1
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 PMCID: PMC11857949 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Mancini C, Lori G, Pranzini E, Taddei ML. Metabolic challengers selecting tumor-persistent cells. Trends Endocrinol Metab 2024; 35:263-276. [PMID: 38071164 DOI: 10.1016/j.tem.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 03/14/2024]
Abstract
Resistance to anticancer therapy still represents one of the main obstacles to cancer treatment. Numerous components of the tumor microenvironment (TME) contribute significantly to the acquisition of drug resistance. Microenvironmental pressures arising during cancer evolution foster tumor heterogeneity (TH) and facilitate the emergence of drug-resistant clones. In particular, metabolic pressures arising in the TME may favor epigenetic adaptations supporting the acquisition of persistence features in tumor cells. Tumor-persistent cells (TPCs) are characterized by high phenotypic and metabolic plasticity, representing a noticeable advantage in chemo- and radio-resistance. Understanding the crosslink between the evolution of metabolic pressures in the TME, epigenetics, and TPC evolution is significant for developing novel therapeutic strategies specifically targeting TPC vulnerabilities to overcome drug resistance.
Collapse
Affiliation(s)
- Caterina Mancini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
3
|
Murali VS, Rajendran D, Isogai T, DeBerardinis RJ, Danuser G. RhoA activation promotes glucose uptake to elevate proliferation in MAPK inhibitor resistant melanoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574940. [PMID: 38260449 PMCID: PMC10802590 DOI: 10.1101/2024.01.09.574940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cutaneous melanomas harboring a B-RafV600E mutation are treated with immune check point inhibitors or kinase inhibitor combination therapies relying on MAPK inhibitors (MAPKi) Dabrafenib and Trametinib (Curti and Faries, 2021). However, cells become resistant to treatments over the timespan of a few months. Resistance to MAPKi has been associated with adoption of an aggressive amoeboid phenotype characterized by elevated RhoA signaling, enhanced contractility and thick cortical filamentous actin (F-actin) structures (Kim et al., 2016; Misek et al., 2020). Targeting active RhoA through Rho-kinase (ROCK) inhibitors, either alone or in combination with immunotherapies, reverts MAPKi-resistance (Misek et al., 2020; Orgaz et al., 2020). Yet, the mechanisms for this behavior remain largely unknown. Given our recent findings of cytoskeleton's role in cancer cell proliferation (Mohan et al., 2019), survival (Weems et al., 2023), and metabolism (Park et al., 2020), we explored possibilities by which RhoA-driven changes in cytoskeleton structure may confer resistance. We confirmed elevated activation of RhoA in a panel of MAPKi-resistant melanoma cell lines, leading to a marked increase in the presence of contractile F-actin bundles. Moreover, these cells had increased glucose uptake and glycolysis, a phenotype disrupted by pharmacological perturbation of ROCK. However, glycolysis was unaffected by disruption of F-actin bundles, indicating that glycolytic stimulation in MAPKi-resistant melanoma is independent of F-actin organization. Instead, our findings highlight a mechanism in which elevated RhoA signaling activates ROCK, leading to the activation of insulin receptor substrate 1 (IRS1) and P85 of the PI3K pathway, which promotes cell surface expression of GLUT1 and elevated glucose uptake. Application of ROCK inhibitor GSK269962A results in reduced glucose uptake and glycolysis, thus impeding cell proliferation. Our study adds a mechanism to the proposed use of ROCK inhibitors for long-term treatments on MAPKi-resistant melanomas.
Collapse
Affiliation(s)
- Vasanth Siruvallur Murali
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Divya Rajendran
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J. DeBerardinis
- Children’s Research Institute and Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Chen W, Park JI. Tumor Cell Resistance to the Inhibition of BRAF and MEK1/2. Int J Mol Sci 2023; 24:14837. [PMID: 37834284 PMCID: PMC10573597 DOI: 10.3390/ijms241914837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BRAF is one of the most frequently mutated oncogenes, with an overall frequency of about 50%. Targeting BRAF and its effector mitogen-activated protein kinase kinase 1/2 (MEK1/2) is now a key therapeutic strategy for BRAF-mutant tumors, and therapies based on dual BRAF/MEK inhibition showed significant efficacy in a broad spectrum of BRAF tumors. Nonetheless, BRAF/MEK inhibition therapy is not always effective for BRAF tumor suppression, and significant challenges remain to improve its clinical outcomes. First, certain BRAF tumors have an intrinsic ability to rapidly adapt to the presence of BRAF and MEK1/2 inhibitors by bypassing drug effects via rewired signaling, metabolic, and regulatory networks. Second, almost all tumors initially responsive to BRAF and MEK1/2 inhibitors eventually acquire therapy resistance via an additional genetic or epigenetic alteration(s). Overcoming these challenges requires identifying the molecular mechanism underlying tumor cell resistance to BRAF and MEK inhibitors and analyzing their specificity in different BRAF tumors. This review aims to update this information.
