1
|
Prosdocimi E, Carpanese V, Todesca LM, Varanita T, Bachmann M, Festa M, Bonesso D, Perez-Verdaguer M, Carrer A, Velle A, Peruzzo R, Muccioli S, Doni D, Leanza L, Costantini P, Stein F, Rettel M, Felipe A, Edwards MJ, Gulbins E, Cendron L, Romualdi C, Checchetto V, Szabo I. BioID-based intact cell interactome of the Kv1.3 potassium channel identifies a Kv1.3-STAT3-p53 cellular signaling pathway. SCIENCE ADVANCES 2024; 10:eadn9361. [PMID: 39231216 PMCID: PMC11373599 DOI: 10.1126/sciadv.adn9361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
Kv1.3 is a multifunctional potassium channel implicated in multiple pathologies, including cancer. However, how it is involved in disease progression is not fully clear. We interrogated the interactome of Kv1.3 in intact cells using BioID proximity labeling, revealing that Kv1.3 interacts with STAT3- and p53-linked pathways. To prove the relevance of Kv1.3 and of its interactome in the context of tumorigenesis, we generated stable melanoma clones, in which ablation of Kv1.3 remodeled gene expression, reduced proliferation and colony formation, yielded fourfold smaller tumors, and decreased metastasis in vivo in comparison to WT cells. Kv1.3 deletion or pharmacological inhibition of mitochondrial Kv1.3 increased mitochondrial Reactive Oxygen Species release, decreased STAT3 phosphorylation, stabilized the p53 tumor suppressor, promoted metabolic switch, and altered the expression of several BioID-identified Kv1.3-networking proteins in tumor tissues. Collectively, our work revealed the tumor-promoting Kv1.3-interactome landscape, thus opening the way to target Kv1.3 not only as an ion-conducting entity but also as a signaling hub.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrea Carrer
- Department of Biology, University of Padova, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Angelo Velle
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Davide Doni
- Department of Biology, University of Padova, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Antonio Felipe
- Molecular Physiology Laboratory, Department de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | | | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Kolathur KK, Nag R, Shenoy PV, Malik Y, Varanasi SM, Angom RS, Mukhopadhyay D. Molecular Susceptibility and Treatment Challenges in Melanoma. Cells 2024; 13:1383. [PMID: 39195270 PMCID: PMC11352263 DOI: 10.3390/cells13161383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Melanoma is the most aggressive subtype of cancer, with a higher propensity to spread compared to most solid tumors. The application of OMICS approaches has revolutionized the field of melanoma research by providing comprehensive insights into the molecular alterations and biological processes underlying melanoma development and progression. This review aims to offer an overview of melanoma biology, covering its transition from primary to malignant melanoma, as well as the key genes and pathways involved in the initiation and progression of this disease. Utilizing online databases, we extensively explored the general expression profile of genes, identified the most frequently altered genes and gene mutations, and examined genetic alterations responsible for drug resistance. Additionally, we studied the mechanisms responsible for immune checkpoint inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India;
| | - Radhakanta Nag
- Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture & Technology (OUAT), Bhubaneswar 751003, Odisha, India;
| | - Prathvi V Shenoy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Yagya Malik
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| |
Collapse
|
3
|
Zhang X, Li J, Yang L, Zhu Y, Gao R, Zhang T, Chen X, Fu J, He G, Shi H, Peng S, Wu X. Targeted proteomics-determined multi-biomarker profiles developed classifier for prognosis and immunotherapy responses of advanced cervical cancer. Front Immunol 2024; 15:1391524. [PMID: 38835778 PMCID: PMC11148239 DOI: 10.3389/fimmu.2024.1391524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Background Cervical cancer (CC) poses a global health challenge, with a particularly poor prognosis in cases of recurrence, metastasis, or advanced stages. A single biomarker is inadequate to predict CC prognosis or identify CC patients likely to benefit from immunotherapy, presumably owing to tumor complexity and heterogeneity. Methods Using advanced Olink proteomics, we analyzed 92 oncology-related proteins in plasma from CC patients receiving immunotherapy, based upon the comparison of protein expression levels of pre-therapy with those of therapy-Cycle 6 in the partial response (PR) group and progressive disease (PD) group, respectively. Results 55 proteins were identified to exhibit differential expression trends across pre-therapy and post-therapy in both PR and PD groups. Enriched GO terms and KEGG pathways were associated with vital oncological and immunological processes. A logistic regression model, using 5 proteins (ITGB5, TGF-α, TLR3, WIF-1, and ERBB3) with highest AUC values, demonstrated good predictive performance for prognosis of CC patients undergoing immunotherapy and showed potential across different cancer types. The effectiveness of these proteins in prognosis prediction was further validated using TCGA-CESC datasets. A negative correlation and previously unidentified roles of WIF-1 in CC immunotherapy was also first determined. Conclusion Our findings reveal multi-biomarker profiles effectively predicting CC prognosis and identifying patients benefitting most from immunotherapy, especially for those with limited treatment options and traditionally poor prognosis, paving the way for personalized immunotherapeutic treatments and improved clinical strategies.
