502/jbb.2642-91280046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The interpretation of imaging in medicine in general and in oncology specifically remains problematic due to several limitations which include the need to incorporate detailed clinical history, patient and disease-specific history, clinical exam features, previous and ongoing treatment, and account for the dependency on reproducible human interpretation of multiple factors with incomplete data linkage. To standardize reporting, minimize bias, expedite management, and improve outcomes, the use of Artificial Intelligence (AI) has gained significant prominence in imaging analysis. In oncology, AI methods have as a result been explored in most cancer types with ongoing progress in employing AI towards imaging for oncology treatment, assessing treatment response, and understanding and communicating prognosis. Challenges remain with limited available data sets, variability in imaging changes over time augmented by a growing heterogeneity in analysis approaches. We review the imaging analysis workflow and examine how hand-crafted features also referred to as traditional Machine Learning (ML), Deep Learning (DL) approaches, and hybrid analyses, are being employed in AI-driven imaging analysis in central nervous system tumors. ML, DL, and hybrid approaches coexist, and their combination may produce superior results although data in this space is as yet novel, and conclusions and pitfalls have yet to be fully explored. We note the growing technical complexities that may become increasingly separated from the clinic and enforce the acute need for clinician engagement to guide progress and ensure that conclusions derived from AI-driven imaging analysis reflect that same level of scrutiny lent to other avenues of clinical research.
Collapse
Affiliation(s)
- A V Krauze
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| | - Y Zhuge
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| | - R Zhao
- University of British Columbia, Faculty of Medicine, 317 - 2194 Health Sciences Mall, Vancouver, Canada
| | - E Tasci
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| | - K Camphausen
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| |
Collapse
|
29
|
Krauze AV, Camphausen K. Molecular Biology in Treatment Decision Processes-Neuro-Oncology Edition. Int J Mol Sci 2021; 22:13278. [PMID: 34948075 PMCID: PMC8703419 DOI: 10.3390/ijms222413278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Computational approaches including machine learning, deep learning, and artificial intelligence are growing in importance in all medical specialties as large data repositories are increasingly being optimised. Radiation oncology as a discipline is at the forefront of large-scale data acquisition and well positioned towards both the production and analysis of large-scale oncologic data with the potential for clinically driven endpoints and advancement of patient outcomes. Neuro-oncology is comprised of malignancies that often carry poor prognosis and significant neurological sequelae. The analysis of radiation therapy mediated treatment and the potential for computationally mediated analyses may lead to more precise therapy by employing large scale data. We analysed the state of the literature pertaining to large scale data, computational analysis, and the advancement of molecular biomarkers in neuro-oncology with emphasis on radiation oncology. We aimed to connect existing and evolving approaches to realistic avenues for clinical implementation focusing on low grade gliomas (LGG), high grade gliomas (HGG), management of the elderly patient with HGG, rare central nervous system tumors, craniospinal irradiation, and re-irradiation to examine how computational analysis and molecular science may synergistically drive advances in personalised radiation therapy (RT) and optimise patient outcomes.
Collapse
Affiliation(s)
- Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD 20892, USA;
| | | |
Collapse
|
30
|
Abdel Razek AAK, Alksas A, Shehata M, AbdelKhalek A, Abdel Baky K, El-Baz A, Helmy E. Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging 2021; 12:152. [PMID: 34676470 PMCID: PMC8531173 DOI: 10.1186/s13244-021-01102-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
This article is a comprehensive review of the basic background, technique, and clinical applications of artificial intelligence (AI) and radiomics in the field of neuro-oncology. A variety of AI and radiomics utilized conventional and advanced techniques to differentiate brain tumors from non-neoplastic lesions such as inflammatory and demyelinating brain lesions. It is used in the diagnosis of gliomas and discrimination of gliomas from lymphomas and metastasis. Also, semiautomated and automated tumor segmentation has been developed for radiotherapy planning and follow-up. It has a role in the grading, prediction of treatment response, and prognosis of gliomas. Radiogenomics allowed the connection of the imaging phenotype of the tumor to its molecular environment. In addition, AI is applied for the assessment of extra-axial brain tumors and pediatric tumors with high performance in tumor detection, classification, and stratification of patient's prognoses.
Collapse
Affiliation(s)
| | - Ahmed Alksas
- Biomaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Mohamed Shehata
- Biomaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Amr AbdelKhalek
- Internship at Mansoura University Hospital, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Khaled Abdel Baky
- Department of Diagnostic Radiology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Ayman El-Baz
- Biomaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Eman Helmy
- Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Elgomheryia Street, Mansoura, 3512, Egypt.
| |
Collapse
|
31
|
Bardis M, Houshyar R, Chantaduly C, Tran-Harding K, Ushinsky A, Chahine C, Rupasinghe M, Chow D, Chang P. Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning. Radiol Imaging Cancer 2021; 3:e200024. [PMID: 33929265 DOI: 10.1148/rycan.2021200024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose To develop a deep learning model to delineate the transition zone (TZ) and peripheral zone (PZ) of the prostate on MR images. Materials and Methods This retrospective study was composed of patients who underwent a multiparametric prostate MRI and an MRI/transrectal US fusion biopsy between January 2013 and May 2016. A board-certified abdominal radiologist manually segmented the prostate, TZ, and PZ on the entire data set. Included accessions were split into 60% training, 20% validation, and 20% test data sets for model development. Three convolutional neural networks with a U-Net architecture were trained for automatic recognition of the prostate organ, TZ, and PZ. Model performance for segmentation was assessed using Dice scores and Pearson correlation coefficients. Results A total of 242 patients were included (242 MR images; 6292 total images). Models for prostate organ segmentation, TZ segmentation, and PZ segmentation were trained and validated. Using the test data set, for prostate organ segmentation, the mean Dice score was 0.940 (interquartile range, 0.930-0.961), and the Pearson correlation coefficient for volume was 0.981 (95% CI: 0.966, 0.989). For TZ segmentation, the mean Dice score was 0.910 (interquartile range, 0.894-0.938), and the Pearson correlation coefficient for volume was 0.992 (95% CI: 0.985, 0.995). For PZ segmentation, the mean Dice score was 0.774 (interquartile range, 0.727-0.832), and the Pearson correlation coefficient for volume was 0.927 (95% CI: 0.870, 0.957). Conclusion Deep learning with an architecture composed of three U-Nets can accurately segment the prostate, TZ, and PZ. Keywords: MRI, Genital/Reproductive, Prostate, Neural Networks Supplemental material is available for this article. © RSNA, 2021.
