1
|
Ali H, Zhou N, Chen L, van Hijfte L, Karri V, Zhou Y, Habashy K, Arrieta VA, Kim KS, Duffy J, Yeeravalli R, Tiek DM, Song X, Mishra S, Lee-Chang C, Ahmed AU, Heiland DH, Sonabend AM, Dmello C. Targeting CHEK2-YBX1&YBX3 regulatory hub to potentiate immune checkpoint blockade response in gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642289. [PMID: 40161682 PMCID: PMC11952400 DOI: 10.1101/2025.03.09.642289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Although GBM's immunosuppressive environment is well known, the tumor's resistance to CD8+ T cell killing is not fully understood. Our previous study identified Checkpoint Kinase 2 (Chek2) as the key driver of CD8+ T cell resistance in mouse glioma through an in vivo CRISPR screen and demonstrated that Chk2 inhibition, combined with PD-1/PD-L1 blockade, significantly enhanced CD8+ T cell-mediated tumor killing and improved survival in preclinical model. Here, we aimed to elucidate the immunosuppressive function of Chek2. Immunoprecipitation (IP) followed by mass spectrometry (MS) and phosphoproteomics identified an association between Chek2 with the DNA/RNA-binding proteins YBX1 and YBX3 that are implicated in transcriptional repression of pro-inflammatory genes. Single-gene knock-out and overexpression studies of CHEK2, YBX1, and YBX3 in multiple glioma cell lines revealed that these proteins positively regulate each other's expression. RNA sequencing coupled with chromatin immunoprecipitation-sequencing (ChIP-seq) analysis demonstrated common inflammatory genes repressed by CHK2-YBX1&YBX3 hub. Targeting one of the hub proteins, YBX1, with the YBX1 inhibitor SU056 led to degradation of CHK2-YBX1&YBX3 hub. Targeting of this hub by SU056 led to enhanced antigen presentation and antigen specific CD8+ T cell proliferation. Further, combination of SU056 with ICB significantly improved survival in multiple glioma models. Collectively, these findings reveal an immunosuppressive mechanism mediated by the CHK2-YBX1&YBX3 hub proteins. Therefore, CHK2-YBX1&YBX3 hub targeting in combination with immune checkpoint blockade therapies in gliomas is warranted.
Collapse
|
2
|
Samareh Salavatipour M, Tavakoli S, Halimi A, Tavoosi S, Baghsheikhi AH, Talebi-Taheri A, Niloufari M, Salehi Z, Verdi J, Rahgozar S, Mosavi-Jarrahi A, Ahmadvand M. Ubiquitin-specific peptidases in lymphoma: a path to novel therapeutics. Front Pharmacol 2024; 15:1356634. [PMID: 39664521 PMCID: PMC11632177 DOI: 10.3389/fphar.2024.1356634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/14/2024] [Indexed: 12/13/2024] Open
Abstract
Background Ubiquitin-specific peptidases (USPs), also known as deubiquitinating enzymes (DUBs), play a crucial role in maintaining cellular homeostasis by selectively removing ubiquitin molecules from targeted proteins. This process affects protein stability, subcellular localization, and activity, thereby influencing processes such as DNA repair, cell cycle regulation, and apoptosis. Abnormal USP activities have been linked to various diseases, including cancer. Emerging evidence in lymphoma studies highlights the significance of USPs in controlling signaling pathways related to cancer initiation and progression and presents them as potential therapeutic targets. Aim This study aimed to elucidate the multifaceted roles of USPs in lymphoma. Methods This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles published in English up to May 2023 were retrieved from PubMed, Web of Science, and Scopus. The inclusion criteria focused on studies investigating the role of USPs in lymphoma cancer, involving human subjects or relevant lymphoma cell lines, exploring molecular mechanisms and signaling pathways, and assessing diagnostic or prognostic value. Results After the selection process, 23 studies were selected for analysis. USPs were found to affect various aspects of lymphoma development and progression. Specific USPs were identified with roles in cell-cycle regulation, apoptosis modulation, drug resistance, DNA repair, and influence of key oncogenic pathways, such as B cell receptor (BCR) signaling. Conclusion This systematic review underscores the emerging role of USPs in lymphoma and their potential as therapeutic targets. Inhibitors of USPs, such as USP14 inhibitors, show promise in overcoming drug resistance. The dynamic interplay between USPs and lymphoma biology presents an exciting opportunity for future research and the development of more effective treatments for patients with lymphoma. Understanding the intricate functions of USPs in lymphoma offers new insights into potential therapeutic strategies, emphasizing the significance of these enzymes in the context of cancer biology.