Collapse
Affiliation(s)
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
5
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
6
|
Nakai C, Mimaki S, Matsushima K, Shinozaki E, Yamazaki K, Muro K, Yamaguchi K, Nishina T, Yuki S, Shitara K, Bando H, Suzuki Y, Akagi K, Nomura S, Fujii S, Sugiyama M, Nishida N, Mizokami M, Koh Y, Koshizaka T, Okada H, Abe Y, Ohtsu A, Yoshino T, Tsuchihara K. Regulation of MEK inhibitor selumetinib sensitivity by AKT phosphorylation in the novel BRAF L525R mutant. Int J Clin Oncol 2023; 28:654-663. [PMID: 36856908 PMCID: PMC10119053 DOI: 10.1007/s10147-023-02318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Oncogenic mutations in BRAF genes are found in approximately 5-10% of colorectal cancers. The majority of BRAF mutations are located within exons 11-15 of the catalytic kinase domains, with BRAF V600E accounting for more than 80% of the observed BRAF mutations. Sensitivity to BRAF- and mitogen-activated protein kinase (MEK) inhibitors varies depending on BRAF mutations and tumor cell types. Previously, we newly identified, BRAF L525R-mutation, in the activation segment of the kinase in colorectal cancer patient. Here, we characterized the function of the BRAF L525R mutation. METHODS HEK293 cells harboring a BRAF mutation (V600E or L525R) were first characterized and then treated with cetuximab, dabrafenib, and selumetinib. Cell viability was measured using WST-1 assay and the expression of proteins involved in the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) signaling pathways was evaluated using western blot analysis. RESULTS The MEK inhibitor selumetinib effectively inhibited cell proliferation and ERK phosphorylation in BRAF L525R cells but not in BRAF V600E cells. Further studies revealed that AKT phosphorylation was reduced by selumetinib in BRAF L525R cells but not in BRAF V600E cells or selumetinib-resistant BRAF L525R cells. Moreover, the AKT inhibitor overcame the selumetinib resistance. CONCLUSIONS We established a model system harboring BRAF L525R using HEK293 cells. BRAF L525R constitutively activated ERK. AKT phosphorylation caused sensitivity and resistance to selumetinib. Our results suggest that a comprehensive network analysis may provide insights to identify effective therapies.
Collapse
Affiliation(s)
- Chikako Nakai
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- G&G Science Co. Ltd., 4-1-1 Misato, Matsukawamachi, Fukushima, 960-1242, Japan
| | - Sachiyo Mimaki
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Koutatsu Matsushima
- G&G Science Co. Ltd., 4-1-1 Misato, Matsukawamachi, Fukushima, 960-1242, Japan
| | - Eiji Shinozaki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-0063, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, 1007 Shimo-Nagakubo, Nagaizumi-Cho, Sunto, Shizuoka, 411-8777, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-0063, Japan
| | - Tomohiro Nishina
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, 160 Minamiumemotomachi, Matsuyama, Ehime, 791-0245, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Hideaki Bando
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 818 Komuro, Inami-machi, Kitaadachi, Saitama, 362-0806, Japan
| | - Shogo Nomura
- Biostatistics Division, Center for Research and Administration and Support, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Nao Nishida
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Yasuhiro Koh
- Third Department of Internal Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Takuya Koshizaka
- G&G Science Co. Ltd., 4-1-1 Misato, Matsukawamachi, Fukushima, 960-1242, Japan
| | - Hideki Okada
- G&G Science Co. Ltd., 4-1-1 Misato, Matsukawamachi, Fukushima, 960-1242, Japan
| | - Yukiko Abe
- G&G Science Co. Ltd., 4-1-1 Misato, Matsukawamachi, Fukushima, 960-1242, Japan
| | - Atsushi Ohtsu
- National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
7
|
da Silva TN, Rodrigues R, Saramago A, Pires C, Rito M, Horta M, Martins C, Leite V, Cavaco BM. Target therapy for BRAF mutated anaplastic thyroid cancer: a clinical and molecular study. Eur J Endocrinol 2023; 188:6979712. [PMID: 36651156 DOI: 10.1093/ejendo/lvac011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Anaplastic thyroid carcinoma (ATC) has a poor survival. The combination of Dabrafenib plus Trametinib (DT) had a significant impact in survival of BRAF p.V600E patients. However, durable responses may be compromised by resistance. We aim to present our experience with DT in BRAF positive ATC patients and compare the outcomes with usual therapy, and to study tumor molecular alterations in the DT group. METHODS Patients treated between May 2018 and April 2022 in a tertiary referral center, assessed for BRAF status were included. Patients were divided in three groups: BRAF p.V600E treated with DT, BRAF wild type (WT) under multimodal therapy (MT), and BRAF WT under compassionate care (CC). Response was assessed monthly in the first 6 months and every 3 months afterwards, by RECIST 1.1. Overall survival (OS) and progression-free survival (PFS) were estimated with the Kaplan-Meier method and compared with the log-rank test. RESULTS Twenty-seven ATC patients were included (DT = 9, MT = 8, and CC = 10). Median OS was 475 days for DT, 156 days for MT, and 39 days for CC (P < .001). At 12 months, only patients in the DT group were alive (71%). Median PFS was 270 days, in the DT group, compared with less than 32 days in BRAF WT (P < .001). No severe adverse events were reported. Molecular profiling showed that in one of the four clinical progressions, a pathogenic NRAS mutation was found. CONCLUSIONS Our results show a significant real-world efficacy of Dabrafenib plus Trametinib in both survival and recurrence compared with standard treatment, with a good safety profile.