Collapse
Affiliation(s)
- Xu Zhang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jin Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liuke Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Youwei Zhu
- Clinical Center of Bio-Therapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Rongrong Gao
- Clinical Center for Biotherapy at Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tiancheng Zhang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Xuwen Chen
- Shanghai Kelin Clinical Bioinformatics Institute, Shanghai, China
| | - Jun Fu
- LC-Bio Technology Co., Ltd, Hangzhou, China
| | - Gaoyang He
- LC-Bio Technology Co., Ltd, Hangzhou, China
| | - Huijuan Shi
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Shenjie Peng
- Shanghai Medical College of Fudan University, Fudan University, Shanghai, China
| | - XiaoHua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Castaldo V, Minopoli M, Di Modugno F, Sacconi A, Liguoro D, Frigerio R, Ortolano A, Di Martile M, Gesualdi L, Madonna G, Capone M, Cirombella R, Catizone A, Del Bufalo D, Vecchione A, Carriero MV, Ascierto PA, Mancini R, Fattore L, Ciliberto G. Upregulated expression of miR-4443 and miR-4488 in drug resistant melanomas promotes migratory and invasive phenotypes through downregulation of intermediate filament nestin. J Exp Clin Cancer Res 2023; 42:317. [PMID: 38008717 PMCID: PMC10680267 DOI: 10.1186/s13046-023-02878-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/29/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND BRAF-mutant melanoma patients benefit from the combinatorial treatments with BRAF and MEK inhibitors. However, acquired drug resistance strongly limits the efficacy of these targeted therapies in time. Recently, many findings have underscored the involvement of microRNAs as main drivers of drug resistance. In this context, we previously identified a subset of oncomiRs strongly up-regulated in drug-resistant melanomas. In this work, we shed light on the molecular role of two as yet poorly characterized oncomiRs, miR-4443 and miR-4488. METHODS Invasion and migration have been determined by wound healing, transwell migration/invasion assays and Real Time Cell Analysis (RTCA) technology. miR-4488 and miR-4443 have been measured by qRT-PCR. Nestin levels have been tested by western blot, confocal immunofluorescence, immunohistochemical and flow cytometry analyses. RESULTS We demonstrate that the two oncomiRs are responsible for the enhanced migratory and invasive phenotypes, that are a hallmark of drug resistant melanoma cells. Moreover, miR-4443 and miR-4488 promote an aberrant cytoskeletal reorganization witnessed by the increased number of stress fibers and cellular protrusions-like cancer cell invadopodia. Mechanistically, we identified the intermediate filament nestin as a molecular target of both oncomiRs. Finally, we have shown that nestin levels are able to predict response to treatments in melanoma patients. CONCLUSIONS Altogether these findings have profound translational implications in the attempt i) to develop miRNA-targeting therapies to mitigate the metastatic phenotypes of BRAF-mutant melanomas and ii) to identify novel biomarkers able to guide clinical decisions.
Collapse
Affiliation(s)
- Vittorio Castaldo
- Department of Anatomy, Histology, Forensic- Medicine and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Michele Minopoli
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale', 80131, Naples, Italy
| | - Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Andrea Sacconi
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Domenico Liguoro
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Rachele Frigerio
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Arianna Ortolano
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Luisa Gesualdi
- Department of Anatomy, Histology, Forensic- Medicine and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Gabriele Madonna
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale', 80131, Naples, Italy
| | - Mariaelena Capone
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale', 80131, Naples, Italy
| | - Roberto Cirombella
- Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, 00118, Rome, Italy
| | - Angiolina Catizone
- Department of Anatomy, Histology, Forensic- Medicine and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Andrea Vecchione
- Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, 00118, Rome, Italy
| | - Maria Vincenza Carriero
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale', 80131, Naples, Italy
| | - Paolo Antonio Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale', 80131, Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
- Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, 00118, Rome, Italy
| | - Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| |
Collapse
|
5
|
Valentini E, Di Martile M, Brignone M, Di Caprio M, Manni I, Chiappa M, Sergio I, Chiacchiarini M, Bazzichetto C, Conciatori F, D'Aguanno S, D'Angelo C, Ragno R, Russillo M, Colotti G, Marchesi F, Bellone ML, Dal Piaz F, Felli MP, Damia G, Del Bufalo D. Bcl-2 family inhibitors sensitize human cancer models to therapy. Cell Death Dis 2023; 14:441. [PMID: 37460459 DOI: 10.1038/s41419-023-05963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
BH3 mimetics, targeting the Bcl-2 family anti-apoptotic proteins, represent a promising therapeutic opportunity in cancers. ABT-199, the first specific Bcl-2 inhibitor, was approved by FDA for the treatment of several hematological malignancies. We have recently discovered IS21, a novel pan BH3 mimetic with preclinical antitumor activity in several tumor types. Here, we evaluated the efficacy of IS21 and other BH3 mimetics, both as single agents and combined with the currently used antineoplastic agents in T-cell acute lymphoblastic leukemia, ovarian cancer, and melanoma. IS21 was found to be active in T-cell acute lymphoblastic leukemia, melanoma, lung, pancreatic, and ovarian cancer cell lines. Bcl-xL and Mcl-1 protein levels predicted IS21 sensitivity in melanoma and ovarian cancer, respectively. Exploring IS21 mechanism of action, we found that IS21 activity depends on the presence of BAX and BAK proteins: complexes between Bcl-2 and Bcl-xL proteins and their main binding partners were reduced after IS21 treatment. In combination experiments, BH3 mimetics sensitized leukemia cells to chemotherapy, ovarian cancer cells and melanoma models to PARP and MAPK inhibitors, respectively. We showed that this enhancing effect was related to the potentiation of the apoptotic pathway, both in hematologic and solid tumors. In conclusion, our data suggest the use of inhibitors of anti-apoptotic proteins as a therapeutic strategy to enhance the efficacy of anticancer treatment.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Matteo Brignone
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marica Di Caprio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Michela Chiappa
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Chiacchiarini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Bazzichetto
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiana Conciatori
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Michelangelo Russillo
- Division of Medical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| | - Francesco Marchesi
- Hematology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Laura Bellone
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanna Damia
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
6
|
Xie X, Shirasu T, Li J, Guo LW, Kent KC. miR579-3p is an inhibitory modulator of neointimal hyperplasia and transcription factors c-MYB and KLF4. Cell Death Discov 2023; 9:73. [PMID: 36813774 PMCID: PMC9946956 DOI: 10.1038/s41420-023-01364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Neointimal hyperplasia (IH) is a common vascular pathology that typically manifests in in-stent restenosis and bypass vein graft failure. Smooth muscle cell (SMC) phenotypic switching is central to IH, both regulated by some microRNAs, yet the role of miR579-3p, a scarcely studied microRNA, is not known. Unbiased bioinformatic analysis suggested that miR579-3p was repressed in human primary SMCs treated with different pro-IH cytokines. Moreover, miR579-3p was software-predicted to target both c-MYB and KLF4 - two master transcription factors known to promote SMC phenotypic switching. Interestingly, treating injured rat carotid arteries via local infusion of miR579-3p-expressing lentivirus reduced IH 14 days after injury. In cultured human SMCs, transfection with miR579-3p inhibited SMC phenotypic switching, as indicated by decreased proliferation/migration and increased SMC contractile proteins. miR579-3p transfection downregulated c-MYB and KLF4, and luciferase assays indicated miR579-3p's targeting of the 3'UTRs of the c-MYB and KLF4 mRNAs. In vivo, immunohistochemistry showed that treatment of injured rat arteries with the miR579-3p lentivirus reduced c-MYB and KLF4 and increased SMC contractile proteins. Thus, this study identifies miR579-3p as a previously unrecognized small-RNA inhibitor of IH and SMC phenotypic switch involving its targeting of c-MYB and KLF4. Further studies on miR579-3p may provide an opportunity for translation to develop IH-mitigating new therapeutics.
