1
|
Rodrigues JA, Pires BRB, de Amorim ISS, Siqueira PB, de Sousa Rodrigues MM, de Souza da Fonseca A, Panis C, Mencalha AL. STAT3 Regulates the Redox Profile in MDA-MB-231 Breast Cancer Cells. Cell Biochem Biophys 2024; 82:3507-3516. [PMID: 39033092 DOI: 10.1007/s12013-024-01439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Unbalanced redox status and constitutive STAT3 activation are related to several aspects of tumor biology and poor prognosis, including metastasis and drug resistance. The triple-negative breast cancer (TNBC) is listed as the most aggressive and exhibits the worst prognosis among the breast cancer subtypes. Although the mechanism of reactive oxygen species (ROS) generation led to STAT3 activation is described, there is no data concerning the STAT3 influence on redox homeostasis in TNBC. To address the role of STAT3 signaling in redox balance, we inhibited STAT3 in TNBC cells and investigated its impact on total ROS levels, contents of hydroperoxides, nitric oxide (NO), and total glutathione (GSH), as well as the expression levels of 3-nitrotyrosine (3NT), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and nuclear factor kappa B (NF-κB)/p65. Our results indicate that ROS levels depend on the STAT3 activation, while the hydroperoxide level remained unchanged, and NO and 3NT expression increased. Furthermore, GSH levels, Nrf2, and NF-κB/p65 protein levels are decreased in the STAT3-inhibited cells. Accordingly, TNBC patients' data from TCGA demonstrated that both STAT3 mRNA levels and STAT3 signature are correlated to NF-κB/p65 and Nrf2 signatures. Our findings implicate STAT3 in controlling redox balance and regulating redox-related genes' expression in triple-negative breast cancer.
Collapse
Affiliation(s)
- Juliana Alves Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Isis Salviano Soares de Amorim
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Priscyanne Barreto Siqueira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Mariana Moreno de Sousa Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Carolina Panis
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, UNIOESTE, Francisco Beltrão, Paraná, 85605-010, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
2
|
Gunes M, Rosen ST, Shachar I, Gunes EG. Signaling lymphocytic activation molecule family receptors as potential immune therapeutic targets in solid tumors. Front Immunol 2024; 15:1297473. [PMID: 38476238 PMCID: PMC10927787 DOI: 10.3389/fimmu.2024.1297473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Recently, cancer immunotherapy has revolutionized cancer treatment. Various forms of immunotherapy have a manageable safety profile and result in prolongation of overall survival in patients with solid tumors, but only in a proportion of patients. Various factors in the tumor microenvironment play critical roles and may be responsible for this lack of therapeutic response. Signaling lymphocytic activation molecule family (SLAMF) members are increasingly being studied as factors impacting the tumor immune microenvironment. SLAMF members consist of nine receptors mainly expressed in immune cells. However, SLAMF receptors have also been detected in cancer cells, and they may be involved in a spectrum of anti-tumor immune responses. Here, we review the current knowledge of the expression of SLAMF receptors in solid tumors and tumor-infiltrating immune cells and their association with patient outcomes. Furthermore, we discuss the therapeutic potential of targeting SLAMF receptors to improve outcomes of cancer therapy in solid tumors. We believe the research on SLAMF receptor-targeted strategies may enhance anti-cancer immunity in patients with solid tumors and improve clinical outcomes.