Collapse
Affiliation(s)
- Tiago Nunes da Silva
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Ricardo Rodrigues
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Ana Saramago
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Carolina Pires
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Miguel Rito
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Mariana Horta
- Serviço de Radiologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Carmo Martins
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Valeriano Leite
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
- NOVA Medical School-Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
| | - Branca M Cavaco
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| |
Collapse
|
8
|
Carotenuto P, Romano A, Barbato A, Quadrano P, Brillante S, Volpe M, Ferrante L, Tammaro R, Morleo M, De Cegli R, Iuliano A, Testa M, Andreone F, Ciliberto G, Clery E, Troncone G, Palma G, Arra C, Barbieri A, Capone M, Madonna G, Ascierto PA, Lanfrancone L, Indrieri A, Franco B. Targeting the MITF/APAF-1 axis as salvage therapy for MAPK inhibitors in resistant melanoma. Cell Rep 2022; 41:111601. [DOI: 10.1016/j.celrep.2022.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/09/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
|
9
|
NAD/NAMPT and mTOR Pathways in Melanoma: Drivers of Drug Resistance and Prospective Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179985. [PMID: 36077374 PMCID: PMC9456568 DOI: 10.3390/ijms23179985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive behavior and high metastatic potential. The introduction of BRAF/MEK inhibitors and immune-checkpoint inhibitors (ICIs) in the clinic has dramatically improved patient survival over the last decade. However, many patients either display primary (i.e., innate) or develop secondary (i.e., acquired) resistance to systemic treatments. Therapeutic resistance relies on the rewiring of multiple processes, including cancer metabolism, epigenetics, gene expression, and interactions with the tumor microenvironment that are only partially understood. Therefore, reliable biomarkers of resistance or response, capable of facilitating the choice of the best treatment option for each patient, are currently missing. Recently, activation of nicotinamide adenine dinucleotide (NAD) metabolism and, in particular, of its rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) have been identified as key drivers of targeted therapy resistance and melanoma progression. Another major player in this context is the mammalian target of rapamycin (mTOR) pathway, which plays key roles in the regulation of melanoma cell anabolic functions and energy metabolism at the switch between sensitivity and resistance to targeted therapy. In this review, we summarize known resistance mechanisms to ICIs and targeted therapy, focusing on metabolic adaptation as one main mechanism of drug resistance. In particular, we highlight the roles of NAD/NAMPT and mTOR signaling axes in this context and overview data in support of their inhibition as a promising strategy to overcome treatment resistance.
Collapse
|
10
|
Heo H, Kim JH, Lim HJ, Kim JH, Kim M, Koh J, Im JY, Kim BK, Won M, Park JH, Shin YJ, Yun MR, Cho BC, Kim YS, Kim SY, Kim M. DNA methylome and single-cell transcriptome analyses reveal CDA as a potential druggable target for ALK inhibitor-resistant lung cancer therapy. Exp Mol Med 2022; 54:1236-1249. [PMID: 35999456 PMCID: PMC9440127 DOI: 10.1038/s12276-022-00836-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
Acquired resistance to inhibitors of anaplastic lymphoma kinase (ALK) is a major clinical challenge for ALK fusion-positive non-small-cell lung cancer (NSCLC). In the absence of secondary ALK mutations, epigenetic reprogramming is one of the main mechanisms of drug resistance, as it leads to phenotype switching that occurs during the epithelial-to-mesenchymal transition (EMT). Although drug-induced epigenetic reprogramming is believed to alter the sensitivity of cancer cells to anticancer treatments, there is still much to learn about overcoming drug resistance. In this study, we used an in vitro model of ceritinib-resistant NSCLC and employed genome-wide DNA methylation analysis in combination with single-cell (sc) RNA-seq to identify cytidine deaminase (CDA), a pyrimidine salvage pathway enzyme, as a candidate drug target. CDA was hypomethylated and upregulated in ceritinib-resistant cells. CDA-overexpressing cells were rarely but definitively detected in the naïve cell population by scRNA-seq, and their abundance was increased in the acquired-resistance population. Knockdown of CDA had antiproliferative effects on resistant cells and reversed the EMT phenotype. Treatment with epigenome-related nucleosides such as 5-formyl-2'-deoxycytidine selectively ablated CDA-overexpressing resistant cells via accumulation of DNA damage. Collectively, our data suggest that targeting CDA metabolism using epigenome-related nucleosides represents a potential new therapeutic strategy for overcoming ALK inhibitor resistance in NSCLC.