Collapse
Affiliation(s)
- Xiujie Xie
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.
| | - Takuro Shirasu
- grid.27755.320000 0000 9136 933XDepartment of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| | - Jing Li
- grid.27755.320000 0000 9136 933XDepartment of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA. .,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA.
| | - K. Craig Kent
- grid.27755.320000 0000 9136 933XDepartment of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| |
Collapse
|
7
|
Wang Z, Dong J, Wu L, Dai C, Wang J, Wen Y, Zhang Y, Yang X, He S, Bo X. DEML: Drug Synergy and Interaction Prediction Using Ensemble-Based Multi-Task Learning. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020844. [PMID: 36677903 PMCID: PMC9861702 DOI: 10.3390/molecules28020844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Synergistic drug combinations have demonstrated effective therapeutic effects in cancer treatment. Deep learning methods accelerate identification of novel drug combinations by reducing the search space. However, potential adverse drug-drug interactions (DDIs), which may increase the risks for combination therapy, cannot be detected by existing computational synergy prediction methods. We propose DEML, an ensemble-based multi-task neural network, for the simultaneous optimization of five synergy regression prediction tasks, synergy classification, and DDI classification tasks. DEML uses chemical and transcriptomics information as inputs. DEML adapts the novel hybrid ensemble layer structure to construct higher order representation using different perspectives. The task-specific fusion layer of DEML joins representations for each task using a gating mechanism. For the Loewe synergy prediction task, DEML overperforms the state-of-the-art synergy prediction method with an improvement of 7.8% and 13.2% for the root mean squared error and the R2 correlation coefficient. Owing to soft parameter sharing and ensemble learning, DEML alleviates the multi-task learning 'seesaw effect' problem and shows no performance loss on other tasks. DEML has a superior ability to predict drug pairs with high confidence and less adverse DDIs. DEML provides a promising way to guideline novel combination therapy strategies for cancer treatment.
Collapse
Affiliation(s)
- Zhongming Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Jiahui Dong
- Department of Pharmaceutical Sciences, Institute of Radiation Medicine, Beijing 100850, China
| | - Lianlian Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Chong Dai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Wang
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuqi Wen
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Yixin Zhang
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Xiaoxi Yang
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Song He
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
- Correspondence: (S.H.); (X.B.)
| | - Xiaochen Bo
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
- Correspondence: (S.H.); (X.B.)
| |
Collapse
|
8
|
Fattore L, Cafaro G, Di Martile M, Campani V, Sacconi A, Liguoro D, Marra E, Bruschini S, Stoppoloni D, Cirombella R, De Nicola F, Pallocca M, Ruggiero CF, Castaldo V, Catizone A, Del Bufalo D, Viglietto G, Vecchione A, Blandino G, Aurisicchio L, Fanciulli M, Ascierto PA, De Rosa G, Mancini R, Ciliberto G. Oncosuppressive miRNAs loaded in lipid nanoparticles potentiate targeted therapies in BRAF-mutant melanoma by inhibiting core escape pathways of resistance. Oncogene 2023; 42:293-307. [PMID: 36418472 PMCID: PMC9684877 DOI: 10.1038/s41388-022-02547-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
BRAF-mutated melanoma relapsing after targeted therapies is an aggressive disease with unmet clinical need. Hence the need to identify novel combination therapies able to overcome drug resistance. miRNAs have emerged as orchestrators of non-genetic mechanisms adopted by melanoma cells to challenge therapies. In this context we previously identified a subset of oncosuppressor miRNAs downregulated in drug-resistant melanomas. Here we demonstrate that lipid nanoparticles co-encapsulating two of them, miR-199-5p and miR-204-5p, inhibit tumor growth both in vitro and in vivo in combination with target therapy and block the development of drug resistance. Mechanistically they act by directly reducing melanoma cell growth and also indirectly by hampering the recruitment and reprogramming of pro-tumoral macrophages. Molecularly, we demonstrate that the effects on macrophages are mediated by the dysregulation of a newly identified miR-204-5p-miR-199b-5p/CCL5 axis. Finally, we unveiled that M2 macrophages programs are molecular signatures of resistance and predict response to therapy in patients. Overall, these findings have strong translational implications to propose new combination therapies making use of RNA therapeutics for metastatic melanoma patients.
