1
|
Zhou Y, Chen T, Pan Y, Liu J. Exploring the mechanism of fibronectin extra domain B in the tumor microenvironment and implications for targeted immunotherapy and diagnostics (Review). Mol Med Rep 2025; 31:160. [PMID: 40211711 DOI: 10.3892/mmr.2025.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/17/2025] [Indexed: 04/25/2025] Open
Abstract
Fibronectin extra domain B (FN‑EDB) is a unique domain of FN), whose expression is significantly upregulated in the tumor microenvironment (TME). FN‑EDB plays a key role in tumor cell adhesion, angiogenesis and invasion, and is closely related to tumor malignancy and poor prognosis. Moreover, the high expression of FN‑EDB in multiple cancer types makes it a potential therapeutic target. However, comprehensive studies of the mechanism of FN‑EDB in different cancer types and its potential as therapeutic targets are lacking. The present study aimed to explore the general role of FN‑EDB in multiple types of cancer and to integrate the knowledge of cell biology, molecular biology and immunology, so as to give a comprehensive understanding of the role of FN‑EDB in TME. Furthermore, by focusing on the use of FN‑EDB in clinical diagnosis and treatment, the potential of targeting FN‑EDB as a diagnostic and therapeutic target was evaluated and the progress in clinical trials of these drugs was discussed. By searching web sites such as PubMed and web of science, various high‑quality studies including RNA sequencing, drug experiments, cell experiments, animal models, clinical randomized controlled experiments and large‑scale cohort studies were collected, with sufficient evidence to support a comprehensive evaluation of the function and potential application of FN‑EDB. The present study revealed the general role of FN‑EDB in multiple types of cancer and evaluated its potential as a diagnostic and therapeutic target. It also provided a basis for future development of more effective and precise cancer therapies.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of General Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Tao Chen
- Department of Vascular Surgery, Jining Medical College, Jining, Shandong 272000, P.R. China
| | - Yawen Pan
- Department of Geriatric Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Jing Liu
- Department of General Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| |
Collapse
|
2
|
Bettinsoli V, Melzi G, Marchese I, Pantaleoni S, Passoni FC, Corsini E. New approach methodologies to assess wanted and unwanted drugs-induced immunostimulation. Curr Res Toxicol 2025; 8:100222. [PMID: 40027547 PMCID: PMC11872130 DOI: 10.1016/j.crtox.2025.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
This review examines various classes of drugs, focusing on their therapeutic and adverse effects, particularly in relation to immunostimulation. We emphasize the potential of new approach methodologies (NAMs) to study both expected and unexpected immunostimulatory effects. By evaluating the modes of action of different immunostimulatory drugs, we aim to provide insights into effectively assessing unwanted immunostimulatory responses. The review begins by exploring drugs that stimulate the immune system-including immunostimulants, monoclonal antibodies, chemotherapeutics, and nucleic acid-based drugs-to outline NAMs that could be employed to evaluate immunostimulation.
Collapse
Affiliation(s)
- Valeria Bettinsoli
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
- Department of Pharmacy, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Irene Marchese
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Sofia Pantaleoni
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Francesca Carlotta Passoni
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| |
Collapse
|
3
|
Balkhi S, Bilato G, De Lerma Barbaro A, Orecchia P, Poggi A, Mortara L. Efficacy of Anti-Cancer Immune Responses Elicited Using Tumor-Targeted IL-2 Cytokine and Its Derivatives in Combined Preclinical Therapies. Vaccines (Basel) 2025; 13:69. [PMID: 39852848 PMCID: PMC11768832 DOI: 10.3390/vaccines13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Effective cancer therapies must address the tumor microenvironment (TME), a complex network of tumor cells and stromal components, including endothelial, immune, and mesenchymal cells. Durable outcomes require targeting both tumor cells and the TME while minimizing systemic toxicity. Interleukin-2 (IL-2)-based therapies have shown efficacy in cancers such as metastatic melanoma and renal cell carcinoma but are limited by severe side effects. Innovative IL-2-based immunotherapeutic approaches include immunotoxins, such as antibody-drug conjugates, immunocytokines, and antibody-cytokine fusion proteins that enhance tumor-specific delivery. These strategies activate cytotoxic CD8+ T lymphocytes and natural killer (NK) cells, eliciting a potent Th1-mediated anti-tumor response. Modified IL-2 variants with reduced Treg cell activity further improve specificity and reduce immunosuppression. Additionally, IL-2 conjugates with peptides or anti-angiogenic agents offer improved therapeutic profiles. Combining IL-2-based therapies with immune checkpoint inhibitors (ICIs), anti-angiogenic agents, or radiotherapy has demonstrated synergistic potential. Preclinical and clinical studies highlight reduced toxicity and enhanced anti-tumor efficacy, overcoming TME-driven immune suppression. These approaches mitigate the limitations of high-dose soluble IL-2 therapy, promoting immune activation and minimizing adverse effects. This review critically explores advances in IL-2-based therapies, focusing on immunotoxins, immunocytokines, and IL-2 derivatives. Emphasis is placed on their role in combination strategies, showcasing their potential to target the TME and improve clinical outcomes effectively. Also, the use of IL-2 immunocytokines in "in situ" vaccination to relieve the immunosuppression of the TME is discussed.