Collapse
Affiliation(s)
- Maryam Samareh Salavatipour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Tavakoli
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aram Halimi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Center for Social Determinants of Health, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Tavoosi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Abdolkarim Talebi-Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Niloufari
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
La Banca V, De Domenico S, Nicolai S, Gatti V, Scalera S, Maugeri M, Mauriello A, Montanaro M, Pahnke J, Candi E, D’Amico S, Peschiaroli A. ABCC1 Is a ΔNp63 Target Gene Overexpressed in Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:8741. [PMID: 39201428 PMCID: PMC11354449 DOI: 10.3390/ijms25168741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The transcription factor ΔNp63 plays a pivotal role in maintaining the integrity of stratified epithelial tissues by regulating the expression of distinct target genes involved in lineage specification, cell stemness, cell proliferation and differentiation. Here, we identified the ABC transporter subfamily member ABCC1 as a novel ΔNp63 target gene. We found that in immortalized human keratinocytes and in squamous cell carcinoma (SCC) cells, ∆Np63 induces the expression of ABCC1 by physically occupying a p63-binding site (p63 BS) located in the first intron of the ABCC1 gene locus. In cutaneous SCC and during the activation of the keratinocyte differentiation program, ∆Np63 and ABCC1 levels are positively correlated raising the possibility that ABCC1 might be involved in the regulation of the proliferative/differentiative capabilities of squamous tissue. However, we did not find any gross alteration in the structure and morphology of the epidermis in humanized hABCC1 knock-out mice. Conversely, we found that the genetic ablation of ABCC1 led to a marked reduction in inflammation-mediated proliferation of keratinocytes, suggesting that ABCC1 might be involved in the regulation of keratinocyte proliferation upon inflammatory/proliferative signals. In line with these observations, we found a significant increase in ABCC1 expression in squamous cell carcinomas (SCCs), a tumor type characterized by keratinocyte hyper-proliferation and a pro-inflammatory tumor microenvironment. Collectively, these data uncover ABCC1 as an additional ∆Np63 target gene potentially involved in those skin diseases characterized by dysregulation of proliferation/differentiation balance.
Collapse
Affiliation(s)
- Veronica La Banca
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
| | - Sara De Domenico
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
| | - Sara Nicolai
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| | - Veronica Gatti
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| | - Stefano Scalera
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.S.); (M.M.)
| | - Marcello Maugeri
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.S.); (M.M.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab/Section of Neuropathology Research, Department of Pathology (PAT), Medical Faculty/Clinical Medicine (KlinMed), Clinics for Laboratory Medicine (KLM), University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway;
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, The Faculty of Medicine and Life Sciences, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv 6997801, Israel
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166 Rome, Italy
| | - Silvia D’Amico
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| |
Collapse
|
4
|
Li J, Yang D, Lin Y, Xu W, Zhao SM, Wang C. OTUD3 suppresses the mTORC1 signaling by deubiquitinating KPTN. Front Pharmacol 2024; 14:1337732. [PMID: 38288086 PMCID: PMC10822905 DOI: 10.3389/fphar.2023.1337732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Background: Ubiquitination and deubiquitination modifications play pivotal roles in eukaryotic life processes, regulating protein dynamics via the ubiquitin-proteasome pathway. Dysregulation can impact disease development, including cancer and neurodegenerative disorders. Increasing evidence highlights their role in tumorigenesis, modulating key proteins. OTUD3, a deubiquitinase, stabilizes PTEN, suppressing tumor growth by inhibiting PI3K-AKT signaling. Yet, further OTUD3 substrates remain underexplored. Methods: We employed the In vivo ubiquitination assay to investigate the ubiquitination role of OTUD3 on KPTN within the cellular context. Additionally, CRISPR/Cas9 editing and Immunofluorescence were utilized to study the impact of OTUD3 on the mTOR signaling pathway in cells. Furthermore, Cell proliferation assay and NMR were employed to explore the effects of OTUD3 on cellular growth and proliferation. Results: OTUD3 serves as a deubiquitinase for KPTN. OTUD3 interacts with KPTN, facilitated by the OTU domain within OTUD3. Further investigations confirmed KPTN's ubiquitination modification, primarily at