Collapse
Affiliation(s)
- Metin Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
| | - Steven T. Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA, United States
| | - Idit Shachar
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - E. Gulsen Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA, United States
- Toni Stephenson Lymphoma Center, City of Hope, Los Angeles, CA, United States
| |
Collapse
|
3
|
Zhang B, Zhao B, Han S, Chen S. CNOT4 suppresses nonsmall cell lung cancer progression by promoting the degradation of PAF1. Mol Carcinog 2023; 62:1563-1571. [PMID: 37493105 DOI: 10.1002/mc.23599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023]
Abstract
CCR4-NOT transcription complex subunit 4 (CNOT4) and RNA polymerase II-associated factor, homolog (Saccharomyces cerevisiae) (PAF1) are implicated in nonsmall cell lung cancer (NSCLC). However, the molecular mechanism of their interaction in NSCLC progression is unknown. The expression of PAF1 and CNOT4 in human NSCLC tissues was detected by quantitative polymerase chain reaction. A549 cells that stably expressed CNOT4 and/or PAF1 were established. Western blot analysis and co-immunoprecipitation experiments were performed to reveal the interaction between CNOT4 and PAF1. Proliferation, migration, epithelial-mesenchymal transition (EMT), and colony formation assays were performed to determine the effect of CNOT4-PAF1 axis on NSCLC metastasis and stemness. Xenograft mouse tumor model was established, and tumor progression, EMT, and stemness were evaluated. It was found that CNOT4 expression was downregulated, whereas PAF1 expression was upregulated in human NSCLC tissues. CNOT4 facilitated the ubiquitination and degradation of PAF1 via the 26S proteasome. CNOT4 overexpression inhibited NSCLC progression, whereas PAF1 overexpression enhanced the proliferation, migration, and stemness of NSCLC, both in vitro and in vivo. Our results suggest that CNOT4-PAF1 axis modulates NSCLC metastasis and stemness, and may serve as potential therapeutic targets for lung cancer treatment.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Zhao
- Department of Pharmacy, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Song Han
- Department of Thoracic Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Shaomu Chen
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Yao Q, Zhang X, Chen D. The emerging potentials of lncRNA DRAIC in human cancers. Front Oncol 2022; 12:867670. [PMID: 35992823 PMCID: PMC9386314 DOI: 10.3389/fonc.2022.867670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a subtype of noncoding RNA that has more than 200 nucleotides. Numerous studies have confirmed that lncRNA is relevant during multiple biological processes through the regulation of various genes, thus affecting disease progression. The lncRNA DRAIC, a newly discovered lncRNA, has been found to be abnormally expressed in a variety of diseases, particularly cancer. Indeed, the dysregulation of DRAIC expression is closely related to clinicopathological features. It was also reported that DRAIC is key to biological functions such as cell proliferation, autophagy, migration, and invasion. Furthermore, DRAIC is of great clinical significance in human disease. In this review, we discuss the expression signature, clinical characteristics, biological functions, relevant mechanisms, and potential clinical applications of DRAIC in several human diseases.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Xiuyuan Zhang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
- *Correspondence: Dajin Chen,
| |
Collapse
|
5
|
Muchlińska A, Nagel A, Popęda M, Szade J, Niemira M, Zieliński J, Skokowski J, Bednarz-Knoll N, Żaczek AJ. Alpha-smooth muscle actin-positive cancer-associated fibroblasts secreting osteopontin promote growth of luminal breast cancer. Cell Mol Biol Lett 2022; 27:45. [PMID: 35690734 PMCID: PMC9188043 DOI: 10.1186/s11658-022-00351-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/31/2022] [Indexed: 12/27/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) have been shown to support tumor development in a variety of cancers. Different markers were applied to classify CAFs in order to elucidate their impact on tumor progression. However, the exact mechanism by which CAFs enhance cancer development and metastasis is yet unknown.
Methods Alpha-smooth muscle actin (α-SMA) was examined immunohistochemically in intratumoral CAFs of nonmetastatic breast cancers and correlated with clinicopathological data. Four CAF cell lines were isolated from patients with luminal breast cancer (lumBC) and classified according to the presence of α-SMA protein. Conditioned medium (CM) from CAF cultures was used to assess the influence of CAFs on lumBC cell lines: MCF7 and T47D cells using Matrigel 3D culture assay. To identify potential factors accounting for promotion of tumor growth by α-SMAhigh CAFs, nCounter PanCancer Immune Profiling Panel (NanoString) was used. Results In luminal breast cancer, presence of intratumoral CAFs expressing high level of α-SMA (13% of lumBC group) correlated with poor prognosis (p = 0.019). In in vitro conditions, conditioned medium obtained from primary cultures of α-SMA-positive CAFs isolated from luminal tumors was observed to enhance growth of lumBC cell line colonies in 3D Matrigel, in contrast to CM derived from α-SMA-negative CAFs. Multigene expression analysis indicated that osteopontin (OPN) was overexpressed in α-SMA-positive CAFs in both clinical samples and in vitro models. OPN expression was associated with higher percentage of Ki67-positive cells in clinical material (p = 0.012), while OPN blocking in α-SMA-positive CAF-derived CM attenuated growth of lumBC cell line colonies in 3D Matrigel. Conclusions Our findings demonstrate that α-SMA-positive CAFs might enhance tumor growth via secretion of OPN. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00351-7.
