1
|
Dakal TC, Thakur M, George N, Singh TR, Yadav V, Kumar A. GTF2I acts as a novel tumor suppressor transcription factor and shows Favorable prognosis in renal cancer. Integr Biol (Camb) 2025; 17:zyaf001. [PMID: 39778513 DOI: 10.1093/intbio/zyaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/12/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
The role of GTF2I (General Transcription Factor2I) alteration has already been reported in thymic cancer as a valuable biomarker. However, the association of GTF2I mutation with renal cancer for prognosis of immunotherapy is not yet examined. The biologic and oncologic significance of GTF2I in renal cancer was examined at multiomics level such as mutation, copy number alteration, structural variants. The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA) were used to retrieve the omics data. The expression of GTF2I mRNA was quite significant in case of renal caner. Correlation among the GTF2I mRNA, mutation, CNA and structural variants was also studied. Interactome of GTF2I was also constructed using STRING database. Gain, amplification, and missense mutation exhibited a positive correlation between GTF2I mRNA expression and non-structural variants. Similarly, GTF2I mRNA expression and copy number alterations from GISTIC were positively correlated. High expression of GTF2I was associated with better overall survival indicating the less aggressive clinical features. Insight Box Investigating GTF2I's complex function as a tumor suppressor transcription factor in renal carcinoma provides fresh insights into its biologic and oncologic importance, especially when considering the prognosis of immunotherapy. Little is known about its possible use as a biomarker for renal cancer. Using a multiomics approach and utilizing information from the Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA), our study clarifies the intricate relationship between mRNA expression, GTF2I changes, and clinical outcomes in renal cancer. Our results indicate that GTF2I expression may be used as a prognostic indicator because it is positively correlated with favorable survival outcomes. Furthermore, the molecular interactions behind GTF2I's functional significance in renal cancer are revealed by interactome analysis utilizing the STRING database, providing important information for further study and treatment approaches.
Collapse
MESH Headings
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/mortality
- Kidney Neoplasms/pathology
- Transcription Factors, TFII/metabolism
- Transcription Factors, TFII/genetics
- Prognosis
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Mutation
- DNA Copy Number Variations
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/mortality
- Carcinoma, Renal Cell/pathology
- Female
- Male
- Middle Aged
- Genes, Tumor Suppressor
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, University Road, Udaipur, Rajasthan 313001, India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Jant-Pali villages, Mahendergarh, Haryana 123031, India
| | - Nancy George
- Department of Biotechnology, Chandigarh University, NH-05 Chandigarh-Ludhiana Highway, Mohali, Punjab 140413, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, H.P. India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Jant-Pali villages, Mahendergarh, Haryana 123031, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| |
Collapse
|
2
|
Wang X, Jin H, Feng X, Liang Z, Jin R, Li X. Depiction of the Genetic Alterations and Molecular Landscapes of Thymic Epithelial Tumors: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:2966. [PMID: 39272824 PMCID: PMC11394263 DOI: 10.3390/cancers16172966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Thymic epithelial tumors (TETs), consisting of thymomas, thymic carcinomas (TCs), and thymic neuroendocrine tumors, are rare diseases. Surgery remains the prime option in resectable and early-stage TETs, while chemotherapy, targeted therapy, and immunotherapy are also potential treatment modalities. However, the inadequate comprehension of the molecular landscape of TETs impedes the exploitation of such therapies. Hence, we conducted a meta-analysis which includes 21 studies reporting on genomic alterations in TETs and 14 studies reporting on PD-L1 expression levels, respectively. The pooled estimated rates of the most frequently mutated genes and PD-L1 expression levels were analyzed using the R software. We uncovered that the pooled estimated overall mutation rate is 0.65 ([0.49; 0.81]), and the top three genes with highest mutation frequency in thymomas and TCs are GTF2I (0.4263 [0.3590; 0.4936]), TP53 (0.1101 [0.0000; 0.2586]), and RAS (0.0341 [0.0104; 0.0710]), and TP53 (0.1797 [0.0732; 0.3203]), CDKN2A (0.0608 [0.0139; 0.1378]), and TET2 (0.0318 [0.0087; 0.0639]), respectively. A uniform GTF2I mutational rate in thymomas and TP53 mutational rate in thymic squamous cell carcinomas (TSCCs) are also observed. The pooled estimated expression level of PD-L1 is 0.71 ([0.59-0.81]). This systematic review provides an overview of the gene alteration landscape and PD-L1 expression levels in TETs, discovers several potential confounding factors that may contribute to the high heterogeneity, and facilitates deeper investigations into the elucidation of the molecular landscape of TETs.