Collapse
Affiliation(s)
- Michelle Bardis
- From the Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Building 55, Suite 201, Orange, CA 92868 (M.B., R.H., K.T.H., C. Chahine, M.R.); Center for Artificial Intelligence in Diagnostic Medicine, University of California, Irvine, Irvine, Calif (C. Chantaduly, D.C., P.C.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (A.U.)
| | - Roozbeh Houshyar
- From the Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Building 55, Suite 201, Orange, CA 92868 (M.B., R.H., K.T.H., C. Chahine, M.R.); Center for Artificial Intelligence in Diagnostic Medicine, University of California, Irvine, Irvine, Calif (C. Chantaduly, D.C., P.C.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (A.U.)
| | - Chanon Chantaduly
- From the Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Building 55, Suite 201, Orange, CA 92868 (M.B., R.H., K.T.H., C. Chahine, M.R.); Center for Artificial Intelligence in Diagnostic Medicine, University of California, Irvine, Irvine, Calif (C. Chantaduly, D.C., P.C.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (A.U.)
| | - Karen Tran-Harding
- From the Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Building 55, Suite 201, Orange, CA 92868 (M.B., R.H., K.T.H., C. Chahine, M.R.); Center for Artificial Intelligence in Diagnostic Medicine, University of California, Irvine, Irvine, Calif (C. Chantaduly, D.C., P.C.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (A.U.)
| | - Alexander Ushinsky
- From the Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Building 55, Suite 201, Orange, CA 92868 (M.B., R.H., K.T.H., C. Chahine, M.R.); Center for Artificial Intelligence in Diagnostic Medicine, University of California, Irvine, Irvine, Calif (C. Chantaduly, D.C., P.C.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (A.U.)
| | - Chantal Chahine
- From the Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Building 55, Suite 201, Orange, CA 92868 (M.B., R.H., K.T.H., C. Chahine, M.R.); Center for Artificial Intelligence in Diagnostic Medicine, University of California, Irvine, Irvine, Calif (C. Chantaduly, D.C., P.C.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (A.U.)
| | - Mark Rupasinghe
- From the Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Building 55, Suite 201, Orange, CA 92868 (M.B., R.H., K.T.H., C. Chahine, M.R.); Center for Artificial Intelligence in Diagnostic Medicine, University of California, Irvine, Irvine, Calif (C. Chantaduly, D.C., P.C.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (A.U.)
| | - Daniel Chow
- From the Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Building 55, Suite 201, Orange, CA 92868 (M.B., R.H., K.T.H., C. Chahine, M.R.); Center for Artificial Intelligence in Diagnostic Medicine, University of California, Irvine, Irvine, Calif (C. Chantaduly, D.C., P.C.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (A.U.)
| | - Peter Chang
- From the Department of Radiological Sciences, University of California, Irvine, 101 The City Drive South, Building 55, Suite 201, Orange, CA 92868 (M.B., R.H., K.T.H., C. Chahine, M.R.); Center for Artificial Intelligence in Diagnostic Medicine, University of California, Irvine, Irvine, Calif (C. Chantaduly, D.C., P.C.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (A.U.)
| |
Collapse
|
32
|
Feng F, Zhao Z, Zhou Y, Cheng Y, Wu X, Heng X. CUX1 Facilitates the Development of Oncogenic Properties Via Activating Wnt/β-Catenin Signaling Pathway in Glioma. Front Mol Biosci 2021; 8:705008. [PMID: 34422906 PMCID: PMC8377541 DOI: 10.3389/fmolb.2021.705008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Homeobox cut like 1 (CUX1), which often presents aberrated expression in many cancer cells, exerts a crucial role in tumorigenesis. Evidence describing CUX1 in gliomagenesis is scarce, and the effects of CUX1 on the Wnt/β-catenin pathway have not been reported. Our study aimed to explore the biological functions and molecular mechanisms involved in CUX1 activity in glioma. Methods: Datasets for bioinformatics analysis were obtained from the GEO, TCGA, CGGA, GTEX and CCLE databases. qRT-PCR, western blotting (WB), and immunohistochemistry (IHC) assays were used to investigate the expression patterns of CUX1 among glioma and brain tissues. CUX1 knockdown and overexpression vectors were transfected into glioma cell lines, the CCK-8, clone formation assay, wound healing, Transwell assay, and flow cytometry were performed to detect changes in cell viability, invasiveness, and the cell cycle. WB and immunofluorescence (IF) assays were used to explore changes in cell cycle-related and Wnt/β-catenin signaling protein levels. Results: Overexpression of CUX1 was identified in glioma tissues, and especially in glioblastoma (GBM), when compared to normal controls and correlated with poor prognosis. In comparison with untreated cells, TJ905 glioma cells overexpressing CUX1 showed higher proliferation and invasion abilities and S phase cell-cycle arrest, while the knockdown of CUX1 suppressed cell invasive ability and induced G1 phase arrest. Active Wnt/β-catenin signaling was enriched and clustered in a CUX1-associated GSEA/GSVA analysis. IF and WB assays indicated that CUX1 regulated the distribution of Axin2/β-catenin in glioma cells and regulated the expression of proteins downstream of the Wnt/β-catenin signaling pathway, suggesting that CUX1 served as an upstream positive regulator of the Wnt/β-catenin pathway. Finally, the knockdown of Axin2 or β-catenin could reverse the tumor-promoting effects caused by CUX1 overexpression, suggesting that CUX1 induced gliomagenesis and malignant phenotype by activating the Wnt/β-catenin signaling pathway. Conclusion: Our data suggested that the transcription factor CUX1 could be a novel therapeutic target for glioma with gene therapy.