lysine residue 49. Ubiquitination experiments demonstrated OTUD3's ability to mediate KPTN's deubiquitination without affecting its protein levels. This suggests KPTN's ubiquitination is a function-regulated, non-degradable modification. Under various amino acid starvation or stimulation conditions, overexpressing OTUD3 reduces mTORC1 signaling activation, while knocking out OTUD3 further enhances it. Notably, OTUD3's regulation of mTORC1 signaling relies on its deubiquitinase activity, and this effect is observed even in PTEN KO cells, confirming its independence from PTEN, a reported substrate. OTUD3 also promotes GATOR1's lysosomal localization, a process requiring KPTN's involvement. Ultimately, OTUD3 affects cellular metabolic pool products by downregulating the mTORC1 pathway, significantly inhibiting tumor cell growth and proliferation. Discussion: Our experiments shed light on an alternative perspective regarding the intrinsic functions of OTUD3 in inhibiting tumor development. We propose a novel mechanism involving KPTN-mediated regulation of the mTORC1 signaling pathway, offering fresh insights into the occurrence and progression of tumor diseases driven by related genes. This may inspire new approaches for drug screening and cancer treatment, potentially guiding future therapies for relevant tumors.
Collapse
Affiliation(s)
- Jiatao Li
- Institutes of Biomedical Sciences, Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Dan Yang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Lin
- Institutes of Biomedical Sciences, Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Xu
- Institutes of Biomedical Sciences, Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shi-min Zhao
- Institutes of Biomedical Sciences, Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chenji Wang
- Institutes of Biomedical Sciences, Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Xu Q, He L, Zhang S, Di X, Jiang H. Deubiquitinase OTUD3: a double-edged sword in immunity and disease. Front Cell Dev Biol 2023; 11:1237530. [PMID: 37829187 PMCID: PMC10566363 DOI: 10.3389/fcell.2023.1237530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023] Open
Abstract
Deubiquitination is an important form of post-translational modification that regulates protein homeostasis. Ovarian tumor domain-containing proteins (OTUDs) subfamily member OTUD3 was identified as a deubiquitinating enzyme involved in the regulation of various physiological processes such as immunity and inflammation. Disturbances in these physiological processes trigger diseases in humans and animals, such as cancer, neurodegenerative diseases, diabetes, mastitis, etc. OTUD3 is aberrantly expressed in tumors and is a double-edged sword, exerting tumor-promoting or anti-tumor effects in different types of tumors affecting cancer cell proliferation, metastasis, and metabolism. OTUD3 is regulated at the transcriptional level by a number of MicroRNAs, such as miR-520h, miR-32, and miR101-3p. In addition, OTUD3 is regulated by a number of post-translational modifications, such as acetylation and ubiquitination. Therefore, understanding the regulatory mechanisms of OTUD3 expression can help provide insight into its function in human immunity and disease, offering the possibility of its use as a therapeutic target to diagnose or treat disease.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lan He
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Gatti V, De Domenico S, Melino G, Peschiaroli A. Senataxin and R-loops homeostasis: multifaced implications in carcinogenesis. Cell Death Discov 2023; 9:145. [PMID: 37147318 PMCID: PMC10163015 DOI: 10.1038/s41420-023-01441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
R-loops are inherent byproducts of transcription consisting of an RNA:DNA hybrid and a displaced single-stranded DNA. These structures are of key importance in controlling numerous physiological processes and their homeostasis is tightly controlled by the activities of several enzymes deputed to process R-loops and prevent their unproper accumulation. Senataxin (SETX) is an RNA/DNA helicase which catalyzes the unwinding of RNA:DNA hybrid portion of the R-loops, promoting thus their resolution. The key importance of SETX in R-loops homeostasis and its relevance with pathophysiological events is highlighted by the evidence that gain or loss of function SETX mutations underlie the pathogenesis of two distinct neurological disorders. Here, we aim to describe the potential impact of SETX on tumor onset and progression, trying to emphasize how dysregulation of this enzyme observed in human tumors might impact tumorigenesis. To this aim, we will describe the functional relevance of SETX in regulating gene expression, genome integrity, and inflammation response and discuss how cancer-associated SETX mutations might affect these pathways, contributing thus to tumor development.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy
| | - Sara De Domenico
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy.