Collapse
Affiliation(s)
- Haejeong Heo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jong-Hwan Kim
- Korea Bioinformation Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Hyun Jung Lim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jeong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Joo-Young Im
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ji-Hwan Park
- Korea Bioinformation Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Yang-Ji Shin
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Mi Ran Yun
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Byoung Chul Cho
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong Sung Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Functional Genomics Institute, PDXen Biosystems Co., Daejeon, 34129, Republic of Korea
| | - Seon-Young Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Korea Bioinformation Center, KRIBB, Daejeon, 34141, Republic of Korea.
| | - Mirang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
11
|
Manić L, Wallace D, Onganer PU, Taalab YM, Farooqi AA, Antonijević B, Buha Djordjevic A. Epigenetic mechanisms in metal carcinogenesis. Toxicol Rep 2022; 9:778-787. [PMID: 36561948 PMCID: PMC9764177 DOI: 10.1016/j.toxrep.2022.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 03/26/2022] [Indexed: 12/25/2022] Open
Abstract
Many metals exhibit genotoxic and/or carcinogenic effects. These toxic metals can be found ubiquitously - in drinking water, food, air, general use products, in everyday and occupational settings. Exposure to such carcinogenic metals can result in serious health disorders, including cancer. Arsenic, cadmium, chromium, nickel, and their compounds have already been recognized as carcinogens by the International Agency for Research on Cancer. This review summarizes a wide range of epigenetic mechanisms contributing to carcinogenesis induced by these metals, primarily including, but not limited to, DNA methylation, miRNA regulation, and histone posttranslational modifications. The mechanisms are described and discussed both from a metal-centric and a mechanism-centric standpoint. The review takes a broad perspective, putting the mechanisms in the context of real-life exposure, and aims to assist in guiding future research, particularly with respect to the assessment and control of exposure to carcinogenic metals and novel therapy development.
Collapse
Affiliation(s)
- Luka Manić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - David Wallace
- School of Biomedical Science, Oklahoma State University Center for Health Sciences, Tulsa, United States
| | - Pinar Uysal Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, UK
| | - Yasmeen M. Taalab
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany,Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Dakahlia Governate 35516, Egypt
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, RLMC, Lahore, Pakistan
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia,Correspondence to: Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
12
|
Sánchez-Sendra B, González-Muñoz JF, Pérez-Debén S, Monteagudo C. The Prognostic Value of miR-125b, miR-200c and miR-205 in Primary Cutaneous Malignant Melanoma Is Independent of BRAF Mutational Status. Cancers (Basel) 2022; 14:cancers14061532. [PMID: 35326682 PMCID: PMC8946551 DOI: 10.3390/cancers14061532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Melanoma accounts for the majority of skin cancer-related deaths. On the one hand, most melanomas contain mutations in the BRAF gene (predominantly V600E), and on the other hand, miRNAs modulate different steps in melanoma development and progression, but there are no reports that study the relation between BRAF mutational status and the expression of miRNAs, which is important for an accurate patient prognosis. The aim of our retrospective study was to know whether BRAF mutations influence the prognostic value of miR-125b, miR-200c and miR-205 intratumoral expression in primary cutaneous melanomas. Globally, our results showed that miR-125b, miR-200c and miR-205 expression predicted the clinical outcome of primary melanomas independently of BRAF status. Thus, our findings support that BRAF mutations alone do not predict the risk of metastasis development or melanoma survival and that miR-125b, miR-200c and miR-205 may be considered as accurate prognostic biomarkers in melanoma regardless of BRAF mutational status. Abstract BRAF mutations are present in around 50% of cutaneous malignant melanomas and are related to a poor outcome in advanced-stage melanoma patients. miRNAs are epigenetic regulators that modulate different cellular processes in cancer, including melanoma development and progression. However, there are no studies on the potential associations of the genetic alterations of the BRAF gene with miRNA expression in primary cutaneous melanomas. Here, in order to analyze the influence of BRAF mutations in the ability of selected miRNAs to predict clinical outcome and patient survival at the time of diagnosis, we studied the prognostic value of miR-125b, miR-200c and miR-205 expression depending on the BRAF mutational status in fresh, frozen primary tumor specimens. For this purpose, RNA was extracted for studying both BRAF mutations by Sanger sequencing and miRNA expression. Our results indicate that, although there seems to be a slight preference for their predictive ability in the BRAF mutated group, the expression of these three miRNAs serves effectively to predict the clinical outcome of melanoma patients independently of BRAF mutational status at the time of primary tumor diagnosis.
Collapse
Affiliation(s)
- Beatriz Sánchez-Sendra
- Department of Pathology, University of Valencia, 46010 Valencia, Spain;
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (J.F.G.-M.); (S.P.-D.)
| | | | - Silvia Pérez-Debén
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (J.F.G.-M.); (S.P.-D.)
| | - Carlos Monteagudo
- Department of Pathology, University of Valencia, 46010 Valencia, Spain;
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (J.F.G.-M.); (S.P.-D.)