Collapse
Affiliation(s)
- Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Giordana Cafaro
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Virginia Campani
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Andrea Sacconi
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Domenico Liguoro
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
- Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital-Sapienza University of Rome, 00118, Rome, Italy
| | | | - Sara Bruschini
- Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital-Sapienza University of Rome, 00118, Rome, Italy
| | | | - Roberto Cirombella
- Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital-Sapienza University of Rome, 00118, Rome, Italy
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Matteo Pallocca
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Ciro F Ruggiero
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131, Naples, Italy
| | - Vittorio Castaldo
- Department of Anatomy, Histology, Forensic- Medicine and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Angiolina Catizone
- Department of Anatomy, Histology, Forensic- Medicine and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Andrea Vecchione
- Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital-Sapienza University of Rome, 00118, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | | | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Paolo A Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131, Naples, Italy
| | - Giuseppe De Rosa
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
- Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital-Sapienza University of Rome, 00118, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
9
|
Zhang Y, Liang S, Xiao B, Hu J, Pang Y, Liu Y, Yang J, Ao J, Wei L, Luo X. MiR-323a regulates ErbB3/EGFR and blocks gefitinib resistance acquisition in colorectal cancer. Cell Death Dis 2022; 13:256. [PMID: 35319011 PMCID: PMC8940899 DOI: 10.1038/s41419-022-04709-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
Abstract
The rapid onset of resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) limits its clinical utility in colorectal cancer (CRC) patients, and pan-erb-b2 receptor tyrosine kinase (ErbB) treatment strategy may be the alternative solution. The aim of this study was to develop a possible microRNA multi-ErbB treatment strategy to overcome EGFR-TKI resistance. We detect the receptor tyrosine kinase activity in gefitinib-resistant colorectal cancer cells, ErbB3/EGFR is significantly activated and provides a potential multi-ErbB treatment target. MiR-323a-3p, a tumor suppressor, could target both ErbB3 and EGFR directly. Apoptosis is the miR-323a-3p inducing main biological process by functional enrichment analysis, and The EGFR and ErbB signaling are the miR-323a-3p inducing main pathway by KEGG analysis. MiR-323a-3p promotes CRC cells apoptosis by targeting ErbB3-phosphoinositide 3-kinases (PI3K)/PKB protein kinase (Akt)/glycogen synthase kinase 3 beta (GSK3β)/EGFR-extracellular regulated MAP kinase (Erk1/2) signaling directly. And miR-323a-3p, as a multi-ErbBs inhibitor, increase gefitinib sensitivity of the primary cell culture from combination miR-323a-3p and gefitinib treated subcutaneous tumors. MiR-323a-3p reverses ErbB3/EGFR signaling activation in gefitinib-resistant CRC cell lines and blocks acquired gefitinib resistance.
Collapse
Affiliation(s)
- Yuanzhou Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Shunshun Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Bowen Xiao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Jingying Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Yechun Pang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Yuling Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Juan Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Junpin Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Lin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Xiaoying Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
10
|
Lai X, Zhou J, Wessely A, Heppt M, Maier A, Berking C, Vera J, Zhang L. A disease network-based deep learning approach for characterizing melanoma. Int J Cancer 2021; 150:1029-1044. [PMID: 34716589 DOI: 10.1002/ijc.33860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Multiple types of genomic variations are present in cutaneous melanoma and some of the genomic features may have an impact on the prognosis of the disease. The access to genomics data via public repositories such as The Cancer Genome Atlas (TCGA) allows for a better understanding of melanoma at the molecular level, therefore making characterization of substantial heterogeneity in melanoma patients possible. Here, we proposed an approach that integrates genomics data, a disease network, and a deep learning model to classify melanoma patients for prognosis, assess the impact of genomic features on the classification and provide interpretation to the impactful features. We integrated genomics data into a melanoma network and applied an autoencoder model to identify subgroups in TCGA melanoma patients. The model utilizes communities identified in the network to effectively reduce the dimensionality of genomics data into a patient score profile. Based on the score profile, we identified three patient subtypes that show different survival times. Furthermore, we quantified and ranked the impact of genomic features on the patient score profile using a machine-learning technique. Follow-up analysis of the top-ranking features provided us with the biological interpretation of them at both pathway and molecular levels, such as their mutation and interactome profiles in melanoma and their involvement in pathways associated with signaling transduction, immune system and cell cycle. Taken together, we demonstrated the ability of the approach to identify disease subgroups using a deep learning model that captures the most relevant information of genomics data in the melanoma network.
Collapse
Affiliation(s)
- Xin Lai
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Jinfei Zhou
- College of Computer Science, Sichuan University, Chengdu, China
| | - Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Markus Heppt
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Le Zhang
- College of Computer Science, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Madonna G, Masucci GV, Capone M, Mallardo D, Grimaldi AM, Simeone E, Vanella V, Festino L, Palla M, Scarpato L, Tuffanelli M, D’angelo G, Villabona L, Krakowski I, Eriksson H, Simao F, Lewensohn R, Ascierto PA. Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy. Cancers (Basel) 2021; 13:4164. [PMID: 34439318 PMCID: PMC8391717 DOI: 10.3390/cancers13164164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/31/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanoma patients treated with ICIs at the Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale" of Napoli, Italy (INT-NA). To compare patients' clinical variables (i.e., age, lactate dehydrogenase (LDH), neutrophil-lymphocyte ratio (NLR), eosinophil, BRAF status, previous treatment) and their predictive and prognostic power in a comprehensive, non-hierarchical manner, a clinical categorization algorithm (CLICAL) was defined and validated by the application of a machine learning algorithm-survival random forest (SRF-CLICAL). The comprehensive analysis of the clinical parameters by log risk-based algorithms resulted in predictive signatures that could identify groups of patients with great benefit or not, regardless of the ICI received. From a real-life retrospective analysis of metastatic melanoma patients, we generated and validated an algorithm based on machine learning that could assist with the clinical decision of whether or not to apply ICI therapy by defining five signatures of predictability with 95% accuracy.
Collapse
Affiliation(s)
- Gabriele Madonna
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (D.M.); (A.M.G.); (E.S.); (V.V.); (L.F.); (M.P.); (L.S.); (M.T.); (G.D.)
| | - Giuseppe V. Masucci
- Theme Cancer, Karolinska University Hospital, 171 76 Stockholm, Sweden; (G.V.M.); (L.V.); (H.E.); (R.L.)