| |
Collapse
|
7
|
Sampson C, Wang Q, Otkur W, Zhao H, Lu Y, Liu X, Piao H. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med 2023; 13:e1204. [PMID: 36881608 PMCID: PMC9991012 DOI: 10.1002/ctm2.1204] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Ubiquitination is one of the most important post-translational modifications which plays a significant role in conserving the homeostasis of cellular proteins. In the ubiquitination process, ubiquitin is conjugated to target protein substrates for degradation, translocation or activation, dysregulation of which is linked to several diseases including various types of cancers. E3 ubiquitin ligases are regarded as the most influential ubiquitin enzyme owing to their ability to select, bind and recruit target substrates for ubiquitination. In particular, E3 ligases are pivotal in the cancer hallmarks pathways where they serve as tumour promoters or suppressors. The specificity of E3 ligases coupled with their implication in cancer hallmarks engendered the development of compounds that specifically target E3 ligases for cancer therapy. In this review, we highlight the role of E3 ligases in cancer hallmarks such as sustained proliferation via cell cycle progression, immune evasion and tumour promoting inflammation, and in the evasion of apoptosis. In addition, we summarise the application and the role of small compounds that target E3 ligases for cancer treatment along with the significance of targeting E3 ligases as potential cancer therapy.
Collapse
Affiliation(s)
- Chibuzo Sampson
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiuping Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Haifeng Zhao
- Department of OrthopedicsDalian Second People's HospitalDalianChina
| | - Yun Lu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Department of StomatologyDalian Medical UniversityDalianChina
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
8
|
Jin S, Kudo Y, Horiguchi T. The Role of Deubiquitinating Enzyme in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 24:ijms24010552. [PMID: 36613989 PMCID: PMC9820089 DOI: 10.3390/ijms24010552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Ubiquitination and deubiquitination are two popular ways for the post-translational modification of proteins. These two modifications affect intracellular localization, stability, and function of target proteins. The process of deubiquitination is involved in histone modification, cell cycle regulation, cell differentiation, apoptosis, endocytosis, autophagy, and DNA repair after damage. Moreover, it is involved in the processes of carcinogenesis and cancer development. In this review, we discuss these issues in understanding deubiquitinating enzyme (DUB) function in head and neck squamous cell carcinoma (HNSCC), and their potential therapeutic strategies for HNSCC patients are also discussed.
Collapse
|
9
|
Antra, Parashar P, Hungyo H, Jain A, Ahmad S, Tandon V. Unraveling molecular mechanisms of Head and neck cancer. Crit Rev Oncol Hematol 2022; 178:103778. [PMID: 35932993 DOI: 10.1016/j.critrevonc.2022.103778] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Malignancies that develop from mucosal epithelium of the upper aerodigestive tract are known as head and neck squamous cell carcinomas (HNSCC). Heterogeneity, late stage diagnosis and high recurrence rate are big hurdles in head and neck treatment regimen. Presently, the biomarkers available for diagnosis and prognosis of HNSCC are based on smoking as the major risk habit. This review shed light on the differential environment of HNSCC in smokeless tobacco consuming Indian patients. Frequent mutation in genes involved in DNA repair pathway (p53), cell proliferation (PIK3CA, HRAS) and cell death (CASP8, FADD) are common in western population. On the contrary, the genes involved in metastasis (MMPs, YAP1), lymphocyte proliferation (TNFRSF4, CD80), cell-cell adhesion (DCC, EDNRB), miRNA processing (DROSHA) and inflammatory responses (TLR9, IL-9) are mutated in Indian HNSCC patients. Gene ontology enrichment analysis highlighted that responses to chemical stimulus, immune pathways and stress pathways are highly enriched in Indian patients.