Collapse
Affiliation(s)
- Fan Feng
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Brain Science and Brain-Like Intelligence, Linyi People's Hospital, Linyi, China.,Department of Neurosurgery, Linyi People's Hospital, Linyi, China
| | - Zongqing Zhao
- Institute of Brain Science and Brain-Like Intelligence, Linyi People's Hospital, Linyi, China.,Department of Neurosurgery, Linyi People's Hospital, Linyi, China
| | - Yunfei Zhou
- Department of Neurosurgery, Linyi People's Hospital, Linyi, China
| | - Yanhao Cheng
- Institute of Brain Science and Brain-Like Intelligence, Linyi People's Hospital, Linyi, China.,Department of Neurosurgery, Linyi People's Hospital, Linyi, China
| | - Xiujie Wu
- Institute of Brain Science and Brain-Like Intelligence, Linyi People's Hospital, Linyi, China.,Department of Neurosurgery, Linyi People's Hospital, Linyi, China
| | - Xueyuan Heng
- Institute of Brain Science and Brain-Like Intelligence, Linyi People's Hospital, Linyi, China.,Department of Neurosurgery, Linyi People's Hospital, Linyi, China
| |
Collapse
|
33
|
Kiesel B, Freund J, Reichert D, Wadiura L, Erkkilae MT, Woehrer A, Hervey-Jumper S, Berger MS, Widhalm G. 5-ALA in Suspected Low-Grade Gliomas: Current Role, Limitations, and New Approaches. Front Oncol 2021; 11:699301. [PMID: 34395266 PMCID: PMC8362830 DOI: 10.3389/fonc.2021.699301] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Radiologically suspected low-grade gliomas (LGG) represent a special challenge for the neurosurgeon during surgery due to their histopathological heterogeneity and indefinite tumor margin. Therefore, new techniques are required to overcome these current surgical drawbacks. Intraoperative visualization of brain tumors with assistance of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence is one of the major advancements in the neurosurgical field in the last decades. Initially, this technique was exclusively applied for fluorescence-guided surgery of high-grade glioma (HGG). In the last years, the use of 5-ALA was also extended to other indications such as radiologically suspected LGG. Here, we discuss the current role of 5-ALA for intraoperative visualization of focal malignant transformation within suspected LGG. Furthermore, we discuss the current limitations of the 5-ALA technology in pure LGG which usually cannot be visualized by visible fluorescence. Finally, we introduce new approaches based on fluorescence technology for improved detection of pure LGG tissue such as spectroscopic PpIX quantification fluorescence lifetime imaging of PpIX and confocal microscopy to optimize surgery.
Collapse
Affiliation(s)
- Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Julia Freund
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Lisa Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Department of Neurology, Institute for Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Ning Z, Tu C, Di X, Feng Q, Zhang Y. Deep cross-view co-regularized representation learning for glioma subtype identification. Med Image Anal 2021; 73:102160. [PMID: 34303890 DOI: 10.1016/j.media.2021.102160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
The new subtypes of diffuse gliomas are recognized by the World Health Organization (WHO) on the basis of genotypes, e.g., isocitrate dehydrogenase and chromosome arms 1p/19q, in addition to the histologic phenotype. Glioma subtype identification can provide valid guidances for both risk-benefit assessment and clinical decision. The feature representations of gliomas in magnetic resonance imaging (MRI) have been prevalent for revealing underlying subtype status. However, since gliomas are highly heterogeneous tumors with quite variable imaging phenotypes, learning discriminative feature representations in MRI for gliomas remains challenging. In this paper, we propose a deep cross-view co-regularized representation learning framework for glioma subtype identification, in which view representation learning and multiple constraints are integrated into a unified paradigm. Specifically, we first learn latent view-specific representations based on cross-view images generated from MRI via a bi-directional mapping connecting original imaging space and latent space, and view-correlated regularizer and output-consistent regularizer in the latent space are employed to explore view correlation and derive view consistency, respectively. We further learn view-sharable representations which can explore complementary information of multiple views by projecting the view-specific representations into a holistically shared space and enhancing via adversary learning strategy. Finally, the view-specific and view-sharable representations are incorporated for identifying glioma subtype. Experimental results on multi-site datasets demonstrate the proposed method outperforms several state-of-the-art methods in detection of glioma subtype status.
Collapse
Affiliation(s)
- Zhenyuan Ning
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Chao Tu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Di
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Yu Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
35
|
Obenaus A, Badaut J. Role of the noninvasive imaging techniques in monitoring and understanding the evolution of brain edema. J Neurosci Res 2021; 100:1191-1200. [PMID: 34048088 DOI: 10.1002/jnr.24837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
Human brain injury elicits accumulation of water within the brain due to a variety of pathophysiological processes. As our understanding of edema emerged two temporally (and cellular) distinct processes were identified, cytotoxic and vasogenic edema. The emergence of both types of edema is reflected by the temporal evolution and is influenced by the underlying pathology (type and extent). However, this two-edema compartment model does not adequately describe the transition between cytotoxic and vasogenic edema. Hence, a third category has been proposed, termed ionic edema, that is observed in the transition between cytotoxic and vasogenic edema. Magnetic resonance neuroimaging of edema today primarily utilizes T2-weighted (T2WI) and diffusion-weighted imaging (DWI). Clinical diagnostics and translational science studies have clearly demonstrated the temporal ability of both T2WI and DWI to monitor edema content and evolution. DWI measures water mobility within the brain reflecting cytotoxic edema. T2WI at later time points when vasogenic edema develops visualizes increased water content in the brain. Clinically relevant imaging modalities, including ultrasound and positron emission tomography, are not typically used to assess edema. In sum, edema imaging is an important cornerstone of clinical diagnostics and translational studies and can guide effective therapeutics manage edema and improve patient outcomes.