- Department of Pathology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-398-3953
| |
Collapse
|
13
|
Dobre EG, Constantin C, Costache M, Neagu M. Interrogating Epigenome toward Personalized Approach in Cutaneous Melanoma. J Pers Med 2021; 11:901. [PMID: 34575678 PMCID: PMC8467841 DOI: 10.3390/jpm11090901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations have emerged as essential contributors in the pathogenesis of various human diseases, including cutaneous melanoma (CM). Unlike genetic changes, epigenetic modifications are highly dynamic and reversible and thus easy to regulate. Here, we present a comprehensive review of the latest research findings on the role of genetic and epigenetic alterations in CM initiation and development. We believe that a better understanding of how aberrant DNA methylation and histone modifications, along with other molecular processes, affect the genesis and clinical behavior of CM can provide the clinical management of this disease a wide range of diagnostic and prognostic biomarkers, as well as potential therapeutic targets that can be used to prevent or abrogate drug resistance. We will also approach the modalities by which these epigenetic alterations can be used to customize the therapeutic algorithms in CM, the current status of epi-therapies, and the preliminary results of epigenetic and traditional combinatorial pharmacological approaches in this fatal disease.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Marieta Costache
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
14
|
Leonce C, Saintigny P, Ortiz-Cuaran S. Cell-intrinsic mechanisms of drug tolerance to systemic therapies in cancer. Mol Cancer Res 2021; 20:11-29. [PMID: 34389691 DOI: 10.1158/1541-7786.mcr-21-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
In cancer patients with metastatic disease, the rate of complete tumor response to systemic therapies is low, and residual lesions persist in the majority of patients due to early molecular adaptation in cancer cells. A growing body of evidence suggests that a subpopulation of drug-tolerant « persister » cells - a reversible phenotype characterized by reduced drug sensitivity and decreased cell proliferation - maintains residual disease and may serve as a reservoir for resistant phenotypes. The survival of these residual tumor cells can be caused by reactivation of specific signaling pathways, phenotypic plasticity (i.e., transdifferentiation), epigenetic or metabolic reprogramming, downregulation of apoptosis as well as transcriptional remodeling. In this review, we discuss the molecular mechanisms that enable adaptive survival in drug-tolerant cells. We describe the main characteristics and dynamic nature of this persistent state, and highlight the current therapeutic strategies that may be used to interfere with the establishment of drug-tolerant cells, as an alternative to improve objective response to systemic therapies and delay the emergence of resistance to improve long-term survival.
Collapse
Affiliation(s)
- Camille Leonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| | - Pierre Saintigny
- Department of Medical Oncology, Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon. Department of Medical Oncology, Centre Léon Bérard
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| |
Collapse
|
15
|
Epigenetic Regulation in Melanoma: Facts and Hopes. Cells 2021; 10:cells10082048. [PMID: 34440824 PMCID: PMC8392422 DOI: 10.3390/cells10082048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/25/2022] Open
Abstract
Cutaneous melanoma is a lethal disease, even when diagnosed in advanced stages. Although recent progress in biology and treatment has dramatically improved survival rates, new therapeutic approaches are still needed. Deregulation of epigenetics, which mainly controls DNA methylation status and chromatin remodeling, is implied not only in cancer initiation and progression, but also in resistance to antitumor drugs. Epigenetics in melanoma has been studied recently in both melanoma preclinical models and patient samples, highlighting its potential role in different phases of melanomagenesis, as well as in resistance to approved drugs such as immune checkpoint inhibitors and MAPK inhibitors. This review summarizes what is currently known about epigenetics in melanoma and dwells on the recognized and potential new targets for testing epigenetic drugs, alone or together with other agents, in advanced melanoma patients.
Collapse
|
16
|
Many Distinct Ways Lead to Drug Resistance in BRAF- and NRAS-Mutated Melanomas. Life (Basel) 2021; 11:life11050424. [PMID: 34063141 PMCID: PMC8148104 DOI: 10.3390/life11050424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
Advanced melanoma is a relentless tumor with a high metastatic potential. The combat of melanoma by using the targeted therapy is impeded because several major driver mutations fuel its growth (predominantly BRAF and NRAS). Both these mutated oncogenes strongly activate the MAPK (MEK/ERK) pathway. Therefore, specific inhibitors of these oncoproteins or MAPK pathway components or their combination have been used for tumor eradication. After a good initial response, resistant cells develop almost universally and need the drug for further expansion. Multiple mechanisms, sometimes very distant from the MAPK pathway, are responsible for the development of resistance. Here, we review many of the mechanisms causing resistance and leading to the dismal final outcome of mutated BRAF and NRAS therapy. Very heterogeneous events lead to drug resistance. Due to this, each individual mechanism would be in fact needed to be determined for a personalized therapy to treat patients more efficiently and causally according to molecular findings. This procedure is practically impossible in the clinic. Other approaches are therefore needed, such as combined treatment with more drugs simultaneously from the beginning of the therapy. This could eradicate tumor cells more rapidly and greatly diminish the possibility of emerging mechanisms that allow the evolution of drug resistance.