- Department of Oncology and Pathology, Karolinska Institutet, 171 64 Stockholm, Sweden;
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (D.M.); (A.M.G.); (E.S.); (V.V.); (L.F.); (M.P.); (L.S.); (M.T.); (G.D.)
| | - Domenico Mallardo
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (D.M.); (A.M.G.); (E.S.); (V.V.); (L.F.); (M.P.); (L.S.); (M.T.); (G.D.)
| | - Antonio Maria Grimaldi
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (D.M.); (A.M.G.); (E.S.); (V.V.); (L.F.); (M.P.); (L.S.); (M.T.); (G.D.)
| | - Ester Simeone
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (D.M.); (A.M.G.); (E.S.); (V.V.); (L.F.); (M.P.); (L.S.); (M.T.); (G.D.)
| | - Vito Vanella
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (D.M.); (A.M.G.); (E.S.); (V.V.); (L.F.); (M.P.); (L.S.); (M.T.); (G.D.)
| | - Lucia Festino
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (D.M.); (A.M.G.); (E.S.); (V.V.); (L.F.); (M.P.); (L.S.); (M.T.); (G.D.)
| | - Marco Palla
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (D.M.); (A.M.G.); (E.S.); (V.V.); (L.F.); (M.P.); (L.S.); (M.T.); (G.D.)
| | - Luigi Scarpato
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (D.M.); (A.M.G.); (E.S.); (V.V.); (L.F.); (M.P.); (L.S.); (M.T.); (G.D.)
| | - Marilena Tuffanelli
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (D.M.); (A.M.G.); (E.S.); (V.V.); (L.F.); (M.P.); (L.S.); (M.T.); (G.D.)
| | - Grazia D’angelo
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (D.M.); (A.M.G.); (E.S.); (V.V.); (L.F.); (M.P.); (L.S.); (M.T.); (G.D.)
| | - Lisa Villabona
- Theme Cancer, Karolinska University Hospital, 171 76 Stockholm, Sweden; (G.V.M.); (L.V.); (H.E.); (R.L.)
| | - Isabelle Krakowski
- Department of Oncology and Pathology, Karolinska Institutet, 171 64 Stockholm, Sweden;
- Theme Inflammation, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Hanna Eriksson
- Theme Cancer, Karolinska University Hospital, 171 76 Stockholm, Sweden; (G.V.M.); (L.V.); (H.E.); (R.L.)
- Department of Oncology and Pathology, Karolinska Institutet, 171 64 Stockholm, Sweden;
| | - Felipe Simao
- Genevia Technologies OY, 33100 Tampere, Finland;
| | - Rolf Lewensohn
- Theme Cancer, Karolinska University Hospital, 171 76 Stockholm, Sweden; (G.V.M.); (L.V.); (H.E.); (R.L.)
- Department of Oncology and Pathology, Karolinska Institutet, 171 64 Stockholm, Sweden;
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (G.M.); (M.C.); (D.M.); (A.M.G.); (E.S.); (V.V.); (L.F.); (M.P.); (L.S.); (M.T.); (G.D.)
| |
Collapse
|
12
|
Kumar V, Vashishta M, Kong L, Wu X, Lu JJ, Guha C, Dwarakanath BS. The Role of Notch, Hedgehog, and Wnt Signaling Pathways in the Resistance of Tumors to Anticancer Therapies. Front Cell Dev Biol 2021; 9:650772. [PMID: 33968932 PMCID: PMC8100510 DOI: 10.3389/fcell.2021.650772] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Resistance to therapy is the major hurdle in the current cancer management. Cancer cells often rewire their cellular process to alternate mechanisms to resist the deleterious effect mounted by different therapeutic approaches. The major signaling pathways involved in the developmental process, such as Notch, Hedgehog, and Wnt, play a vital role in development, tumorigenesis, and also in the resistance to the various anticancer therapies. Understanding how cancer utilizes these developmental pathways in acquiring the resistance to the multi-therapeutic approach cancer can give rise to a new insight of the anti-therapy resistance mechanisms, which can be explored for the development of a novel therapeutic approach. We present a brief overview of Notch, Hedgehog, and Wnt signaling pathways in cancer and its role in providing resistance to various cancer treatment modalities such as chemotherapy, radiotherapy, molecular targeted therapy, and immunotherapy. Understanding the importance of these molecular networks will provide a rational basis for novel and safer combined anticancer therapeutic approaches for the improvement of cancer treatment by overcoming drug resistance.
Collapse
Affiliation(s)
- Vivek Kumar
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Mohit Vashishta
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Xiaodong Wu
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade J Lu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Chandan Guha
- Albert Einstein College of Medicine, The Bronx, NY, United States
| | - B S Dwarakanath
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
13
|
Fattore L, Ruggiero CF, Liguoro D, Castaldo V, Catizone A, Ciliberto G, Mancini R. The Promise of Liquid Biopsy to Predict Response to Immunotherapy in Metastatic Melanoma. Front Oncol 2021; 11:645069. [PMID: 33816298 PMCID: PMC8013996 DOI: 10.3389/fonc.2021.645069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic melanoma is the deadliest form of skin cancer whose incidence has been rising dramatically over the last few decades. Nowadays, the most successful approach in treating advanced melanoma is immunotherapy which encompasses the use of immune checkpoint blockers able to unleash the immune system's activity against tumor cells. Immunotherapy has dramatically changed clinical practice by contributing to increasing long term overall survival. Despite these striking therapeutic effects, the clinical benefits are strongly mitigated by innate or acquired resistance. In this context, it is of utmost importance to develop methods capable of predicting patient response to immunotherapy. To this purpose, one major step forward may be provided by measuring non-invasive biomarkers in human fluids, namely Liquid Biopsies (LBs). Several LB approaches have been developed over the last few years thanks to technological breakthroughs that have allowed to evaluate circulating components also when they are present in low abundance. The elements of this so-called "circulome" mostly encompass: tumor DNA, tumor and immune cells, soluble factors and non-coding RNAs. Here, we review the current knowledge of these molecules as predictors of response to immunotherapy in metastatic melanoma and predict that LB will soon enter into routine practice in order to guide clinical decisions for cancer immunotherapy.