Collapse
Affiliation(s)
- Andre Obenaus
- Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Jérôme Badaut
- Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,CNRS UMR5287, INCIA, University of Bordeaux, Bordeaux, France
| |
Collapse
|
36
|
Kobayashi K, Miyake M, Takahashi M, Hamamoto R. Observing deep radiomics for the classification of glioma grades. Sci Rep 2021; 11:10942. [PMID: 34035410 PMCID: PMC8149679 DOI: 10.1038/s41598-021-90555-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
Deep learning is a promising method for medical image analysis because it can automatically acquire meaningful representations from raw data. However, a technical challenge lies in the difficulty of determining which types of internal representation are associated with a specific task, because feature vectors can vary dynamically according to individual inputs. Here, based on the magnetic resonance imaging (MRI) of gliomas, we propose a novel method to extract a shareable set of feature vectors that encode various parts in tumor imaging phenotypes. By applying vector quantization to latent representations, features extracted by an encoder are replaced with a fixed set of feature vectors. Hence, the set of feature vectors can be used in downstream tasks as imaging markers, which we call deep radiomics. Using deep radiomics, a classifier is established using logistic regression to predict the glioma grade with 90% accuracy. We also devise an algorithm to visualize the image region encoded by each feature vector, and demonstrate that the classification model preferentially relies on feature vectors associated with the presence or absence of contrast enhancement in tumor regions. Our proposal provides a data-driven approach to enhance the understanding of the imaging appearance of gliomas.
Collapse
Affiliation(s)
- Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, Japan.
| | - Mototaka Miyake
- Department of Diagnostic Radiology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, Japan
| |
Collapse
|
37
|
A Multiparametric MRI-Based Radiomics Analysis to Efficiently Classify Tumor Subregions of Glioblastoma: A Pilot Study in Machine Learning. J Clin Med 2021; 10:jcm10092030. [PMID: 34068528 PMCID: PMC8126019 DOI: 10.3390/jcm10092030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) carries a poor prognosis and usually presents with heterogenous regions of a necrotic core, solid part, peritumoral tissue, and peritumoral edema. Accurate demarcation on magnetic resonance imaging (MRI) between the active tumor region and perifocal edematous extension is essential for planning stereotactic biopsy, GBM resection, and radiotherapy. We established a set of radiomics features to efficiently classify patients with GBM and retrieved cerebral multiparametric MRI, including contrast-enhanced T1-weighted (T1-CE), T2-weighted, T2-weighted fluid-attenuated inversion recovery, and apparent diffusion coefficient images from local patients with GBM. A total of 1316 features on the raw MR images were selected for each annotated area. A leave-one-out cross-validation was performed on the whole dataset, the different machine learning and deep learning techniques tested; random forest achieved the best performance (average accuracy: 93.6% necrosis, 90.4% solid part, 95.8% peritumoral tissue, and 90.4% peritumoral edema). The features from the enhancing tumor and the tumor shape elongation of peritumoral edema region for high-risk groups from T1-CE. The multiparametric MRI-based radiomics model showed the efficient classification of tumor subregions of GBM and suggests that prognostic radiomic features from a routine MRI exam may also be significantly associated with key biological processes that affect the response to chemotherapy in GBM.
Collapse
|
38
|
Neuroimaging in the Era of the Evolving WHO Classification of Brain Tumors, From the AJR Special Series on Cancer Staging. AJR Am J Roentgenol 2021; 217:3-15. [PMID: 33502214 DOI: 10.2214/ajr.20.25246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The inclusion of molecular and genetic information with histopathologic information defines the framework for brain tumor classification and grading. This framework is reflected in the major restructuring of the WHO brain tumor classification system in 2016 and in numerous subsequent proposed updates reflecting ongoing developments in understanding the impact of tumor genotype on classification and grading. This incorporation of molecular and genetic features improves tumor diagnosis and prediction of tumor behavior and response to treatment. Neuroimaging is essential for the noninvasive assessment of pretreatment tumor grading and for identification and determination of therapeutic efficacy. Use of conventional neuroimaging and physiologic imaging techniques, such as diffusion- and perfusion-weighted MRI, can increase diagnostic confidence before and after treatment. Although the use of neuroimaging to consistently determine tumor genetics is not yet robust, promising developments are on the horizon. Given the complexity of the brain tumor microenvironment, the development and implementation of a standardized reporting system can aid in conveying to radiologists, referring providers, and patients important information about brain tumor response to treatment. The purpose of this article is to review the current state and role of neuroimaging in this continuously evolving field.