Collapse
Affiliation(s)
- Anna Muchlińska
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Anna Nagel
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Marta Popęda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdansk, 80-214, Gdansk, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-276, Bialystok, Poland
| | - Jacek Zieliński
- Department of Surgical Oncology, Medical University of Gdansk, 80-214, Gdansk, Poland
| | - Jarosław Skokowski
- Department of Surgical Oncology, Medical University of Gdansk, 80-214, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211, Gdansk, Poland
| | - Natalia Bednarz-Knoll
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland.
| |
Collapse
|
6
|
Interleukin-1 and Nuclear Factor Kappa B Signaling Promote Breast Cancer Progression and Treatment Resistance. Cells 2022; 11:cells11101673. [PMID: 35626710 PMCID: PMC9139516 DOI: 10.3390/cells11101673] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
While meant for wound healing and immunity in response to injury and infection, inflammatory signaling is usurped by cancerous tumors to promote disease progression, including treatment resistance. The interleukin-1 (IL-1) inflammatory cytokine family functions in wound healing and innate and adaptive immunity. Two major, closely related IL-1 family members, IL-1α and IL-1β, promote tumorigenic phenotypes and contribute to treatment resistance in cancer. IL-1 signaling converges on transactivation of the Nuclear Factor Kappa B (NF-κB) and Activator protein 1 (AP-1) transcription factors. NF-κB and AP-1 signaling are also activated by the inflammatory cytokine Tumor Necrosis Factor Alpha (TNFα) and microbe-sensing Toll-Like Receptors (TLRs). As reviewed elsewhere, IL-1, TNFα, and TLR can promote cancer progression through NF-κB or AP-1. In this review, we focus on what is known about the role of IL-1α and IL-1β in breast cancer (BCa) progression and therapeutic resistance, and state evidence for the role of NF-κB in mediating IL-1-induced BCa progression and therapeutic resistance. We will present evidence that IL-1 promotes BCa cell proliferation, BCa stem cell expansion, angiogenesis, and metastasis. IL-1 also regulates intracellular signaling and BCa cell hormone receptor expression in a manner that confers a growth advantage to the tumor cells and allows BCa cells to evade therapy. As such, the IL-1 receptor antagonist, anakinra, is in clinical trials to treat BCa and multiple other cancer types. This article presents a review of the literature from the 1990s to the present, outlining the evidence supporting a role for IL-1 and IL-1-NF-κB signaling in BCa progression.
Collapse
|
7
|
Nagel A, Popeda M, Muchlinska A, Sadej R, Szade J, Zielinski J, Skokowski J, Niemira M, Kretowski A, Markiewicz A, Zaczek AJ. ERα36-High Cancer-Associated Fibroblasts as an Unfavorable Factor in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14082005. [PMID: 35454913 PMCID: PMC9024776 DOI: 10.3390/cancers14082005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor microenvironment (TME). Estrogen receptor alpha 36 (ERα36), the alternatively spliced variant of ERα, is described as an unfavorable factor when expressed in cancer cells. ERα can be expressed also in CAFs; however, the role of ERα36 in CAFs is unknown. Methods: Four CAF cultures were isolated from chemotherapy-naïve BC patients and characterized for ERα36 expression and the NanoString gene expression panel using isolated RNA. Conditioned media from CAF cultures were used to assess the influence of CAFs on triple-negative breast cancer (TNBC) cells using a matrigel 3D culture assay. Results: We found that ERα36high CAFs significantly induced the branching of TNBC cells in vitro (p < 0.001). They also produced a set of pro-tumorigenic cytokines compared to ERα36low CAFs, among which hepatocyte growth factor (HGF) was the main inducer of TNBC cell invasive phenotype in vitro (p < 0.001). Tumor stroma rich in ERα36high CAFs was correlated with high Ki67 expression (p = 0.041) and tumor-associated macrophages markers (CD68 and CD163, p = 0.041 for both). HGF was found to be an unfavorable prognostic factor in TCGA database analysis (p = 0.03 for DFS and p = 0.04 for OS). Conclusions: Breast cancer-associated fibroblasts represent distinct subtypes based on ERα36 expression. We propose that ERα36high CAFs could account for an unfavorable prognosis for TNBC patients.
Collapse
Affiliation(s)
- Anna Nagel
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.N.); (M.P.); (A.M.); (A.M.)
| | - Marta Popeda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.N.); (M.P.); (A.M.); (A.M.)
| | - Anna Muchlinska
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.N.); (M.P.); (A.M.); (A.M.)
| | - Rafal Sadej
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Zielinski
- Department of Surgical Oncology, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.Z.); (J.S.)
| | - Jaroslaw Skokowski
- Department of Surgical Oncology, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.Z.); (J.S.)