Collapse
Affiliation(s)
- Antra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067
| | - Palak Parashar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067
| | - Hungharla Hungyo
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067
| | - Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067.
| |
Collapse
|
10
|
Ciereszko A, Dietrich MA, Słowińska M, Nynca J, Ciborowski M, Kaczmarek MM, Myszczyński K, Kiśluk J, Majewska A, Michalska-Falkowska A, Kodzik N, Reszeć J, Sierko E, Nikliński J. Application of two-dimensional difference gel electrophoresis to identify protein changes between center, margin, and adjacent non-tumor tissues obtained from non-small-cell lung cancer with adenocarcinoma or squamous cell carcinoma subtype. PLoS One 2022; 17:e0268073. [PMID: 35512017 PMCID: PMC9071164 DOI: 10.1371/journal.pone.0268073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is responsible for the most cancer-related mortality worldwide and the mechanism of its development is poorly understood. Proteomics has become a powerful tool offering vital knowledge related to cancer development. Using a two-dimensional difference gel electrophoresis (2D-DIGE) approach, we sought to compare tissue samples from non-small-cell lung cancer (NSCLC) patients taken from the tumor center and tumor margin. Two subtypes of NSCLC, adenocarcinoma (ADC) and squamous cell carcinoma (SCC) were compared. Data are available via ProteomeXchange with identifier PXD032736 and PXD032962 for ADC and SCC, respectively. For ADC proteins, 26 significant canonical pathways were identified, including Rho signaling pathways, a semaphorin neuronal repulsive signaling pathway, and epithelial adherens junction signaling. For SCC proteins, nine significant canonical pathways were identified, including hypoxia-inducible factor-1α signaling, thyroid hormone biosynthesis, and phagosome maturation. Proteins differentiating the tumor center and tumor margin were linked to cancer invasion and progression, including cell migration, adhesion and invasion, cytoskeletal structure, protein folding, anaerobic metabolism, tumor angiogenesis, EMC transition, epithelial adherens junctions, and inflammatory responses. In conclusion, we identified several proteins that are important for the better characterization of tumor development and molecular specificity of both lung cancer subtypes. We also identified proteins that may be important as biomarkers and/or targets for anticancer therapy.
Collapse
Affiliation(s)
- Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- * E-mail:
| | - Mariola A. Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Michał Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Monika M. Kaczmarek
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Kamil Myszczyński
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Kiśluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Majewska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Natalia Kodzik
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
11
|
Bano I, Malhi M, Zhao M, Giurgiulescu L, Sajjad H, Kieliszek M. A review on cullin neddylation and strategies to identify its inhibitors for cancer therapy. 3 Biotech 2022; 12:103. [PMID: 35463041 PMCID: PMC8964847 DOI: 10.1007/s13205-022-03162-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/29/2022] [Indexed: 11/01/2022] Open
Abstract
The cullin-RING E3 ligases (CRLs) are the biggest components of the E3 ubiquitin ligase protein family, and they represent an essential role in various diseases that occur because of abnormal activation, particularly in tumors development. Regulation of CRLs needs neddylation, a post-translational modification involving an enzymatic cascade that transfers small, ubiquitin-like NEDD8 protein to CRLs. Many previous studies have confirmed neddylation as an enticing target for anticancer drug discoveries, and few recent studies have also found a significant increase in advancement in protein neddylation, including preclinical and clinical target validation to discover the neddylation inhibitor compound. In the present review, we first presented briefly the essence of CRLs' neddylation and its control, systematic analysis of CRLs, followed by the description of a few recorded chemical inhibitors of CRLs neddylation enzymes with recent examples of preclinical and clinical targets. We have also listed various structure-based pointing of protein-protein dealings in the CRLs' neddylation reaction, and last, the methods available to discover new inhibitors of neddylation are elaborated. This review will offer a concentrated, up-to-date, and detailed description of the discovery of neddylation inhibitors.
Collapse
|
12
|
Sharma A, Khan H, Singh TG, Grewal AK, Najda A, Kawecka-Radomska M, Kamel M, Altyar AE, Abdel-Daim MM. Pharmacological Modulation of Ubiquitin-Proteasome Pathways in Oncogenic Signaling. Int J Mol Sci 2021; 22:ijms222111971. [PMID: 34769401 PMCID: PMC8584958 DOI: 10.3390/ijms222111971] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is involved in regulating several biological functions, including cell cycle control, apoptosis, DNA damage response, and apoptosis. It is widely known for its role in degrading abnormal protein substrates and maintaining physiological body functions via ubiquitinating enzymes (E1, E2, E3) and the proteasome. Therefore, aberrant expression in these enzymes results in an altered biological process, including transduction signaling for cell death and survival, resulting in cancer. In this review, an overview of profuse enzymes involved as a pro-oncogenic or progressive growth factor in tumors with their downstream signaling pathways has been discussed. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on modulation of ubiquitin-proteasome pathways in oncogenic signaling. Various in vitro, in vivo studies demonstrating the involvement of ubiquitin-proteasome systems in varied types of cancers and the downstream signaling pathways involved are also discussed in the current review. Several inhibitors of E1, E2, E3, deubiquitinase enzymes and proteasome have been applied for treating cancer. Some of these drugs have exhibited successful outcomes in in vivo studies on different cancer types, so clinical trials are going on for these inhibitors. This review mainly focuses on certain ubiquitin-proteasome enzymes involved in developing cancers and certain enzymes that can be targeted to treat cancer.