Collapse
Affiliation(s)
- Sahar Balkhi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
| | - Giorgia Bilato
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| | - Andrea De Lerma Barbaro
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, 20145 Varese, Italy;
| | - Paola Orecchia
- Pathology and Experimental Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Alessandro Poggi
- SSD Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| |
Collapse
|
4
|
Diab L, Al Kattar S, Oueini N, Hawi J, Chrabieh A, Dosh L, Jurjus R, Leone A, Jurjus A. Syndecan-1: a key player in health and disease. Immunogenetics 2024; 77:9. [PMID: 39688651 DOI: 10.1007/s00251-024-01366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
Syndecan-1 (SDC-1) is a transmembrane protein localized on the basolateral surface of epithelial cells, encompassing a core protein with heparin sulfate and chondroitin sulfate glycosaminoglycan side chains. SDC-1 is involved in a panoply of cellular mechanisms including cell-to-cell adhesion, extracellular matrix interactions, cell cycle modulation, and lipid clearance. Alterations in the expression and function of SDC-1 are implicated in numerous disease entities, making it an attractive diagnostic and therapeutic target. However, despite its broad involvement in several disease processes, the underlying mechanism contributing to its diverse functions, pathogenesis, and therapeutic uses remains underexplored. Therefore, this review examines the role of SDC-1 in health and disease, focusing on liver pathologies, inflammatory diseases, infectious diseases, and cancer, and sheds light on SDC-1-based therapeutic approaches. Moreover, it delves into the mechanisms through which SDC-1 contributes to these diseases, emphasizing cell-type specific mechanisms. By comprehensively summarizing the significance of SDC-1, its association with several diseases, and its underlying mechanisms of action, the findings of this review could inform future research directions toward the development of targeted therapies and early diagnosis for a multitude of disease entities.
Collapse
Affiliation(s)
- Lara Diab
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Sahar Al Kattar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Naim Oueini
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University, Kaslik, Jounieh, Lebanon
| | - Jihad Hawi
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Antoine Chrabieh
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Laura Dosh
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
5
|
Prodi E, Neri D, De Luca R. Tumor-Homing Antibody-Cytokine Fusions for Cancer Therapy. Onco Targets Ther 2024; 17:697-715. [PMID: 39224695 PMCID: PMC11368152 DOI: 10.2147/ott.s480787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Recombinant cytokine products have emerged as a promising avenue in cancer therapy due to their capacity to modulate and enhance the immune response against tumors. However, their clinical application is significantly hindered by systemic toxicities already at low doses, thus preventing escalation to therapeutically active regimens. One promising approach to overcoming these limitations is using antibody-cytokine fusion proteins (also called immunocytokines). These biopharmaceuticals leverage the targeting specificity of antibodies to deliver cytokines directly to the tumor microenvironment, thereby reducing systemic exposure and enhancing the therapeutic index. This review comprehensively examines the development and potential of antibody-cytokine fusion proteins in cancer therapy. It explores the molecular characteristics that influence the performance of these fusion proteins, and it highlights key findings from preclinical and clinical studies, illustrating the potential of immunocytokines to improve treatment outcomes in cancer patients. Recent advancements in the field, such as novel engineering strategies and combination strategies to enhance the efficacy and safety of immunocytokines, are also discussed. These innovations offer new opportunities to optimize this class of biotherapeutics, making them a more viable and effective option for cancer treatment. As the field continues to evolve, understanding the critical factors that influence the performance of immunocytokines will be essential for successfully translating these therapies into clinical practice.