- Department of Medical Laboratory Diagnostics-Biobank Fahrenheit BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15–276 Bialystok, Poland; (M.N.); (A.K.)
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15–276 Bialystok, Poland; (M.N.); (A.K.)
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.N.); (M.P.); (A.M.); (A.M.)
| | - Anna J. Zaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.N.); (M.P.); (A.M.); (A.M.)
- Correspondence: ; Tel.: +48–58-349–14-38
| |
Collapse
|
8
|
Zhang Y, Huang Z, Cheng J, Pan H, Lin T, Shen X, Chen W, Chen Q, Gu C, Mao Q, Liang Y. Platelet-Vesicles-Encapsulated RSL-3 Enable Anti-Angiogenesis and Induce Ferroptosis to Inhibit Pancreatic Cancer Progress. Front Endocrinol (Lausanne) 2022; 13:865655. [PMID: 35399954 PMCID: PMC8987003 DOI: 10.3389/fendo.2022.865655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers. It is characterized by stromal richness, lack of blood supply and special metabolic reprogramming in the tumor microenvironment, which is difficult to treat and easy to metastase. Great efforts have been made to develop new drugs which can pass through the stroma and are more effective than traditional chemotherapeutics, such as ferroptosis inducers-Erastin and RSL-3. As current anti-angiogenic therapy drugs alone are suboptimal for PDAC, novel vascular disruption agents in combination with ferroptosis inducers might provide a possible solution. Here, we designed human platelet vesicles (PVs) to camouflage RSL-3 to enhance drug uptake rate by tumor cells and circulation time in vivo, deteriorating the tumor vessels and resulting in tumor embolism to cut the nutrient supply as well as causing cell death due to excessive lipid peroxidation. The RSL-3@PVs can also cause the classic ferroptosis-related change of mitochondrial morphology, with changes in cellular redox levels. Besides that, RSL-3@PVs has been proved to have great biological safety profile in vitro and in vivo. This study demonstrates the promising potential of integrating PVs and RSL-3 as a combination therapy for improving the outcome of PDAC.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoqi Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianyu Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuqiu Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenchao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Chen
- Department of General Surgery, Hangzhou Fuyang Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Bednarz-Knoll N, Popęda M, Kryczka T, Kozakiewicz B, Pogoda K, Szade J, Markiewicz A, Strzemecki D, Kalinowski L, Skokowski J, Liu J, Żaczek AJ. Higher platelet counts correlate to tumour progression and can be induced by intratumoural stroma in non-metastatic breast carcinomas. Br J Cancer 2022; 126:464-471. [PMID: 34857895 PMCID: PMC8810836 DOI: 10.1038/s41416-021-01647-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/03/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Platelets support tumour progression. However, their prognostic significance and relation to circulating tumour cells (CTCs) in operable breast cancer (BrCa) are still scarcely known and, thus, merit further investigation. METHODS Preoperative platelet counts (PCs) were compared with clinical data, CTCs, 65 serum cytokines and 770 immune-related transcripts obtained using the NanoString technology. RESULTS High normal PC (hPC; defined by the 75th centile cut-off) correlated with an increased number of lymph node metastases and mesenchymal CTCs in the 70 operable BrCa patients. Patients with hPC and CTC presence revealed the shortest overall survival compared to those with no CTC/any PC or even CTC/normal PC. Adverse prognostic impact of hPC was observed only in the luminal subtype, when 247 BrCa patients were analysed. hPC correlated with high content of intratumoural stroma, specifically its phenotype related to CD8+ T and resting mast cells, and an increased concentration of cytokines related to platelet activation or even production in bone marrow (i.e. APRIL, ENA78/CXCL5, HGF, IL16, IL17a, MDC/CCL22, MCP3, MMP1 and SCF). CONCLUSIONS Preoperative platelets evaluated alone and in combination with CTCs have prognostic potential in non-metastatic BrCa and define patients at the highest risk of disease progression, putatively benefiting from anti-platelet therapy.