Collapse
Affiliation(s)
- Anmol Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
- Correspondence: or (T.G.S.); (M.M.A.-D.); Tel.: +91-9815951171 (T.G.S.); +966-580192142 (M.M.A.-D.)
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Małgorzata Kawecka-Radomska
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (T.G.S.); (M.M.A.-D.); Tel.: +91-9815951171 (T.G.S.); +966-580192142 (M.M.A.-D.)
| |
Collapse
|
13
|
Hao R, Hu J, Liu Y, Liang D, Li YM, Wang R, Zhang S, Wang P, Li YJ, Xie S. RFWD2 Knockdown as a Blocker to Reverse the Oncogenic Role of TRIB2 in Lung Adenocarcinoma. Front Oncol 2021; 11:733175. [PMID: 34646775 PMCID: PMC8503262 DOI: 10.3389/fonc.2021.733175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
RFWD2, an E3 ubiquitin ligase, is overexpressed in numerous human cancers, including leukemia, lung cancer, breast cancer, renal cell carcinoma, and colorectal cancer. The roles of RFWD2 in cancer are related to the targeting of its substrates for ubiquitination and degradation. This study aimed to investigate the role of TRIB2 in relation to the regulation of protein degradation through RFWD2. inBio Discover™ results demonstrated that TRIB2 can perform its functions by interacting with RFWD2 or other factors. TRIB2 can interact with and regulate RFWD2, which further attends the proteasome-mediated degradation of the RFWD2 substrate p-IκB-α. TRIB2 colocalizes with RFWD2-related IκB-α to form a ternary complex and further affects the IκB-α degradation by regulating its phosphorylation. Specific domain analysis showed that TRIB2 may bind to RFWD2 via its C-terminus, whereas it binds to IκB via its pseudokinase domain. TRIB2 acts as an oncogene and promotes cancer cell proliferation and migration, whereas RFWD2 knockdown reversed the role of TRIB2 in promoting cancer cell growth and colony formation in vitro and in vivo. In summary, this study reveals that TRIB2 promotes the progression of cancer by affecting the proteasome-mediated degradation of proteins through the interaction with RFWD2.
Collapse
Affiliation(s)
- Ruimin Hao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yuemei Liu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Dongmin Liang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yan-Mei Li
- Department of Immune Rheumatism, Yantaishan Hospital, Yantai, China
| | - Ranran Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Shucui Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Pingyu Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
14
|
Overexpression of P4HA1 Is Correlated with Poor Survival and Immune Infiltrates in Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8024138. [PMID: 33299876 PMCID: PMC7707939 DOI: 10.1155/2020/8024138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023]
Abstract
Lung adenocarcinoma (LUAD) is a major pathological type of lung cancer. Understanding the mechanism of LUAD at the molecular level is important for a clinical decision. In this study, we use bioinformatic analysis to explore the prognostic value of P4HA1 in lung adenocarcinoma (LUAD) and the relationship with prognosis and tumor-infiltrating immune cells (TIICs). The results showed that the expression of P4HA1 was significantly higher in tumor tissues than in normal tissues for LUAD patients. Upregulated P4HA1 was related to stage and T classification. Kaplan-Meier analysis indicated that upregulation of P4HA1 was significantly related to worse overall survival (OS). Univariate and multivariate Cox analysis indicated P4HA1 remained to be an independent prognostic factor. GSEA showed that several cancer-related and immune-related signaling pathways exhibited prominently differential enrichment in P4HA1-high expression phenotype. In addition, the expression of P4HA1 was significantly correlated with proportion of several TIICs, particularly B cells and CD4+ T cells. In conclusion, our study confirmed that P4HA1 is a promising biomarker of poor prognosis and relates to immune infiltrates in LUAD.
Collapse
|