Collapse
|
39
|
Pasquini L, Napolitano A, Tagliente E, Dellepiane F, Lucignani M, Vidiri A, Ranazzi G, Stoppacciaro A, Moltoni G, Nicolai M, Romano A, Di Napoli A, Bozzao A. Deep Learning Can Differentiate IDH-Mutant from IDH-Wild GBM. J Pers Med 2021; 11:290. [PMID: 33918828 PMCID: PMC8069494 DOI: 10.3390/jpm11040290] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) mutant and wildtype glioblastoma multiforme (GBM) often show overlapping features on magnetic resonance imaging (MRI), representing a diagnostic challenge. Deep learning showed promising results for IDH identification in mixed low/high grade glioma populations; however, a GBM-specific model is still lacking in the literature. Our aim was to develop a GBM-tailored deep-learning model for IDH prediction by applying convoluted neural networks (CNN) on multiparametric MRI. We selected 100 adult patients with pathologically demonstrated WHO grade IV gliomas and IDH testing. MRI sequences included: MPRAGE, T1, T2, FLAIR, rCBV and ADC. The model consisted of a 4-block 2D CNN, applied to each MRI sequence. Probability of IDH mutation was obtained from the last dense layer of a softmax activation function. Model performance was evaluated in the test cohort considering categorical cross-entropy loss (CCEL) and accuracy. Calculated performance was: rCBV (accuracy 83%, CCEL 0.64), T1 (accuracy 77%, CCEL 1.4), FLAIR (accuracy 77%, CCEL 1.98), T2 (accuracy 67%, CCEL 2.41), MPRAGE (accuracy 66%, CCEL 2.55). Lower performance was achieved on ADC maps. We present a GBM-specific deep-learning model for IDH mutation prediction, with a maximal accuracy of 83% on rCBV maps. Highest predictivity achieved on perfusion images possibly reflects the known link between IDH and neoangiogenesis through the hypoxia inducible factor.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy; (L.P.); (F.D.); (G.M.); (M.N.); (A.R.); (A.D.N.); (A.B.)
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy; (E.T.); (M.L.)
| | - Emanuela Tagliente
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy; (E.T.); (M.L.)
| | - Francesco Dellepiane
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy; (L.P.); (F.D.); (G.M.); (M.N.); (A.R.); (A.D.N.); (A.B.)
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy; (E.T.); (M.L.)
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging Department, Regina Elena National Cancer Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy;
| | - Giulio Ranazzi
- Surgical Pathology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy; (G.R.); (A.S.)
| | - Antonella Stoppacciaro
- Surgical Pathology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy; (G.R.); (A.S.)
| | - Giulia Moltoni
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy; (L.P.); (F.D.); (G.M.); (M.N.); (A.R.); (A.D.N.); (A.B.)
| | - Matteo Nicolai
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy; (L.P.); (F.D.); (G.M.); (M.N.); (A.R.); (A.D.N.); (A.B.)
| | - Andrea Romano
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy; (L.P.); (F.D.); (G.M.); (M.N.); (A.R.); (A.D.N.); (A.B.)
| | - Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy; (L.P.); (F.D.); (G.M.); (M.N.); (A.R.); (A.D.N.); (A.B.)
| | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy; (L.P.); (F.D.); (G.M.); (M.N.); (A.R.); (A.D.N.); (A.B.)
| |
Collapse
|
40
|
Jian A, Jang K, Manuguerra M, Liu S, Magnussen J, Di Ieva A. Machine Learning for the Prediction of Molecular Markers in Glioma on Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Neurosurgery 2021; 89:31-44. [PMID: 33826716 DOI: 10.1093/neuros/nyab103] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/24/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Molecular characterization of glioma has implications for prognosis, treatment planning, and prediction of treatment response. Current histopathology is limited by intratumoral heterogeneity and variability in detection methods. Advances in computational techniques have led to interest in mining quantitative imaging features to noninvasively detect genetic mutations. OBJECTIVE To evaluate the diagnostic accuracy of machine learning (ML) models in molecular subtyping gliomas on preoperative magnetic resonance imaging (MRI). METHODS A systematic search was performed following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify studies up to April 1, 2020. Methodological quality of studies was assessed using the Quality Assessment for Diagnostic Accuracy Studies (QUADAS)-2. Diagnostic performance estimates were obtained using a bivariate model and heterogeneity was explored using metaregression. RESULTS Forty-four original articles were included. The pooled sensitivity and specificity for predicting isocitrate dehydrogenase (IDH) mutation in training datasets were 0.88 (95% CI 0.83-0.91) and 0.86 (95% CI 0.79-0.91), respectively, and 0.83 to 0.85 in validation sets. Use of data augmentation and MRI sequence type were weakly associated with heterogeneity. Both O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation and 1p/19q codeletion could be predicted with a pooled sensitivity and specificity between 0.76 and 0.83 in training datasets. CONCLUSION ML application to preoperative MRI demonstrated promising results for predicting IDH mutation, MGMT methylation, and 1p/19q codeletion in glioma. Optimized ML models could lead to a noninvasive, objective tool that captures molecular information important for clinical decision making. Future studies should use multicenter data, external validation and investigate clinical feasibility of ML models.