Collapse
Affiliation(s)
- Natalia Bednarz-Knoll
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland.
| | - Marta Popęda
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Kryczka
- Department of Development of Nursing and Social and Medical Sciences, Medical University of Warsaw, Warsaw, Poland
- Department of Experimental Pharmacology, Medical Research Centre of Polish Academy of Science, Warsaw, Poland
| | - Barbara Kozakiewicz
- Oncological Prevention Department, Medical University of Warsaw, Warsaw, Poland
- Radiotherapy Unit, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Katarzyna Pogoda
- Department of Breast Cancer and Reconstructive Surgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Damian Strzemecki
- Department of Experimental Pharmacology, Medical Research Centre of Polish Academy of Science, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, University of Technology, Gdańsk, Poland
| | - Jarosław Skokowski
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, China
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
10
|
Topa J, Grešner P, Żaczek AJ, Markiewicz A. Breast cancer circulating tumor cells with mesenchymal features-an unreachable target? Cell Mol Life Sci 2022; 79:81. [PMID: 35048186 PMCID: PMC8770434 DOI: 10.1007/s00018-021-04064-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) mediate dissemination of solid tumors and can be an early sign of disease progression. Moreover, they show a great potential in terms of non-invasive, longitudinal monitoring of cancer patients. CTCs have been extensively studied in breast cancer (BC) and were shown to present a significant phenotypic plasticity connected with initiation of epithelial-mesenchymal transition (EMT). Apart from conferring malignant properties, EMT affects CTCs recovery rate, making a significant portion of CTCs from patients’ samples undetected. Wider application of methods and markers designed to isolate and identify mesenchymal CTCs is required to expand our knowledge about the clinical impact of mesenchymal CTCs. Therefore, here we provide a comprehensive review of clinical significance of mesenchymal CTCs in BC together with statistical analysis of previously published data, in which we assessed the suitability of a number of methods/markers used for isolation of CTCs with different EMT phenotypes, both in in vitro spike-in tests with BC cell lines, as well as clinical samples. Results of spiked-in cell lines indicate that, in general, methods not based on epithelial enrichment only, capture mesenchymal CTCs much more efficiently that CellSearch® (golden standard in CTCs detection), but at the same time are not much inferior to Cell Search®, though large variation in recovery rates of added cells among the methods is observed. In clinical samples, where additional CTCs detection markers are needed, positive epithelial-based CTCs enrichment was the most efficient in isolating CTCs with mesenchymal features from non-metastatic BC patients. From the marker side, PI3K and VIM were contributing the most to detection of CTCs with mesenchymal features (in comparison to SNAIL) in non-metastatic and metastatic BC patients, respectively. However, additional data are needed for more robust identification of markers for efficient detection of CTCs with mesenchymal features.
Collapse
Affiliation(s)
- Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Peter Grešner
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
11
|
Wang J, Liu R, Mo H, Xiao X, Xu Q, Zhao W. Deubiquitinase PSMD7 promotes the proliferation, invasion, and cisplatin resistance of gastric cancer cells by stabilizing RAD23B. Int J Biol Sci 2021; 17:3331-3342. [PMID: 34512150 PMCID: PMC8416741 DOI: 10.7150/ijbs.61128] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/20/2021] [Indexed: 11/05/2022] Open
Abstract
Ubiquitination, a crucial post-translational modification, controls substrate degradation and can be reversed by deubiquitinases (DUBs). An increasing number of studies are showing that DUBs regulate the malignant behavior and chemotherapy resistance of gastric cancer (GC) by stabilizing various proteins. However, the expression level and biological function of the DUB, proteasome 26S subunit, non-ATPase 7 (PSMD7), in GC remains unknown. Herein, we report for the first time that PSMD7 is frequently overexpressed in GC tissues. Elevated levels of PSMD7 were also detected in GC cell lines. Notably, the upregulation of PSMD7 closely correlated with malignant clinical parameters and reduced the survival of GC patients. Functionally, we found that PSMD7 knockdown consistently suppressed the proliferation, migration, and invasion of AGS and SGC-7901 cells. Ectopic expression of PSMD7 facilitated GC cell proliferation and mobility. Based on protein-protein interaction prediction, RAD23 homolog B (RAD23B) protein was identified as a candidate substrate of PSMD7. PSMD7 positively regulated the abundance of RAD23B and xeroderma pigmentosum, complementation group C (XPC) protein in GC cells. The interaction between PSMD7 and RAD23B was confirmed using protein immunoprecipitation. PSMD7 knockdown enhanced the ubiquitination and degradation of RAD23B protein in GC cells. PSMD7 promoted cell viability, apoptosis resistance, and DNA damage repair in GC cells upon cisplatin (DDP) treatment. Moreover, PSMD7 silencing inhibited tumor growth and enhanced the sensitivity of GC cells to DDP treatment in mice. In summary, PSMD7 was highly expressed in GC and contributed to the malignant behavior and DDP resistance of tumor cells by stabilizing RAD23B.