Collapse
|
17
|
Ito RE, Oneyama C, Aoki K. Oncogenic mutation or overexpression of oncogenic KRAS or BRAF is not sufficient to confer oncogene addiction. PLoS One 2021; 16:e0249388. [PMID: 33793658 PMCID: PMC8016361 DOI: 10.1371/journal.pone.0249388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Oncogene addiction is a cellular property by which cancer cells become highly dependent on the expression of oncogenes for their survival. Oncogene addiction can be exploited to design molecularly targeted drugs that kill only cancer cells by inhibiting the specific oncogenes. Genes and cell lines exhibiting oncogene addiction, as well as the mechanisms by which cell death is induced when addicted oncogenes are suppressed, have been extensively studied. However, it is still not fully understood how oncogene addiction is acquired in cancer cells. Here, we take a synthetic biology approach to investigate whether oncogenic mutation or oncogene expression suffices to confer the property of oncogene addiction to cancer cells. We employed human mammary epithelium-derived MCF-10A cells expressing the oncogenic KRAS or BRAF. MCF-10A cells harboring an oncogenic mutation in a single-allele of KRAS or BRAF showed weak transformation activity, but no characteristics of oncogene addiction. MCF-10A cells overexpressing oncogenic KRAS demonstrated the transformation activity, but MCF-10A cells overexpressing oncogenic BRAF did not. Neither cell line exhibited any oncogene addiction properties. These results indicate that the introduction of oncogenic mutation or the overexpression of oncogenes is not sufficient for cells to acquire oncogene addiction, and that oncogene addiction is not associated with transformation activity.
Collapse
Affiliation(s)
- Reina E. Ito
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- * E-mail:
| |
Collapse
|
18
|
Singh M, Kumar V, Sehrawat N, Yadav M, Chaudhary M, Upadhyay SK, Kumar S, Sharma V, Kumar S, Dilbaghi N, Sharma AK. Current paradigms in epigenetic anticancer therapeutics and future challenges. Semin Cancer Biol 2021; 83:422-440. [PMID: 33766649 DOI: 10.1016/j.semcancer.2021.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Any alteration at the genetic or epigenetic level, may result in multiplex of diseases including tumorigenesis which ultimately results in the cancer development. Restoration of the normal epigenome by reversing the epigenetic alterations have been reported in tumors paving the way for development of an effective epigenetic treatment in cancer. However, delineating various epigenetic events has been a challenging task so far despite substantial progress in understanding DNA methylation and histone modifications during transcription of genes. Many inhibitors in the form of epigenetic drugs mostly targeting chromatin and histone modifying enzymes including DNA methyltransferase (DNMT) enzyme inhibitors and a histone deacetylases (HDACs) inhibitor, have been in use subsequent to the approval by FDA for cancer treatment. Similarly, other inhibitory drugs, such as FK228, suberoylanilide hydroxamic acid (SAHA) and MS-275, have been successfully tested in clinical studies. Despite all these advancements, still we see a hazy view as far as a promising epigenetic anticancer therapy is concerned. The challenges are to have more specific and effective inhibitors with negligible side effects. Moreover, the alterations seen in tumors are not well understood for which one has to gain deeper insight into the tumor pathology as well. Current review focusses on such epigenetic alterations occurring in cancer and the effective strategies to utilize such alterations for potential therapeutic use and treatment in cancer.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh, UT, 160019, India
| | - Sandeep Kumar
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| |
Collapse
|
19
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Abstract
The inherent or developed resistance of many cancer cells to chemotherapy and irradiation is actually the main challenge to overcome in cancer treatment. It is well known that cancer cells are characterized by several hallmarks, and it seems that the ability to evolve ways to evade stressful conditions and killing therapies must be consider another typical characteristic displayed by all malignant cells. This overview aims to provide a concise description of the main mechanisms involved in the promotion of resistance to anticancer therapy and to describe the most frequent challenges faced in the war against cancer therapy resistance.
Collapse
Affiliation(s)
- Martha Robles-Flores
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
21
|
Zhu S, Wang H, Zhang Z, Ma M, Zheng Z, Xu X, Sun T. IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway. Mol Med Rep 2020; 22:4837-4847. [PMID: 33173998 PMCID: PMC7646924 DOI: 10.3892/mmr.2020.11578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022] Open
Abstract
Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) has been reported to have various functions in different cellular contexts. Our previous investigation discovered that IGFBP-rP1 inhibited retinal angiogenesis in vitro and in vivo by inhibiting the pro-angiogenic effect of VEGF and downregulating VEGF expression. Recently, IGFBP-rP1 was confirmed to be downregulated in the aqueous humor of patients with neovascular age-related macular degeneration compared with controls; however, its specific role remains unknown. The present study applied the technique of gene silencing, reverse transcription-quantitative PCR, western blotting, cell viability assays, cell motility assays and tube formation assays. Chemical hypoxic conditions and choroidal endothelial (RF/6A) cells were used to explore the effect of IGFBP-rP1-silencing on the phenotype activation of RF/6A cells under hypoxic conditions and to elucidate the underlying mechanisms. siRNA achieved IGFBP-rP1-silencing in RF/6A cells without cytotoxicity. IGFBP-rP1-silencing significantly restored the viability of RF/6A cells in hypoxia and enhanced hypoxia-induced migration and capillary-like tube formation of RF/6A cells. Furthermore, IGFBP-rP1-silencing significantly upregulated the expression of B-RAF, phosphorylated (p)-MEK, p-ERK and VEGF in RF/6A cells under hypoxic conditions; however, these upregulations were inhibited by exogenous IGFBP-rP1. These data indicated that silencing IGFBP-rP1 expression in RF/6A cells effectively promoted the hypoxia-induced angiogenic potential of choroidal endothelial cells by upregulating RAF/MEK/ERK signaling pathway activation and VEGF expression.