Collapse
Affiliation(s)
- Eleonora Prodi
- Philochem AG, Otelfingen, 8112, Switzerland
- University of Trento, Italy, CiBIO (Department of Cellular, Computational and Integrative Biology), Povo, 38123, Trento
| | - Dario Neri
- Philogen Spa, Siena, 53100, Italy
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | |
Collapse
|
6
|
Li G, Ma L, Feng C, Yin H, Bao J, Wu D, Zhang Z, Li X, Li Z, Yang C, Wang H, Fang F, Hu X, Li M, Xu L, Xu Y, Liang H, Yang T, Wang J, Pan J. MZ1, a BRD4 inhibitor, exerted its anti-cancer effects by suppressing SDC1 in glioblastoma. BMC Cancer 2024; 24:220. [PMID: 38365636 PMCID: PMC10870565 DOI: 10.1186/s12885-024-11966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a relatively prevalent primary tumor of the central nervous system in children, characterized by its high malignancy and mortality rates, along with the intricate challenges of achieving complete surgical resection. Recently, an increasing number of studies have focused on the crucial role of super-enhancers (SEs) in the occurrence and development of GBM. This study embarks on the task of evaluating the effectiveness of MZ1, an inhibitor of BRD4 meticulously designed to specifically target SEs, within the intricate framework of GBM. METHODS The clinical data of GBM patients was sourced from the Chinese Glioma Genome Atlas (CGGA) and the Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and the gene expression data of tumor cell lines was derived from the Cancer Cell Line Encyclopedia (CCLE). The impact of MZ1 on GBM was assessed through CCK-8, colony formation assays, EdU incorporation analysis, flow cytometry, and xenograft mouse models. The underlying mechanism was investigated through RNA-seq and ChIP-seq analyses. RESULTS In this investigation, we made a noteworthy observation that MZ1 exhibited a substantial reduction in the proliferation of GBM cells by effectively degrading BRD4. Additionally, MZ1 displayed a notable capability in inducing significant cell cycle arrest and apoptosis in GBM cells. These findings were in line with our in vitro outcomes. Notably, MZ1 administration resulted in a remarkable decrease in tumor size within the xenograft model with diminished toxicity. Furthermore, on a mechanistic level, the administration of MZ1 resulted in a significant suppression of pivotal genes closely associated with cell cycle regulation and epithelial-mesenchymal transition (EMT). Interestingly, our analysis of RNA-seq and ChIP-seq data unveiled the discovery of a novel prospective oncogene, SDC1, which assumed a pivotal role in the tumorigenesis and progression of GBM. CONCLUSION In summary, our findings revealed that MZ1 effectively disrupted the aberrant transcriptional regulation of oncogenes in GBM by degradation of BRD4. This positions MZ1 as a promising candidate in the realm of therapeutic options for GBM treatment.
Collapse
Affiliation(s)
- Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Liya Ma
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, P.R. China
| | - Chenxi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Jianping Bao
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Hairong Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Xiaohan Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Yunyun Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Hansi Liang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Tianquan Yang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China.
| | - Jianwei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China.
| |
Collapse
|
7
|
Ostrowska-Lesko M, Rajtak A, Moreno-Bueno G, Bobinski M. Scientific and clinical relevance of non-cellular tumor microenvironment components in ovarian cancer chemotherapy resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189036. [PMID: 38042260 DOI: 10.1016/j.bbcan.2023.189036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.
Collapse
Affiliation(s)
- Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland
| | - Gema Moreno-Bueno
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Sols-Morreale' (IIBm-CISC), Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain; Fundación MD Anderson Internacional (FMDA), Spain.
| | - Marcin Bobinski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland.