Collapse
Affiliation(s)
- Jianjiang Wang
- Department of Hepatobiliary Surgery, The First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou 311399, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuelian Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
12
|
Popeda M, Markiewicz A, Stokowy T, Szade J, Niemira M, Kretowski A, Bednarz-Knoll N, Zaczek AJ. Reduced expression of innate immunity-related genes in lymph node metastases of luminal breast cancer patients. Sci Rep 2021; 11:5097. [PMID: 33658651 PMCID: PMC7930267 DOI: 10.1038/s41598-021-84568-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Immune system plays a dual role in cancer by either targeting or supporting neoplastic cells at various stages of disease, including metastasis. Yet, the exact immune-related transcriptome profiles of primary tumours (PT) and lymph node metastases (LNM) and their evolution during luminal breast cancer (BCa) dissemination remain undiscovered. In order to identify the immune-related transcriptome changes that accompany lymphatic spread, we analysed PT-LNM pairs of luminal BCa using NanoString technology. Decrease in complement C3-one of the top-downregulated genes, in LNM was validated at the protein level using immunohistochemistry. Thirty-three of 360 analysed genes were downregulated (9%), whereas only 3 (0.8%) upregulated in LNM when compared to the corresponding PT. In LNM, reduced expression was observed in genes related to innate immunity, particularly to the complement system (C1QB, C1S, C1R, C4B, CFB, C3, SERPING1 and C3AR1). In validation cohort, complement C3 protein was less frequently expressed in LNM than in PT and it was associated with worse prognosis. To conclude, local expression of the complement system components declines during lymphatic spread of non-metastatic luminal BCa, whilst further reduction of tumoral complement C3 in LNM is indicative for poor survival. This points to context-dependent role of complement C3 in BCa dissemination.
Collapse
Affiliation(s)
- Marta Popeda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-276, Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15-276, Bialystok, Poland
| | - Natalia Bednarz-Knoll
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Anna J Zaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland.
| |
Collapse
|
13
|
Long J, Zhang S, Zeng X, Ouyang Y, Wang Y, Hu Z, Ye Y, Wu W, Jin F, Zhou S, Zeng Z. Development of an Immunogenomic Landscape-Based Prognostic Index of Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2020; 7:586344. [PMID: 33330624 PMCID: PMC7732611 DOI: 10.3389/fmolb.2020.586344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the eighth leading cancer by incidence worldwide, with approximately 700,000 new cases in 2018 (accounting for 11% of all cancers). The occurrence and development of tumors are closely related to the immunological function of the body and sensitivity to treatment schemes as well as prognosis. It is urgent for clinicians to systematically study patients’ immune gene maps to help select a treatment plan and analyze the potential to cure HNSCC. Here, the transcriptomic data of HNSCC samples were downloaded from The Cancer Genome Atlas (TCGA), and 4,793 genes differentially expressed in normal and cancer tissues of HNSCC were identified, including 1,182 downregulated and 3,611 upregulated genes. From these genes, 400 differentially expressed immune-related genes (IRGs) were extracted, including 95 downregulated genes and 305 upregulated genes. The prognostic values of IRGs were evaluated by univariate Cox analysis, and 236 genes that were significantly related to the overall survival (OS) of patients were identified. The signaling pathways that play roles in the prognosis of IRGs were investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and the expression profiles of IRGs and OS in 499 HNSCC patients based on TCGA dataset were integrated. Potential molecular mechanisms and characteristics of these HNSCC-specific IRGs were further explored with the help of a new prognostic index based on IRGs developed by least absolute shrinkage and selection operator (LASSO) Cox analysis. A total of 64 hub genes (IRGs associated with prognosis) were markedly associated with the clinical outcome of HNSCC patients. KEGG functional enrichment analysis revealed that these genes were actively involved in several pathways, e.g., cytokine–cytokine receptor interaction, T-cell receptor signaling, and natural killer cell-mediated cytotoxicity. IRG-based prognostic signatures performed moderately in prognostic predictions. Interestingly, the prognostic index based on IRGs reflected infiltration by several types of immune cells. These data screened several IRGs of clinical significance and revealed drivers of the immune repertoire, demonstrating the importance of a personalized IRG-based immune signature in the recognition, surveillance, and prognosis of HNSCC.