Collapse
Affiliation(s)
- Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ciro Francesco Ruggiero
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Domenico Liguoro
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Vittorio Castaldo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angiolina Catizone
- Department of Anatomy, Histology, Forensic- Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Kozar I, Philippidou D, Margue C, Gay LA, Renne R, Kreis S. Cross-Linking Ligation and Sequencing of Hybrids (qCLASH) Reveals an Unpredicted miRNA Targetome in Melanoma Cells. Cancers (Basel) 2021; 13:1096. [PMID: 33806450 PMCID: PMC7961530 DOI: 10.3390/cancers13051096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs are key post-transcriptional gene regulators often displaying aberrant expression patterns in cancer. As microRNAs are promising disease-associated biomarkers and modulators of responsiveness to anti-cancer therapies, a solid understanding of their targetome is crucial. Despite enormous research efforts, the success rates of available tools to reliably predict microRNAs (miRNA)-target interactions remains limited. To investigate the disease-associated miRNA targetome, we have applied modified cross-linking ligation and sequencing of hybrids (qCLASH) to BRAF-mutant melanoma cells. The resulting RNA-RNA hybrid molecules provide a comprehensive and unbiased snapshot of direct miRNA-target interactions. The regulatory effects on selected miRNA target genes in predicted vs. non-predicted binding regions was validated by miRNA mimic experiments. Most miRNA-target interactions deviate from the central dogma of miRNA targeting up to 60% interactions occur via non-canonical seed pairing with a strong contribution of the 3' miRNA sequence, and over 50% display a clear bias towards the coding sequence of mRNAs. miRNAs targeting the coding sequence can directly reduce gene expression (miR-34a/CD68), while the majority of non-canonical miRNA interactions appear to have roles beyond target gene suppression (miR-100/AXL). Additionally, non-mRNA targets of miRNAs (lncRNAs) whose interactions mainly occur via non-canonical binding were identified in melanoma. This first application of CLASH sequencing to cancer cells identified over 8 K distinct miRNA-target interactions in melanoma cells. Our data highlight the importance non-canonical interactions, revealing further layers of complexity of post-transcriptional gene regulation in melanoma, thus expanding the pool of miRNA-target interactions, which have so far been omitted in the cancer field.
Collapse
Affiliation(s)
- Ines Kozar
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Lauren A. Gay
- Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA; (L.A.G.); (R.R.)
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA; (L.A.G.); (R.R.)
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| |
Collapse
|
15
|
Fattore L, Mancini R, Ciliberto G. Cancer Stem Cells and the Slow Cycling Phenotype: How to Cut the Gordian Knot Driving Resistance to Therapy in Melanoma. Cancers (Basel) 2020; 12:cancers12113368. [PMID: 33202944 PMCID: PMC7696527 DOI: 10.3390/cancers12113368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer stem cells play a central role in the development of cancer and are poorly sensitive to standard chemotherapy and radiotherapy. Furthermore, they are also responsible for the onset of drug resistance. This also occurs in malignant melanoma, the deadliest form of skin cancer. Hence, cancer stem cells eradication is one of the main challenges for medical oncology. Here, we conducted a bioinformatics approach aimed to identify the main circuits and proteins underpinning cancer stem cell fitness in melanoma. Several lessons emerged from our work and may help to conceptualize future therapeutic approaches to prolong the efficacy of current therapies. Abstract Cancer stem cells (CSCs) have historically been defined as slow cycling elements that are able to differentiate into mature cells but without dedifferentiation in the opposite direction. Thanks to advances in genomic and non-genomic technologies, the CSC theory has more recently been reconsidered in a dynamic manner according to a “phenotype switching” plastic model. Transcriptional reprogramming rewires this plasticity and enables heterogeneous tumors to influence cancer progression and to adapt themselves to drug exposure by selecting a subpopulation of slow cycling cells, similar in nature to the originally defined CSCs. This model has been conceptualized for malignant melanoma tailored to explain resistance to target therapies. Here, we conducted a bioinformatics analysis of available data directed to the identification of the molecular pathways sustaining slow cycling melanoma stem cells. Using this approach, we identified a signature of 25 genes that were assigned to four major clusters, namely (1) kinases and metabolic changes, (2) melanoma-associated proteins, (3) Hippo pathway and (4) slow cycling/CSCs factors. Furthermore, we show how a protein−protein interaction network may be the main driver of these melanoma cell subpopulations. Finally, mining The Cancer Genome Atlas (TCGA) data we evaluated the expression levels of this signature in the four melanoma mutational subtypes. The concomitant alteration of these genes correlates with the worst overall survival (OS) for melanoma patients harboring BRAF-mutations. All together these results underscore the potentiality to target this signature to selectively kill CSCs and to achieve disease control in melanoma.
Collapse
Affiliation(s)
- Luigi Fattore
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Laboratory, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS, “Fondazione G. Pascale”, 80131 Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, 00161 Rome, Italy;
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence:
| |
Collapse
|
16
|
Liguoro D, Fattore L, Mancini R, Ciliberto G. Drug tolerance to target therapy in melanoma revealed at single cell level: What next? Biochim Biophys Acta Rev Cancer 2020; 1874:188440. [PMID: 33007433 DOI: 10.1016/j.bbcan.2020.188440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/12/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Drug resistance strongly impairs the efficacy of virtually every kind of anticancer therapy. This phenomenon is commonly fueled by intrinsic or acquired mechanisms. In this mini-review, focusing on BRAF-mutated melanoma as prototypical example, we analyze how recent studies that make use of single cell analysis identify the involvement of distinct transcriptional trajectories as the common thread at the basis of drug tolerance. The identification of these transcriptional trajectories provide a mechanistic basis for the development of both intrinsic and acquired drug resistance. These studies also suggest that hitting these transcriptional trajectories through personalized adaptive treatments can delay or abrogate the onset of drug resistance.