Collapse
Affiliation(s)
- Anne Jian
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Kevin Jang
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Discipline of Surgery, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Maurizio Manuguerra
- Department of Mathematics and Statistics, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Sidong Liu
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Centre for Health Informatics, Macquarie University, Sydney, Australia
| | - John Magnussen
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Macquarie Medical Imaging, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Macquarie Neurosurgery, Macquarie University, Sydney, Australia
| |
Collapse
|
41
|
Chang L, Zhang Y, Li M, Zhao X, Wang D, Liu J, Zhou F, Zhang J. Nanostructured lipid carrier co-delivering paclitaxel and doxorubicin restrains the proliferation and promotes apoptosis of glioma stem cells via regulating PI3K/Akt/mTOR signaling. NANOTECHNOLOGY 2021; 32:225101. [PMID: 33690190 DOI: 10.1088/1361-6528/abd439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The development of safe and efficient nanocomposites remains a huge challenge in targeted therapy of glioma. Nanostructured lipid carriers (NLCs), which facilitate specific site drug delivery, have been widely used in glioma treatment. Herein, we aimed to investigate the underlying mechanisms and therapeutic impact of paclitaxel (PTX) and doxorubicin (DOX) loaded NLC (PTX-DOX-NLC) on glioma stem cells (GSCs). To this end, we used a melt-emulsification technique to generate PTX loaded NLC (PTX-NLC), DOX loaded NLC (DOX-NLC), and NLC loaded with both drugs (PTX-DOX-NLC). We firstly confirmed the stability of PTX-DOX-NLC and their ability to gradually release PTX and DOX. Next, we evaluated the effects of PTX-DOX-NLC on apoptosis and proliferation of GSCs by flow cytometry and CellTiter-Glo assay. Besides, the expression of relevant mRNA and proteins was determined by RT-qPCR and Western blot analysis, respectively. Mechanism of action of PTX-DOX-NLC was determined though bioinformatic analysis based on RNA-seq data performed in GSCs derived from different NLC-treated groups. In addition, a mouse xenograft model of glioma was established to evaluate the anti-tumor effects of PTX-DOX-NLCin vivo. Results indicated thar PTX-DOX-NLC showed greater inhibitory effects on proliferation and promotive effects on apoptosis of GSCs compared with PTX-NLC, DOX-NLC, free PTX, and free DOX treatment. Mechanistic investigations evidenced that PTX-DOX-NLC inhibited tumor progression by suppressing the PI3K/AKT/mTOR signalingin vitroandin vivo. Taken together, PTX-DOX-NLC played an inhibitory role in GSC growth, highlighting a potential therapeutic option against glioma.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, People's Republic of China
| | - Yunhe Zhang
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, People's Republic of China
| | - Min Li
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, People's Republic of China
| | - Xiaojing Zhao
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, People's Republic of China
| | - Dali Wang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, People's Republic of China
| | - Jian Liu
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, People's Republic of China
| | - Fuling Zhou
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, People's Republic of China
| | - Jiang Zhang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, People's Republic of China
| |
Collapse
|
42
|
Abstract
With the ongoing advances in imaging techniques, increasing volumes of anatomical and functional data are being generated as part of the routine clinical workflow. This surge of available imaging data coincides with increasing research in quantitative imaging, particularly in the domain of imaging features. An important and novel approach is radiomics, where high-dimensional image properties are extracted from routine medical images. The fundamental principle of radiomics is the hypothesis that biomedical images contain predictive information, not discernible to the human eye, that can be mined through quantitative image analysis. In this review, a general outline of radiomics and artificial intelligence (AI) will be provided, along with prominent use cases in immunotherapy (e.g. response and adverse event prediction) and targeted therapy (i.e. radiogenomics). While the increased use and development of radiomics and AI in immuno-oncology is highly promising, the technology is still in its early stages, and different challenges still need to be overcome. Nevertheless, novel AI algorithms are being constructed with an ever-increasing scope of applications.
Collapse
Affiliation(s)
- Z. Bodalal
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - I. Wamelink
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Technical Medicine, University of Twente, Enschede, The Netherlands
| | - S. Trebeschi
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - R.G.H. Beets-Tan
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
43
|
House PM, Kopelyan M, Braniewska N, Silski B, Chudzinska A, Holst B, Sauvigny T, Martens T, Stodieck S, Pelzl S. Automated detection and segmentation of focal cortical dysplasias (FCDs) with artificial intelligence: Presentation of a novel convolutional neural network and its prospective clinical validation. Epilepsy Res 2021; 172:106594. [PMID: 33677163 DOI: 10.1016/j.eplepsyres.2021.106594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Focal cortical dysplasias (FCDs) represent one of the most frequent causes of pharmaco-resistant focal epilepsies. Despite improved clinical imaging methods over the past years, FCD detection remains challenging, as FCDs vary in location, size, and shape and commonly blend into surrounding tissues without clear definable boundaries. We developed a novel convolutional neural network for FCD detection and segmentation and validated it prospectively on daily-routine MRIs. MATERIAL AND METHODS The neural network was trained on 201 T1 and FLAIR 3 T MRI volume sequences of 158 patients with mainly FCDs, regardless of type, and 7 focal PMG. Non-FCD/PMG MRIs, drawn from 100 normal MRIs and 50 MRIs with non-FCD/PMG pathologies, were added to the training. We applied the algorithm prospectively on 100 consecutive MRIs of patients with focal epilepsy from daily clinical practice. The results were compared with corresponding neuroradiological reports and morphometric MRI analyses evaluated by an experienced epileptologist. RESULTS Best training results reached a sensitivity (recall) of 70.1 % and a precision of 54.3 % for detecting FCDs. Applied on the daily-routine MRIs, 7 out of 9 FCDs were detected and segmented correctly with a sensitivity of 77.8 % and a specificity of 5.5 %. The results of conventional visual analyses were 33.3 % and 94.5 %, respectively (3/9 FCDs detected); the results of morphometric analyses with overall epileptologic evaluation were both 100 % (9/9 FCDs detected) and thus served as reference. CONCLUSION We developed a 3D convolutional neural network with autoencoder regularization for FCD detection and segmentation. Our algorithm employs the largest FCD training dataset to date with various types of FCDs and some focal PMG. It provided a higher sensitivity in detecting FCDs than conventional visual analyses. Despite its low specificity, the number of false positively predicted lesions per MRI was lower than with morphometric analysis. We consider our algorithm already useful for FCD pre-screening in everyday clinical practice.