Collapse
Affiliation(s)
- Jinhua Long
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China.,Department of Head and Neck Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shichao Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xianlin Zeng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yan Ouyang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yun Wang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Zuquan Hu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yuannong Ye
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Weili Wu
- Department of Head and Neck Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Feng Jin
- Department of Head and Neck Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shi Zhou
- Department of Intervention, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
New Insights into Breast and Endometrial Cancers. Cancers (Basel) 2020; 12:cancers12092595. [PMID: 32932889 PMCID: PMC7563714 DOI: 10.3390/cancers12092595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
|
15
|
Kunc M, Popęda M, Szałkowska A, Niemira M, Bieńkowski M, Pęksa R, Łacko A, Radecka BS, Braun M, Pikiel J, Litwiniuk M, Pogoda K, Iżycka-Świeszewska E, Krętowski A, Żaczek AJ, Biernat W, Senkus-Konefka E. microRNA Expression Profile in Single Hormone Receptor-Positive Breast Cancers is Mainly Dependent on HER2 Status-A Pilot Study. Diagnostics (Basel) 2020; 10:diagnostics10090617. [PMID: 32825530 PMCID: PMC7555149 DOI: 10.3390/diagnostics10090617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 11/30/2022] Open
Abstract
Estrogen (ER) and progesterone (PgR) receptors and HER2 are crucial in the assessment of breast cancer specimens due to their prognostic and predictive significance. Single hormone receptor-positive breast cancers are less common and their clinical course is less favorable than ER(+)/PgR(+) tumors. Their molecular features, especially microRNA (miRNA) profiles, have not been investigated to date. Tumor specimens from 36 chemonaive breast cancer patients with known ER and PgR status (18 ER(+)/PgR(−) and 18 ER(−)/PgR(+) cases) were enrolled to the study. The expression of 829 miRNAs was evaluated with nCounter Human v3 miRNA expression Assay (NanoString). miRNAs differentiating between ER/PgR/HER2 phenotypes were selected based on fold change (FC) calculated for the mean normalized counts of each probe in compared groups. The differences were estimated with Student’s t-test or Two-Way ANOVA (considering also the HER2 status). The results were validated using The Cancer Genome Atlas (TCGA) dataset. Following quality control of raw data, fourcases were excluded due to low sample quality, leaving 14 ER(+)/PgR(−) and 18 ER(−)/PgR(+) cases. After correction for multiple comparisons, we did not find miRNA signature differentiating between ER(−)/PgR(+) and ER(+)/PgR(−) breast cancers. However, a trend for differing expression (p-value ≤ 0.05; FDR > 0.2; ANOVA) in eight miRNAs was observed. The ER(+)/PgR(−) group demonstrated elevated levels of four miRNAs—miR-30a-5p, miR-29c-3p, miR-141-3p and miR-423-5p—while the ER(−)/PgR(+) tumors were enriched in another four miRNAs—miR-514b-5p, miR-424-5p, miR-495-3p, and miR-92a-3p. For one of the miRNAs—miR-29c-3p—the association with the ER(+)/PgR(−) phenotype was confirmed in the TCGA cohort (p-value = 0.024; t-test). HER2 amplification/overexpression in the NanoString cohort was related to significant differences observed in 33 miRNA expression levels (FDR ≤ 0.2; ANOVA). The association with HER2 status was confirmed in the TCGA cohort for four miRNAs (miR-1180-3p, miR-223-3p, miR-30d-5p, and miR-195-5p). The main differences in miRNA expression amongst single hormone receptor-positive tumors were identified according to their HER2 status. However, ER(+)/PgR(−) cases tended to express higher levels of miRNAs associated with ER-positivity (miR-30a-5p, miR-29c-3p, miR-141-3p), whereas ER(−)/PgR(+) cancers showed elevated levels of miRNAs characteristic for double- and triple-negative tumors (miR-92a-3p, miR-424-5p). Further studies are necessary to comprehensively analyze miRNA signatures characteristic of ER(−)/PgR(+) and ER(+)/PgR(−) tumors.
Collapse
Affiliation(s)
- Michał Kunc
- Department of Pathomorphology, Medical University of Gdansk, 80-214 Gdańsk, Poland; (M.K.); (M.B.); (R.P.); (W.B.)
| | - Marta Popęda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.P.); (A.J.Ż.)
| | - Anna Szałkowska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (M.N.); (A.K.)