| |
Collapse
|
8
|
Ma X, Geng Z, Wang S, Yu Z, Liu T, Guan S, Du S, Zhu C. The driving mechanism and targeting value of mimicry between vascular endothelial cells and tumor cells in tumor progression. Biomed Pharmacother 2023; 165:115029. [PMID: 37343434 DOI: 10.1016/j.biopha.2023.115029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
The difficulty and poor prognosis of malignant tumor have always been a difficult problem to be solved. The internal components of solid tumor are complex, including tumor cells, stromal cells and immune cells, which play an important role in tumor proliferation, migration, metastasis and drug resistance. Hence, targeting of only the tumor cells will not likely improve survival. Various studies have reported that tumor cells and endothelial cells have high plasticity, which is reflected in the fact that they can simulate each other's characteristics by endothelial-mesenchymal transition (EndMT) and vasculogenic mimicry (VM). In this paper, this mutual mimicry concept was integrated and reviewed for the first time, and their similarities and implications for tumor development are discussed. At the same time, possible therapeutic methods are proposed to provide new directions and ideas for clinical targeted therapy and immunotherapy of tumor.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Clinical Medicine, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Ziang Geng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China
| | - Siqi Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Zhongxue Yu
- Department of Cardiovascular Ultrasound, The First hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China.
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China.
| | - Shaonan Du
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China.
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China.
| |
Collapse
|
9
|
Jiang D, Zhang LY, Wang DH, Liu YR. Identification of an optimized glycolytic-related risk signature for predicting the prognosis in breast cancer using integrated bioinformatic analysis. Medicine (Baltimore) 2023; 102:e34715. [PMID: 37656998 PMCID: PMC10476720 DOI: 10.1097/md.0000000000034715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/21/2023] [Indexed: 09/03/2023] Open
Abstract
Aberrant metabolic disorders and significant glycolytic alterations in tumor tissues and cells are hallmarks of breast cancer (BC) progression. This study aims to elucidate the key biomarkers and pathways mediating abnormal glycolysis in breast cancer using bioinformatics analysis. Differential genes expression analysis, gene ontology analysis, Kyoto encyclopedia of genes and genomes analysis, gene set enrichment analyses, and correlation analysis were performed to explore the expression and prognostic implications of glycolysis-related genes. We effectively integrated 4 genes to construct a prognostic model of shorter survival in the high-risk versus low-risk group. The prognostic model showed promising predictive value and may be an integral part of the prognosis of BC. The survival analysis and receiver operating characteristic curves suggested that the signature showed a good predictive performance in both the The Cancer Genome Atlas training set and 2 gene expression omnibus validation sets. Multivariable analysis demonstrated that the 4-gene signature had an independent prognostic value. Furthermore, all calibration curves exhibited robust validity in prognostic prediction. We established an optimized 4-gene signature to clarify the connection between glycolysis and BC, and offered an attractive platform for risk stratification and prognosis predication of BC patients.
Collapse
Affiliation(s)
- Di Jiang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ling-Yu Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, Anhui, China
| | - Dan-Hua Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-rong Liu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
10
|
Oto J, Le QK, Schäfer SD, Kiesel L, Marí-Alexandre J, Gilabert-Estellés J, Medina P, Götte M. Role of Syndecans in Ovarian Cancer: New Diagnostic and Prognostic Biomarkers and Potential Therapeutic Targets. Cancers (Basel) 2023; 15:3125. [PMID: 37370735 DOI: 10.3390/cancers15123125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ovarian cancer (OC) is the eighth cancer both in prevalence and mortality in women and represents the deadliest female reproductive cancer. Due to generally vague symptoms, OC is frequently diagnosed only at a late and advanced stage, resulting in high mortality. The tumor extracellular matrix and cellular matrix receptors play a key role in the pathogenesis of tumor progression. Syndecans are a family of four transmembrane heparan sulfate proteoglycans (PG), including syndecan-1, -2, -3, and -4, which are dysregulated in a myriad of cancers, including OC. Many clinicopathological studies suggest that these proteins are promising diagnostic and prognostic biomarkers for OC. Furthermore, functions of the syndecan family in the regulation of cellular processes make it an interesting pharmacological target for anticancer therapies.