Collapse
Affiliation(s)
- Shuting Zhu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Hong Wang
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Zhihua Zhang
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Mingming Ma
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Zhi Zheng
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xun Xu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Tao Sun
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| |
Collapse
|
22
|
Upadhya A, Yadav KS, Misra A. Targeted drug therapy in non-small cell lung cancer: Clinical significance and possible solutions-Part I. Expert Opin Drug Deliv 2020; 18:73-102. [PMID: 32954834 DOI: 10.1080/17425247.2021.1825377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) comprises of 84% of all lung cancer cases. The treatment options for NSCLC at advanced stages are chemotherapy and radiotherapy. Chemotherapy involves conventional nonspecific chemotherapeutics, and targeted-protein/receptor-specific small molecule inhibitors. Biologically targeted therapies such as an antibody-based immunotherapy have been approved in combination with conventional therapeutics. Approved targeted chemotherapy is directed against the kinase domains of mutated cellular receptors such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinases (ALK), neurotrophic receptor kinases (NTRK) and against downstream signaling molecules such as BRAF (v-raf murine sarcoma viral oncogene homolog B1). Approved biologically targeted therapy involves the use of anti-angiogenesis antibodies and antibodies against immune checkpoints. AREAS COVERED The rationale for the employment of targeted therapeutics and the resistance that may develop to therapy are discussed. Novel targeted therapeutics in clinical trials are also included. EXPERT OPINION Molecular and histological profiling of a given tumor specimen to determine the aberrant onco-driver is a must before deciding a targeted therapeutic regimen for the patient. Periodic monitoring of the patients response to a given therapeutic regimen is also mandatory so that any semblance of resistance to therapy can be deciphered and the regimen may be accordingly altered.
Collapse
Affiliation(s)
- Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS , Mumbai, Maharashtra, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS , Mumbai, Maharashtra, India
| | - Ambikanandan Misra
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS , Mumbai, Maharashtra, India
| |
Collapse
|
23
|
Grigore F, Yang H, Hanson ND, VanBrocklin MW, Sarver AL, Robinson JP. BRAF inhibition in melanoma is associated with the dysregulation of histone methylation and histone methyltransferases. Neoplasia 2020; 22:376-389. [PMID: 32629178 PMCID: PMC7338995 DOI: 10.1016/j.neo.2020.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
The development of mutant BRAF inhibitors has improved the outcome for melanoma patients with BRAFV600E mutations. Although the initial response to these inhibitors can be dramatic, sometimes resulting in complete tumor regression, the majority of melanomas become resistant. To study resistance to BRAF inhibition, we developed a novel mouse model of melanoma using a tetracycline/doxycycline-regulated system that permits control of mutant BRAF expression. Treatment with doxycycline leads to loss of mutant BRAF expression and tumor regression, but tumors recur after a prolonged period of response to treatment. Vemurafenib, encorafenib and dabrafenib induce cell cycle arrest and apoptosis in BRAF melanoma cell lines; however, a residual population of tumor cells survive. Comparing gene expression in human cell lines and mouse tumors can assist with the identification of novel mechanisms of resistance. Accordingly, we conducted RNA sequencing analysis and immunoblotting on untreated and doxycycline-treated dormant mouse melanomas and human mutant BRAF melanoma cell lines treated with 2 μM vemurafenib for 20 days. We found conserved expression changes in histone methyltransferase genes ASH2, EZH2, PRMT5, SUV39H1, SUV39H2, and SYMD2 in P-ERK low, p-38 high melanoma cells following prolonged BRAF inhibition. Quantitative mass spectrometry, determined a corresponding reduction in histone Lys9 and Lys27 methylation and increase in Lys36 methylation in melanoma cell lines treated with 2 μM vemurafenib for 20 days. Thus, these changes as are part of the initiate response to BRAF inhibition and likely contribute to the survival of melanoma cells.