Collapse
Affiliation(s)
- Patrick M House
- Hamburg Epilepsy Center, Protestant Hospital Alsterdorf, Department of Neurology and Epileptology, Hamburg, Germany.
| | | | | | | | | | - Brigitte Holst
- University Hospital Hamburg-Eppendorf, Department of Neuroradiology, Hamburg, Germany
| | - Thomas Sauvigny
- University Hospital Hamburg-Eppendorf, Department of Neurosurgery, Hamburg, Germany
| | - Tobias Martens
- University Hospital Hamburg-Eppendorf, Department of Neurosurgery, Hamburg, Germany; Asklepios Klinikum St. Georg, Department of Neurosurgery, Hamburg, Germany
| | - Stefan Stodieck
- Hamburg Epilepsy Center, Protestant Hospital Alsterdorf, Department of Neurology and Epileptology, Hamburg, Germany
| | | |
Collapse
|
44
|
Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario. Neuroradiology 2021; 63:1253-1262. [PMID: 33501512 DOI: 10.1007/s00234-021-02649-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/14/2021] [Indexed: 01/23/2023]
Abstract
PURPOSE Accurate brain tumor segmentation on magnetic resonance imaging (MRI) has wide-ranging applications such as radiosurgery planning. Advances in artificial intelligence, especially deep learning (DL), allow development of automatic segmentation that overcome the labor-intensive and operator-dependent manual segmentation. We aimed to evaluate the accuracy of the top-performing DL model from the 2018 Brain Tumor Segmentation (BraTS) challenge, the impact of missing MRI sequences, and whether a model trained on gliomas can accurately segment other brain tumor types. METHODS We trained the model using Medical Decathlon dataset, applied it to the BraTS 2019 glioma dataset, and developed additional models using individual and multimodal MRI sequences. The Dice score was calculated to assess the model's accuracy compared to ground truth labels by neuroradiologists on BraTS dataset. The model was then applied to a local dataset of 105 brain tumors, performance of which was qualitatively evaluated. RESULTS The DL model using pre- and post-gadolinium contrast T1 and T2 FLAIR sequences performed best, with a Dice score 0.878 for whole tumor, 0.732 tumor core, and 0.699 active tumor. Lack of T1 or T2 sequences did not significantly degrade performance, but FLAIR and T1C were important contributors. All segmentations performed by the model in the local dataset, including non-glioma cases, were considered accurate by a pool of specialists. CONCLUSION The DL model could use available MRI sequences to optimize glioma segmentation and adopt transfer learning to segment non-glioma tumors, thereby serving as a useful tool to improve treatment planning and personalized surveillance of patients.
Collapse
|
45
|
Sanvito F, Castellano A, Falini A. Advancements in Neuroimaging to Unravel Biological and Molecular Features of Brain Tumors. Cancers (Basel) 2021; 13:cancers13030424. [PMID: 33498680 PMCID: PMC7865835 DOI: 10.3390/cancers13030424] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Advanced neuroimaging is gaining increasing relevance for the characterization and the molecular profiling of brain tumor tissue. On one hand, for some tumor types, the most widespread advanced techniques, investigating diffusion and perfusion features, have been proven clinically feasible and rather robust for diagnosis and prognosis stratification. In addition, 2-hydroxyglutarate spectroscopy, for the first time, offers the possibility to directly measure a crucial molecular marker. On the other hand, numerous innovative approaches have been explored for a refined evaluation of tumor microenvironments, particularly assessing microstructural and microvascular properties, and the potential applications of these techniques are vast and still to be fully explored. Abstract In recent years, the clinical assessment of primary brain tumors has been increasingly dependent on advanced magnetic resonance imaging (MRI) techniques in order to infer tumor pathophysiological characteristics, such as hemodynamics, metabolism, and microstructure. Quantitative radiomic data extracted from advanced MRI have risen as potential in vivo noninvasive biomarkers for predicting tumor grades and molecular subtypes, opening the era of “molecular imaging” and radiogenomics. This review presents the most relevant advancements in quantitative neuroimaging of advanced MRI techniques, by means of radiomics analysis, applied to primary brain tumors, including lower-grade glioma and glioblastoma, with a special focus on peculiar oncologic entities of current interest. Novel findings from diffusion MRI (dMRI), perfusion-weighted imaging (PWI), and MR spectroscopy (MRS) are hereby sifted in order to evaluate the role of quantitative imaging in neuro-oncology as a tool for predicting molecular profiles, stratifying prognosis, and characterizing tumor tissue microenvironments. Furthermore, innovative technological approaches are briefly addressed, including artificial intelligence contributions and ultra-high-field imaging new techniques. Lastly, after providing an overview of the advancements, we illustrate current clinical applications and future perspectives.
Collapse
Affiliation(s)
- Francesco Sanvito
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-02-2643-3015
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
46
|
Reuter G, Moïse M, Roll W, Martin D, Lombard A, Scholtes F, Stummer W, Suero Molina E. Conventional and advanced imaging throughout the cycle of care of gliomas. Neurosurg Rev 2021; 44:2493-2509. [PMID: 33411093 DOI: 10.1007/s10143-020-01448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Although imaging of gliomas has evolved tremendously over the last decades, published techniques and protocols are not always implemented into clinical practice. Furthermore, most of the published literature focuses on specific timepoints in glioma management. This article reviews the current literature on conventional and advanced imaging techniques and chronologically outlines their practical relevance for the clinical management of gliomas throughout the cycle of care. Relevant articles were located through the Pubmed/Medline database and included in this review. Interpretation of conventional and advanced imaging techniques is crucial along the entire process of glioma care, from diagnosis to follow-up. In addition to the described currently existing techniques, we expect deep learning or machine learning approaches to assist each step of glioma management through tumor segmentation, radiogenomics, prognostication, and characterization of pseudoprogression. Thorough knowledge of the specific performance, possibilities, and limitations of each imaging modality is key for their adequate use in glioma management.