Collapse
Affiliation(s)
- Julia Oto
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Quang-Khoi Le
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Sebastian D Schäfer
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Pathology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Gynecology and Obstetrics, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| |
Collapse
|
11
|
Lavarello C, Orecchia P, Petretto A, Vitale M, Cantoni C, Parodi M. Study of the effects of NK-tumor cell interaction by proteomic analysis and imaging. Methods Cell Biol 2023; 173:91-107. [PMID: 36653088 DOI: 10.1016/bs.mcb.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural Killer (NK) cells play a pivotal role in the elimination of tumor cells. The interactions that NK cells can establish with cancer cells in the tumor microenvironment (TME) are crucial for the outcome of the anti-tumor response, possibly resulting in mechanisms able to modulate NK cell effector functions on the one side, and to modify tumor cell phenotype and properties on the other side. This chapter will describe two different experimental approaches for the evaluation of NK-tumor cell interactions. First, a detailed protocol for the setting up of NK-tumor cell co-cultures will be illustrated, followed by information on cell imaging techniques, useful for assessing cell morphology and cytoskeletal changes. The second part will be focused on the description of a proteomic approach aimed at investigating the effect of this crosstalk from another point of view, i.e., characterizing the cellular and molecular pathways modulated in tumor cells following interaction with NK cells. The chapter centers on the interaction between NK and melanoma cells and refers to experimental approaches we set up to study the effects of this cross-talk on the process of the Epithelial-to-Mesenchymal Transition (EMT). Nevertheless, the described protocols can be quite easily adapted to study the interaction of NK cells with adherent tumor cell lines of different origin and histotype, as in our original study, we also analyzed possible NK-induced morphologic changes in the cervix adenocarcinoma HeLa cells and the colon cancer HT29 cells.
Collapse
Affiliation(s)
- Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Orecchia
- IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Massimo Vitale
- IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy.
| | - Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy; Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Monica Parodi
- IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
12
|
Mei Y, Zhao L, Jiang M, Yang F, Zhang X, Jia Y, Zhou N. Characterization of glucose metabolism in breast cancer to guide clinical therapy. Front Surg 2022; 9:973410. [PMID: 36277284 PMCID: PMC9580338 DOI: 10.3389/fsurg.2022.973410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Background Breast cancer (BRCA) ranks as a leading cause of cancer death in women worldwide. Glucose metabolism is a noticeable characteristic of the occurrence of malignant tumors. In this study, we aimed to construct a novel glycometabolism-related gene (GRG) signature to predict overall survival (OS), immune infiltration and therapeutic response in BRCA patients. Materials and methods The mRNA sequencing and corresponding clinical data of BRCA patients were obtained from public cohorts. Lasso regression was applied to establish a GRG signature. The immune infiltration was evaluated with the ESTIMATE and CIBERSORT algorithms. The drug sensitivity was estimated using the value of IC50, and further forecasted the therapeutic response of each patient. The candidate target was selected in Cytoscape. A nomogram was constructed via the R package of “rms”. Results We constructed a six-GRG signature based on CACNA1H, CHPF, IRS2, NT5E, SDC1 and ATP6AP1, and the high-risk patients were correlated with poorer OS (P = 2.515 × 10−7). M2 macrophage infiltration was considerably superior in high-risk patients, and CD8+ T cell infiltration was significantly higher in low-risk patients. Additionally, the high-risk group was more sensitive to Lapatinib. Fortunately, SDC1 was recognized as candidate target and patients had a better OS in the low-SDC1 group. A nomogram integrating the GRG signature was developed, and calibration curves were consistent between the actual and predicted OS. Conclusions We identified a novel GRG signature complementing the present understanding of the targeted therapy and immune biomarker in breast cancer. The GRGs may provide fresh insights for individualized management of BRCA patients.
Collapse
Affiliation(s)
- Yingying Mei
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lantao Zhao
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Man Jiang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fangfang Yang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yizhen Jia
- Core Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Correspondence: Na Zhou Yizhen Jia
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Correspondence: Na Zhou Yizhen Jia
| |
Collapse
|
13
|
Yang Z, Chen S, Ying H, Yao W. Targeting syndecan-1: new opportunities in cancer therapy. Am J Physiol Cell Physiol 2022; 323:C29-C45. [PMID: 35584326 PMCID: PMC9236862 DOI: 10.1152/ajpcell.00024.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022]
Abstract
Syndecan-1 (SDC1, CD138) is one of the heparan sulfate proteoglycans and is essential for maintaining normal cell morphology, interacting with the extracellular and intracellular protein repertoire, as well as mediating signaling transduction upon environmental stimuli. The critical role of SDC1 in promoting tumorigenesis and metastasis has been increasingly recognized in various cancer types, implying a promising potential of utilizing SDC1 as a novel target for cancer therapy. This review summarizes the current knowledge on SDC1 structure and functions, including its role in tumor biology. We also discuss the highlights and limitations of current SDC1-targeted therapies as well as the obstacles in developing new therapeutic methods, offering our perspective on the future directions to target SDC1 for cancer treatment.