Collapse
Affiliation(s)
- Florina Grigore
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Hana Yang
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Nicholas D Hanson
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Matthew W VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Aaron L Sarver
- Masonic Cancer Center, 2231 6th St SE, Minneapolis, MN 5545, USA; Institute for Health Informatics, 420 Delaware St. SE, Minneapolis, MN 55455, USA
| | - James P Robinson
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA; Masonic Cancer Center, 2231 6th St SE, Minneapolis, MN 5545, USA.
| |
Collapse
|
24
|
Czarnecka AM, Bartnik E, Fiedorowicz M, Rutkowski P. Targeted Therapy in Melanoma and Mechanisms of Resistance. Int J Mol Sci 2020; 21:ijms21134576. [PMID: 32605090 PMCID: PMC7369697 DOI: 10.3390/ijms21134576] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
The common mutation BRAFV600 in primary melanomas activates the mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) pathway and the introduction of proto-oncogene B-Raf (BRAF) and mitogen-activated protein kinase kinase (MEK) inhibitors (BRAFi and MEKi) was a breakthrough in the treatment of these cancers. However, 15–20% of tumors harbor primary resistance to this therapy, and moreover, patients develop acquired resistance to treatment. Understanding the molecular phenomena behind resistance to BRAFi/MEKis is indispensable in order to develop novel targeted therapies. Most often, resistance develops due to either the reactivation of the MAPK/ERK pathway or the activation of alternative kinase signaling pathways including phosphatase and tensin homolog (PTEN), neurofibromin 1 (NF-1) or RAS signaling. The hyperactivation of tyrosine kinase receptors, such as the receptor of the platelet-derived growth factor β (PDFRβ), insulin-like growth factor 1 receptor (IGF-1R) and the receptor for hepatocyte growth factor (HGF), lead to the induction of the AKT/3-phosphoinositol kinase (PI3K) pathway. Another pathway resulting in BRAFi/MEKi resistance is the hyperactivation of epidermal growth factor receptor (EGFR) signaling or the deregulation of microphthalmia-associated transcription factor (MITF).
Collapse
Affiliation(s)
- Anna M. Czarnecka
- Department of Soft Tissue/Bone, Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence:
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Interinstitute Laboratory of New Diagnostic Applications of MRI, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone, Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
25
|
Comandante-Lou N, Khaliq M, Venkat D, Manikkam M, Fallahi-Sichani M. Phenotype-based probabilistic analysis of heterogeneous responses to cancer drugs and their combination efficacy. PLoS Comput Biol 2020; 16:e1007688. [PMID: 32084135 PMCID: PMC7055924 DOI: 10.1371/journal.pcbi.1007688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/04/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cell-to-cell variability generates subpopulations of drug-tolerant cells that diminish the efficacy of cancer drugs. Efficacious combination therapies are thus needed to block drug-tolerant cells via minimizing the impact of heterogeneity. Probabilistic models such as Bliss independence have been developed to evaluate drug interactions and their combination efficacy based on probabilities of specific actions mediated by drugs individually and in combination. In practice, however, these models are often applied to conventional dose-response curves in which a normalized parameter with a value between zero and one, generally referred to as fraction of cells affected (fa), is used to evaluate the efficacy of drugs and their combined interactions. We use basic probability theory, computer simulations, time-lapse live cell microscopy, and single-cell analysis to show that fa metrics may bias our assessment of drug efficacy and combination effectiveness. This bias may be corrected when dynamic probabilities of drug-induced phenotypic events, i.e. induction of cell death and inhibition of division, at a single-cell level are used as metrics to assess drug efficacy. Probabilistic phenotype metrics offer the following three benefits. First, in contrast to the commonly used fa metrics, they directly represent probabilities of drug action in a cell population. Therefore, they deconvolve differential degrees of drug effect on tumor cell killing versus inhibition of cell division, which may not be correlated for many drugs. Second, they increase the sensitivity of short-term drug response assays to cell-to-cell heterogeneities and the presence of drug-tolerant subpopulations. Third, their probabilistic nature allows them to be used directly in unbiased evaluation of synergistic efficacy in drug combinations using probabilistic models such as Bliss independence. Altogether, we envision that probabilistic analysis of single-cell phenotypes complements currently available assays via improving our understanding of heterogeneity in drug response, thereby facilitating the discovery of more efficacious combination therapies to block drug-tolerant cells.
Collapse
Affiliation(s)
- Natacha Comandante-Lou
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mehwish Khaliq
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Divya Venkat
- Department of Biochemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mohan Manikkam
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mohammad Fallahi-Sichani
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
26
|
Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci 2020; 21:ijms21031102. [PMID: 32046099 PMCID: PMC7037308 DOI: 10.3390/ijms21031102] [Citation(s) in RCA: 480] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways represent ubiquitous signal transduction pathways that regulate all aspects of life and are frequently altered in disease. Here, we focus on the role of MAPK pathways in modulating drug sensitivity and resistance in cancer. We briefly discuss new findings in the extracellular signaling-regulated kinase (ERK) pathway, but mainly focus on the mechanisms how stress activated MAPK pathways, such as p38 MAPK and the Jun N-terminal kinases (JNK), impact the response of cancer cells to chemotherapies and targeted therapies. In this context, we also discuss the role of metabolic and epigenetic aberrations and new therapeutic opportunities arising from these changes.
Collapse
|