Collapse
Affiliation(s)
- Gilles Reuter
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium. .,GIGA-CRC In-vivo Imaging Center, ULiege, Liège, Belgium.
| | - Martin Moïse
- Department of Radiology, University Hospital of Liège, Liège, Belgium
| | - Wolfgang Roll
- Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Didier Martin
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium
| | - Arnaud Lombard
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium
| | - Félix Scholtes
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium.,Department of Neuroanatomy, University of Liège, Liège, Belgium
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
47
|
Irmak E. Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS OF ELECTRICAL ENGINEERING 2021; 45. [PMCID: PMC8061452 DOI: 10.1007/s40998-021-00426-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Brain tumor diagnosis and classification still rely on histopathological analysis of biopsy specimens today. The current method is invasive, time-consuming and prone to manual errors. These disadvantages show how essential it is to perform a fully automated method for multi-classification of brain tumors based on deep learning. This paper aims to make multi-classification of brain tumors for the early diagnosis purposes using convolutional neural network (CNN). Three different CNN models are proposed for three different classification tasks. Brain tumor detection is achieved with 99.33% accuracy using the first CNN model. The second CNN model can classify the brain tumor into five brain tumor types as normal, glioma, meningioma, pituitary and metastatic with an accuracy of 92.66%. The third CNN model can classify the brain tumors into three grades as Grade II, Grade III and Grade IV with an accuracy of 98.14%. All the important hyper-parameters of CNN models are automatically designated using the grid search optimization algorithm. To the best of author’s knowledge, this is the first study for multi-classification of brain tumor MRI images using CNN whose almost all hyper-parameters are tuned by the grid search optimizer. The proposed CNN models are compared with other popular state-of-the-art CNN models such as AlexNet, Inceptionv3, ResNet-50, VGG-16 and GoogleNet. Satisfactory classification results are obtained using large and publicly available clinical datasets. The proposed CNN models can be employed to assist physicians and radiologists in validating their initial screening for brain tumor multi-classification purposes.
Collapse
Affiliation(s)
- Emrah Irmak
- Electrical-Electronics Engineering Department, Alanya Alaaddin Keykubat University, 07425 Alanya, Antalya, Turkey
| |
Collapse
|
48
|
Artificial intelligence in oncology. Artif Intell Med 2021. [DOI: 10.1016/b978-0-12-821259-2.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Langner S, Beller E, Streckenbach F. Artificial Intelligence and Big Data. Klin Monbl Augenheilkd 2020; 237:1438-1441. [PMID: 33212517 DOI: 10.1055/a-1303-6482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Medical images play an important role in ophthalmology and radiology. Medical image analysis has greatly benefited from the application of "deep learning" techniques in clinical and experimental radiology. Clinical applications and their relevance for radiological imaging in ophthalmology are presented.
Collapse
Affiliation(s)
- Soenke Langner
- Institut für Diagnostische und Interventionelle Radiologie, Kinder- und Neuroradiologie, Universitätsmedizin Rostock, Deutschland
| | - Ebba Beller
- Institut für Diagnostische und Interventionelle Radiologie, Kinder- und Neuroradiologie, Universitätsmedizin Rostock, Deutschland
| | - Felix Streckenbach
- Institut für Diagnostische und Interventionelle Radiologie, Kinder- und Neuroradiologie, Universitätsmedizin Rostock, Deutschland
| |
Collapse
|
50
|
Miyai M, Kanayama T, Hyodo F, Kinoshita T, Ishihara T, Okada H, Suzuki H, Takashima S, Wu Z, Hatano Y, Egashira Y, Enomoto Y, Nakayama N, Soeda A, Yano H, Hirata A, Niwa M, Sugie S, Mori T, Maekawa Y, Iwama T, Matsuo M, Hara A, Tomita H. Glucose transporter Glut1 controls diffuse invasion phenotype with perineuronal satellitosis in diffuse glioma microenvironment. Neurooncol Adv 2020; 3:vdaa150. [PMID: 33506198 PMCID: PMC7817894 DOI: 10.1093/noajnl/vdaa150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Gliomas typically escape surgical resection and recur due to their “diffuse invasion” phenotype, enabling them to infiltrate diffusely into the normal brain parenchyma. Over the past 80 years, studies have revealed 2 key features of the “diffuse invasion” phenotype, designated the Scherer’s secondary structure, and include perineuronal satellitosis (PS) and perivascular satellitosis (PVS). However, the mechanisms are still unknown. Methods We established a mouse glioma cell line (IG27) by manipulating the histone H3K27M mutation, frequently harboring in diffuse intrinsic pontine gliomas, that reproduced the diffuse invasion phenotype, PS and PVS, following intracranial transplantation in the mouse brain. Further, to broadly apply the results in this mouse model to human gliomas, we analyzed data from 66 glioma patients. Results Increased H3K27 acetylation in IG27 cells activated glucose transporter 1 (Glut1) expression and induced aerobic glycolysis and TCA cycle activation, leading to lactate, acetyl-CoA, and oncometabolite production irrespective of oxygen and glucose levels. Gain- and loss-of-function in vivo experiments demonstrated that Glut1 controls the PS of glioma cells, that is, attachment to and contact with neurons. GLUT1 is also associated with early progression in glioma patients. Conclusions Targeting the transporter Glut1 suppresses the unique phenotype, “diffuse invasion” in the diffuse glioma mouse model. This work leads to promising therapeutic and potential useful imaging targets for anti-invasion in human gliomas widely.
Collapse
Affiliation(s)
- Masafumi Miyai
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takamasa Kinoshita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuma Ishihara
- Gifu University Hospital, Innovative and Clinical Research Promotion Center, Gifu University, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroki Suzuki
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Zhiliang Wu
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Egashira
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akio Soeda
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirohito Yano
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akihiro Hirata
- Division of Animal Experiment, Life Science Research Center, Gifu University, Gifu, Japan
| | - Masayuki Niwa
- Medical Science Division, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu, Japan
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu, Japan
| | - Takashi Mori
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan
| | - Yoichi Maekawa
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, Japan.,Domain of Integrated Life Systems, Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|