Collapse
Affiliation(s)
- Domenico Liguoro
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, 00161 Rome, Italy
| | - Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, 00161 Rome, Italy.
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, 00128 Rome, Italy
| |
Collapse
|
17
|
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers (Basel) 2020; 12:E2801. [PMID: 33003483 PMCID: PMC7600801 DOI: 10.3390/cancers12102801] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.
Collapse
Affiliation(s)
- Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Salvatore Volpe
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Patrizia Maddalena
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | | | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| |
Collapse
|
18
|
Reverse transcriptase inhibition potentiates target therapy in BRAF-mutant melanomas: effects on cell proliferation, apoptosis, DNA-damage, ROS induction and mitochondrial membrane depolarization. Cell Commun Signal 2020; 18:150. [PMID: 32933538 PMCID: PMC7493390 DOI: 10.1186/s12964-020-00633-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022] Open
Abstract
Abstract Target therapies based on BRAF and MEK inhibitors (MAPKi) have changed the therapeutic landscape for metastatic melanoma patients bearing mutations in the BRAF kinase. However, the emergence of drug resistance imposes the necessity to conceive novel therapeutic strategies capable to achieve a more durable disease control. In the last years, retrotransposons laying in human genome have been shown to undergo activation during tumorigenesis, where they contribute to genomic instability. Their activation can be efficiently controlled with reverse transcriptase inhibitors (RTIs) frequently used in the treatment of AIDS. These drugs have demonstrated anti-proliferative effects in several cancer models, including also metastatic melanoma. However, to our knowledge no previous study investigated the capability of RTIs to mitigate drug resistance to target therapy in BRAF-mutant melanomas. In this short report we show that the non-nucleoside RTI, SPV122 in combination with MAPKi strongly inhibits BRAF-mutant melanoma cell growth, induces apoptosis, and delays the emergence of resistance to target therapy in vitro. Mechanistically, this combination strongly induces DNA double-strand breaks, mitochondrial membrane depolarization and increased ROS levels. Our results shed further light on the molecular activity of RTI in melanoma and pave the way to their use as a novel therapeutic option to improve the efficacy of target therapy. Video Abstract
Graphical abstract ![]()
Collapse
|
19
|
Reger de Moura C, Prunotto M, Sohail A, Battistella M, Jouenne F, Marbach D, Lebbé C, Fridman R, Mourah S. Discoidin Domain Receptors in Melanoma: Potential Therapeutic Targets to Overcome MAPK Inhibitor Resistance. Front Oncol 2020; 10:1748. [PMID: 33014862 PMCID: PMC7516126 DOI: 10.3389/fonc.2020.01748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Melanoma is a highly malignant skin cancer with high propensity to metastasize and develop drug resistance, making it a difficult cancer to treat. Current therapies targeting BRAF (V600) mutations are initially effective, but eventually tumors overcome drug sensitivity and reoccur. This process is accomplished in part by reactivating alternate signaling networks that reinstate melanoma proliferative and survival capacity, mostly through reprogramming of receptor tyrosine kinase (RTK) signaling. Evidence indicates that the discoidin domain receptors (DDRs), a set of RTKs that signal in response to collagen, are part of the kinome network that confer drug resistance. We previously reported that DDR1 is expressed in melanomas, where it can promote tumor malignancy in mouse models of melanoma, and thus, DDR1 could be a promising target to overcome drug resistance. In this review, we summarize the current knowledge on DDRs in melanoma and their implication for therapy, with emphasis in resistance to MAPK inhibitors.
Collapse
Affiliation(s)
- Coralie Reger de Moura
- Laboratory of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
- INSERM, UMR_S976, Université de Paris, Paris, France
| | - Marco Prunotto
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Anjum Sohail
- Department of Pathology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Maxime Battistella
- INSERM, UMR_S976, Université de Paris, Paris, France
- Department of Pathology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Fanelie Jouenne
- Laboratory of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
- INSERM, UMR_S976, Université de Paris, Paris, France
| | - Daniel Marbach
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Celeste Lebbé
- INSERM, UMR_S976, Université de Paris, Paris, France
- Department of Dermatology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Rafael Fridman
- Department of Pathology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Samia Mourah
- Laboratory of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
- INSERM, UMR_S976, Université de Paris, Paris, France
| |
Collapse
|
20
|
Abstract
The incidence of cutaneous malignant melanoma is increasing worldwide. Despite available modern therapeutical options, long-term survival of patients in advanced stages of the disease remains rather limited until now. Detailed insights into etiopathogenesis and mechanisms of tumour progression enable physicians to manipulate distinct molecular structures and pathways therapeutically and so treat the tumour. Unfortunately, the acquisition of therapeutic resistance frequently terminates these therapeutical interventions. The presented special issue is focusing on the research and therapeutic experience of leading scientists, and it summarises the state of the art of targeted therapy of melanoma and suggests the new perspectives of the treatment of disease.