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (M.N.); (A.K.)
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdansk, 80-214 Gdańsk, Poland; (M.K.); (M.B.); (R.P.); (W.B.)
| | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdansk, 80-214 Gdańsk, Poland; (M.K.); (M.B.); (R.P.); (W.B.)
| | - Aleksandra Łacko
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland;
- Department of Oncology, Breast Unit, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
| | - Barbara S. Radecka
- Department of Oncology, Institute of Medical Sciences, University of Opole, 45-052 Opole, Poland;
- Department of Clinical Oncology, Tadeusz Koszarowski Cancer Center in Opole, 45-061 Opole, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Joanna Pikiel
- Department of Oncology, Szpital Morski, 81-519 Gdynia, Poland;
| | - Maria Litwiniuk
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
| | - Katarzyna Pogoda
- Department of Breast Cancer and Reconstructive Surgery, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Ewa Iżycka-Świeszewska
- Department of Pathology & Neuropathology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (M.N.); (A.K.)
| | - Anna J. Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.P.); (A.J.Ż.)
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, 80-214 Gdańsk, Poland; (M.K.); (M.B.); (R.P.); (W.B.)
| | - Elżbieta Senkus-Konefka
- Department of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-584-4481
| |
Collapse
|
16
|
The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGF Signaling. Cancers (Basel) 2020; 12:cancers12082047. [PMID: 32722292 PMCID: PMC7466024 DOI: 10.3390/cancers12082047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Downregulation of the cylindromatosis (CYLD) tumor suppressor has been associated with breast cancer development and progression. Here, we report a critical role for CYLD in maintaining the phenotype of mammary epithelial cells in vitro and in vivo. CYLD downregulation or inactivation induced an epithelial to mesenchymal transition of mammary epithelial cells that was dependent on the concomitant activation of the transcription factors Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) and transforming growth factor beta (TGF)signaling. CYLD inactivation enhanced the nuclear localization of YAP/TAZ and the phosphorylation of Small Mothers Against Decapentaplegic (SMAD)2/3 proteins in confluent cell culture conditions. Consistent with these findings were the hyperplastic alterations of CYLD-deficient mouse mammary epithelia, which were associated with enhanced nuclear expression of the YAP/TAZ transcription factors. Furthermore, in human breast cancer samples, downregulation of CYLD expression correlates with enhanced YAP/TAZ-regulated target gene expression. Our results identify CYLD as a critical regulator of a signaling node that prevents the coordinated activation of YAP/TAZ and the TGF pathway in mammary epithelial cells, in order to maintain their phenotypic identity and homeostasis. Consequently, they provide a novel conceptual framework that supports and explains a causal implication of deficient CYLD expression in aggressive human breast cancers.
Collapse
|
17
|
Plasma-Derived Extracellular Vesicles Convey Protein Signatures that Reflect Pathophysiology in Lung and Pancreatic Adenocarcinomas. Cancers (Basel) 2020; 12:cancers12051147. [PMID: 32370304 PMCID: PMC7281335 DOI: 10.3390/cancers12051147] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022] Open
Abstract
Using a combination of mass-spectrometry and aptamer array-based proteomics, we characterized the protein features of circulating extracellular vesicles (EVs) in the context of lung (LUAD) and pancreatic ductal (PDAC) adenocarcinomas. We profiled EVs isolated from conditioned media of LUAD and PDAC cell lines to identify EV-associated protein cargoes released by these cancer cell types. Analysis of the resulting data identified LUAD and PDAC specific and pan-adenocarcinoma EV protein signatures. Bioinformatic analyses confirmed enrichment of proteins annotated to vesicle-associated processes and intracellular compartments, as well as representation of cancer hallmark functions and processes. Analysis of upstream regulator networks indicated significant enrichment of TP53, MYC, TGFB1 and KRAS-driven network effectors (p = 1.69 × 10-77-2.93 × 10-49) manifest in the adenocarcinoma sEV protein cargoes. We extended these findings by profiling the proteome of EVs isolated from lung (N = 15) and pancreatic ductal (N = 6) adenocarcinoma patient plasmas obtained at time of diagnosis, along with EVs derived from matched healthy controls (N = 21). Exploration of these proteomic data revealed abundant protein features in the plasma EVs with capacity to distinguish LUAD and PDAC cases from controls, including features yielding higher performance in the plasma EV isolates relative to unfractionated plasmas.
Collapse
|