Collapse
Affiliation(s)
- Zecheng Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shuaitong Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wantong Yao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Yue Y, Lou Y, Liu X, Peng X. Vasculogenic mimicry in head and neck tumors: a narrative review. Transl Cancer Res 2021; 10:3044-3052. [PMID: 35116612 PMCID: PMC8798303 DOI: 10.21037/tcr-21-34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/10/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To discuss the role and mechanism of vasculogenic mimicry (VM) and to provide reference for the further research of VM in head and neck tumors. BACKGROUND Head and neck tumors are common in the clinic, and tumor metastasis is clinically difficult to treat. VM is another tumor blood supply mode that is different from angiogenesis and plays an important role in tumor growth, metastasis, and invasion. At present, studies on VM have mainly focused on breast cancer, melanoma, glioblastoma, and other cancers. With time, VM has become a hotspot in head and neck tumor research. METHODS We searched published English literatures from 2015 to 2020 on PubMed. In this paper, we review the progress of VM in head and neck tumors from 7 different perspectives. VM has two distinct types, namely tubular type and patterned matrix type. VM is associated with high tumor grade, tumor progression, invasion, metastasis, and poor prognosis in patients with head and neck tumors. We discuss the recent studies on the effects of immune cells and Epstein-Barr virus on VM in head and neck tumors. Furthermore, we also summarize the molecular mechanism of VM formation in head and neck tumors. Finally, we discussed the possibility of VM-targeted therapy in the clinical treatment of head and neck tumors. CONCLUSIONS VM plays a critical role in tumor invasion, metastasis, and poor prognosis in patients with head and neck tumors. There is potential for VM as a potential new antitumor target. VM has become a hotspot in head and neck tumor research.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfan Lou
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiong Liu
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohong Peng
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Deng M, Wu D, Zhang Y, Jin Z, Miao J. MiR-29c downregulates tumor-expressed B7-H3 to mediate the antitumor NK-cell functions in ovarian cancer. Gynecol Oncol 2021; 162:190-199. [PMID: 33875234 DOI: 10.1016/j.ygyno.2021.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE B7-H3 is a member of the B7 family of immune checkpoint molecule. Although B7-H3 has been shown to regulate T cell-mediated peripheral immune response, whether it also correlated with NK cell exhaustion in ovarian cancer remains unclear. The purpose of this study was to explore the mechanism of B7-H3 regulating NK-cell proliferation and function. MATERIAL AND METHODS To investigate the relationship between B7-H3 expression and the NK-cell function in ovarian cancer, human ovarian tumor tissues and cell lines were first examined the protein and mRNA expression of B7-H3 by quantitative real-time PCR (qRT-PCR), Immunohistochemistry and Western-blot assays. Then we established B7-H3 knockout cell lines and measured the cytotoxicity of NK cells on these cells by LDH release assay and Flow Cytometry. In addition, we analyzed B7-H3 in the regulation of glycolysis and glycolysis-related proteins by Glycolysis Stress Test, Glucose Consumption Assay and Western-blot. Moreover, luciferase reporter assay was used to confirm the directly regulation of miR-29c to B7-H3. Finally, we carried out in vivo experiments. RESULTS We observed that tumor-expressed B7-H3 inhibits NK-cell function in vitro and in vivo, and is associated with glycolysis of ovarian cancer cell. Therapeutically, B7-H3 blockade prolonged the survival of SKOV3 tumor-bearing mice. In addition, miR-29c improved the anti-tumor efficacy of NK-cell by directly targeting B7-H3 in vitro were observed, but not in vivo. CONCLUSION Our results demonstrate that miR-29c downregulates B7-H3 to inhibit NK-cell exhaustion and associated with glycolysis, which suggest that NK cells may be a new target of anti-B7-H3 therapy in ovarian cancer patients.