Collapse
|
21
|
Ma Y, Wen J, Wang J, Wang C, Zhang Y, Zhao L, Li J, Feng X. Asiaticoside Antagonizes Proliferation and Chemotherapeutic Drug Resistance in Hepatocellular Carcinoma (HCC) Cells. Med Sci Monit 2020; 26:e924435. [PMID: 32862187 PMCID: PMC7480090 DOI: 10.12659/msm.924435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the fifth most prevalent malignant tumor in China after lung cancer, gastric cancer, esophageal cancer, and breast cancer, and has a high mortality rate. Though there are a series of therapeutic strategies is now available for HCC in clinical practice, the 5-year survival rate after surgery is still low. In addition, multi-drug resistance (MDR) is one of the most important factors responsible for the low survival rate and poor therapy response in HCC. Hence, novel treatment strategies and molecules for HCC need to be developed. Material/Methods We assessed the effect of asiaticoside, a natural product derived from Centella asiatica (L.) Urban, on HCC cell proliferation and drug resistance. Results Our data indicated that asiaticoside significantly inhibited the proliferation of HCC cell lines QGY-7703 and Bel-7402 in a dose- and time-dependent manner. Moreover, asiaticoside significantly induced apoptosis in QGY-7703 and Bel-7402 cells. Treatment with asiaticoside also caused G1 cell cycle arrest in QGY-7703 and Bel-7402 cells. Western blot assay results indicated that the mechanism underlying the effects of asiaticoside involves inhibiting the activity of the PI3K/Akt and MAPK/ERK pathways. Furthermore, asiaticoside significantly antagonized P-gp-mediated MDR in HCC cells. Conclusions Our results suggest that asiaticoside has the potential to be applied in the treatment of HCC patients, but further evidence is needed to confirm our results, particularly in vivo efficacy.
Collapse
Affiliation(s)
- Ying Ma
- Second Department of Hepatopathy, Tianjin Second People's Hospital, Tianjin, China (mainland)
| | - Jun Wen
- Second Department of Hepatopathy, Tianjin Second People's Hospital, Tianjin, China (mainland)
| | - Jing Wang
- Second Department of Hepatopathy, Tianjin Second People's Hospital, Tianjin, China (mainland)
| | - Chunyan Wang
- Second Department of Hepatopathy, Tianjin Second People's Hospital, Tianjin, China (mainland)
| | - Yan Zhang
- Second Department of Hepatopathy, Tianjin Second People's Hospital, Tianjin, China (mainland)
| | - Lili Zhao
- Second Department of Hepatopathy, Tianjin Second People's Hospital, Tianjin, China (mainland)
| | - Jia Li
- Second Department of Hepatopathy, Tianjin Second People's Hospital, Tianjin, China (mainland)
| | - Xue Feng
- Second Department of Hepatopathy, Tianjin Second People's Hospital, Tianjin, China (mainland)
| |
Collapse
|
22
|
Fattore L, Campani V, Ruggiero CF, Salvati V, Liguoro D, Scotti L, Botti G, Ascierto PA, Mancini R, De Rosa G, Ciliberto G. In Vitro Biophysical and Biological Characterization of Lipid Nanoparticles Co-Encapsulating Oncosuppressors miR-199b-5p and miR-204-5p as Potentiators of Target Therapy in Metastatic Melanoma. Int J Mol Sci 2020; 21:E1930. [PMID: 32178301 PMCID: PMC7139872 DOI: 10.3390/ijms21061930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled MAPK signaling is the main oncogenic driver in metastatic melanomas bearing mutations in BRAF kinase. These tumors are currently treated with the combination of BRAF/MEK inhibitors (MAPKi), but this therapy is plagued by drug resistance. In this context we recently discovered that several microRNAs are involved in the development of drug resistance. In particular miR-204-5p and miR-199b-5p were found to function as antagonists of resistance because their enforced overexpression is able to inhibit melanoma cell growth in vitro either alone or in combination with MAPKi. However, the use of miRNAs in therapy is hampered by their rapid degradation in serum and biological fluids, as well as by the poor intracellular uptake. Here, we developed lipid nanoparticles (LNPs) encapsulating miR-204-5p, miR-199b-5p individually or in combination. We obtained LNPs with mean diameters < 200 nm and high miRNA encapsulation efficiency. These formulations were tested in vitro on several melanoma cell lines sensitive to MAPKi or rendered drug resistant. Our results show that LNPs encapsulating combinations of the two oncosuppressor miRNAs are highly efficient in impairing melanoma cell proliferation and viability, affect key signaling pathways involved in melanoma cell survival, and potentiate the efficacy of drugs inhibiting BRAF and MEK. These results warrant further assessment of the anti-tumor efficacy of oncosuppressor miRNAs encapsulating LNPs in in vivo tumor models.
Collapse
Affiliation(s)
- Luigi Fattore
- Istituto Nazionale Tumori IRCCS, "Fondazione G. Pascale", 80131 Naples, Italy; (L.F.); (G.B.); (P.A.A.)
| | - Virginia Campani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.C.); (L.S.); (G.D.R.)
| | - Ciro Francesco Ruggiero
- IRCCS, Istituto Nazionale Tumori “Regina Elena”, Via Elio Chianesi 53, 00144 Rome, Italy; (C.F.R.); (V.S.)
| | - Valentina Salvati
- IRCCS, Istituto Nazionale Tumori “Regina Elena”, Via Elio Chianesi 53, 00144 Rome, Italy; (C.F.R.); (V.S.)
| | - Domenico Liguoro
- Department of Molecular and Clinical Medicine, University of Roma “Sapienza”, 00185 Rome, Italy; (D.L.); (R.M.)
| | - Lorena Scotti
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.C.); (L.S.); (G.D.R.)
| | - Gerardo Botti
- Istituto Nazionale Tumori IRCCS, "Fondazione G. Pascale", 80131 Naples, Italy; (L.F.); (G.B.); (P.A.A.)
| | - Paolo Antonio Ascierto
- Istituto Nazionale Tumori IRCCS, "Fondazione G. Pascale", 80131 Naples, Italy; (L.F.); (G.B.); (P.A.A.)
| | - Rita Mancini
- Department of Molecular and Clinical Medicine, University of Roma “Sapienza”, 00185 Rome, Italy; (D.L.); (R.M.)
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.C.); (L.S.); (G.D.R.)
| | - Gennaro Ciliberto
- IRCCS, Istituto Nazionale Tumori “Regina Elena”, Via Elio Chianesi 53, 00144 Rome, Italy; (C.F.R.); (V.S.)
| |
Collapse
|