Collapse
Affiliation(s)
- Mengqi Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| | - Di Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| | - Yanqin Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| | - Zhaoyu Jin
- National Center for Protein Science, Beijing, China.
| | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Runbeck E, Crescioli S, Karagiannis SN, Papa S. Utilizing Immunocytokines for Cancer Therapy. Antibodies (Basel) 2021; 10:antib10010010. [PMID: 33803078 PMCID: PMC8006145 DOI: 10.3390/antib10010010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokine therapy for cancer has indicated efficacy in certain diseases but is generally accompanied by severe toxicity. The field of antibody-cytokine fusion proteins (immunocytokines) arose to target these effector molecules to the tumor environment in order to expand the therapeutic window of cytokine therapy. Pre-clinical evidence has shown the increased efficacy and decreased toxicity of various immunocytokines when compared to their cognate unconjugated cytokine. These anti-tumor properties are markedly enhanced when combined with other treatments such as chemotherapy, radiotherapy, and checkpoint inhibitor antibodies. Clinical trials that have continued to explore the potential of these biologics for cancer therapy have been conducted. This review covers the in vitro, in vivo, and clinical evidence for the application of immunocytokines in immuno-oncology.
Collapse
Affiliation(s)
- Erin Runbeck
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophie Papa
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
- Correspondence:
| |
Collapse
|
17
|
Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, Ren D, Hua Y, Yu B, Zhou Y, Liao Q, Wang H, Xiang B, Zhou M, Li X, Li G, Li Y, Xiong W, Zeng Z. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer 2021; 20:7. [PMID: 33397409 PMCID: PMC7784348 DOI: 10.1186/s12943-020-01288-1] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Vasculogenic mimicry (VM) is a recently discovered angiogenetic process found in many malignant tumors, and is different from the traditional angiogenetic process involving vascular endothelium. It involves the formation of microvascular channels composed of tumor cells; therefore, VM is considered a new model for the formation of new blood vessels in aggressive tumors, and can provide blood supply for tumor growth. Many studies have pointed out that in recent years, some clinical treatments against angiogenesis have not been satisfactory possibly due to the activation of VM. Although the mechanisms underlying VM have not been fully elucidated, increasing research on the soil “microenvironment” for tumor growth suggests that the initial hypoxic environment in solid tumors is inseparable from VM. Main body In this review, we describe that the stemness and differentiation potential of cancer stem cells are enhanced under hypoxic microenvironments, through hypoxia-induced epithelial-endothelial transition (EET) and extracellular matrix (ECM) remodeling to form the specific mechanism of vasculogenic mimicry; we also summarized some of the current drugs targeting VM through these processes, suggesting a new reference for the clinical treatment of tumor angiogenesis. Conclusion Overall, the use of VM inhibitors in combination with conventional anti-angiogenesis treatments is a promising strategy for improving the effectiveness of targeted angiogenesis treatments; further, considering the importance of hypoxia in tumor invasion and metastasis, drugs targeting the hypoxia signaling pathway seem to achieve good results.
Collapse
Affiliation(s)
- Xiaoxu Wei
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunhua Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Miao Peng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yiduo Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Daixi Ren
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yuze Hua
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Boyao Yu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21186588. [PMID: 32916872 PMCID: PMC7554799 DOI: 10.3390/ijms21186588] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Collapse
|
19
|
Lim D, Do Y, Kwon BS, Chang W, Lee MS, Kim J, Cho JG. Angiogenesis and vasculogenic mimicry as therapeutic targets in ovarian cancer. BMB Rep 2020. [PMID: 32438972 PMCID: PMC7330806 DOI: 10.5483/bmbrep.2020.53.6.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tumor angiogenesis is an essential process for growth and metastasis of cancer cells as it supplies tumors with oxygen and nutrients. During tumor angiogenesis, many pro-angiogenic factors are secreted by tumor cells to induce their own vascularization via activation of pre-existing host endothelium. However, accumulating evidence suggests that vasculogenic mimicry (VM) is a key alternative mechanism for tumor vascularization when tumors are faced with insufficient supply of oxygen and nutrients. VM is a tumor vascularization mechanism in which tumors create a blood supply system, in contrast to tumor angiogenesis mechanisms that depend on pre-existing host endothelium. VM is closely associated with tumor progression and poor prognosis in many cancers. Therefore, inhibition of VM may be a promising therapeutic strategy and may overcome the limitations of anti-angiogenesis therapy for cancer patients. In this review, we provide an overview of the current anti-angiogenic therapies for ovarian cancer and the current state of knowledge regarding the links between microRNAs and the VM process, with a focus on the mechanism that regulates associated signaling pathways in ovarian cancer. Moreover, we discuss the potential for VM as a therapeutic strategy against ovarian cancer.
Collapse
Affiliation(s)
- Dansaem Lim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yeojin Do
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Byung Su Kwon
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Korea
| | - Myeong-Sok Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jin Gu Cho
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|