Collapse
Affiliation(s)
- Xin Wang
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Hongming Jin
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Xiaotong Feng
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Zhijian Liang
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Ruoyi Jin
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Xiao Li
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
3
|
Nabel CS, Ackman JB, Hung YP, Louissaint A, Riely GJ. Single-Cell Sequencing Illuminates Thymic Development: An Updated Framework for Understanding Thymic Epithelial Tumors. Oncologist 2024; 29:473-483. [PMID: 38520743 PMCID: PMC11145005 DOI: 10.1093/oncolo/oyae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/23/2024] [Indexed: 03/25/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare tumors for which treatment options are limited. The ongoing need for improved systemic therapies reflects a limited understanding of tumor biology as well as the normal thymus. The essential role of the thymus in adaptive immunity is largely effected by its epithelial compartment, which directs thymocyte (T-cell) differentiation and immunologic self-tolerance. With aging, the thymus undergoes involution whereby epithelial tissue is replaced by adipose and other connective tissue, decreasing immature T-cell production. Against this natural drive toward involution, a fraction of thymuses will instead undergo oncologic transformation, leading to the formation of TETs, including thymoma and thymic carcinoma. The rarity of these tumors restricts investigation of the mechanisms of tumorigenesis and development of rational treatment options. To this end, the development of technologies which allow deep molecular profiling of individual tumor cells permits a new window through which to view normal thymic development and contrast the malignant changes that result in oncogenic transformation. In this review, we describe the findings of recent illuminating studies on the diversity of cell types within the epithelial compartment through thymic differentiation and aging. We contextualize these findings around important unanswered questions regarding the spectrum of known somatic tumor alterations, cell of origin, and tumor heterogeneity. The perspectives informed by single-cell molecular profiling offer new approaches to clinical and basic investigation of thymic epithelial tumors, with the potential to accelerate development of improved therapeutic strategies to address ongoing unmet needs in these rare tumors.
Collapse
Affiliation(s)
- Christopher S Nabel
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeanne B Ackman
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Yin P Hung
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Abner Louissaint
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Küffer S, Müller D, Marx A, Ströbel P. Non-Mutational Key Features in the Biology of Thymomas. Cancers (Basel) 2024; 16:942. [PMID: 38473304 DOI: 10.3390/cancers16050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Thymomas (THs) are a unique group of heterogeneous tumors of the thymic epithelium. In particular, the subtypes B2 and B3 tend to be aggressive and metastatic. Radical tumor resection remains the only curative option for localized tumors, while more advanced THs require multimodal treatment. Deep sequencing analyses have failed to identify known oncogenic driver mutations in TH, with the notable exception of the GTF2I mutation, which occurs predominantly in type A and AB THs. However, there are multiple alternative non-mutational mechanisms (e.g., perturbed thymic developmental programs, metabolism, non-coding RNA networks) that control cellular behavior and tumorigenesis through the deregulation of critical molecular pathways. Here, we attempted to show how the results of studies investigating such alternative mechanisms could be integrated into a current model of TH biology. This model could be used to focus ongoing research and therapeutic strategies.
Collapse
Affiliation(s)
- Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Denise Müller
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
5
|
Bille A, Fryer K, Wallace A, Nonaka D. GTF2I mutation in micronodular thymoma with lymphoid stroma. J Clin Pathol 2024; 77:125-127. [PMID: 36600564 DOI: 10.1136/jcp-2022-208655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
AIMS Micronodular thymoma with lymphoid stroma is a rare subtype of thymoma with characteristic clinical and pathological features. Some of the features, such as indolent nature, principally spindle morphology and no significant association to myasthenia gravis, are shared with type A and AB thymoma, which is closely linked to GTF2I mutation. However, not much is known regarding the molecular genetics of this thymoma subtype. In this study, the GTF2I mutation status was investigated in 16 cases of micronodular thymoma. METHODS 16 micronodular thymomas were retrieved and the GTF2I mutation was tested by Sanger sequencing. The clinicopathological findings were documented. RESULTS GTF2I c.1271T>A p.(Leu424His) mutation within exon 15 was detected in 14 out of 16 tumours (87.5%). Two patients died of other causes while all others remained alive with no evidence of recurrence during the follow-up period ranging from 19 to 188 months (median: 100 months). CONCLUSIONS GTF2I mutation status and presence of spindle cell morphology may indicate that type A and AB thymoma, and micronodular thymoma represent a group biologically distinct from type B thymomas, which generally lack this mutation.
Collapse
Affiliation(s)
- Andrea Bille
- Department of Thoracic Surgery, Guy's and St Thomas' Hospitals NHS Foundation Trust, London, UK
| | - Katherine Fryer
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Andrew Wallace
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Daisuke Nonaka
- Department of Cellular Pathology, Guy's and St Thomas' Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Nir Sade A, Levy G, Schokoroy Trangle S, Elad Sfadia G, Bar E, Ophir O, Fischer I, Rokach M, Atzmon A, Parnas H, Rosenberg T, Marco A, Elroy Stein O, Barak B. Neuronal Gtf2i deletion alters mitochondrial and autophagic properties. Commun Biol 2023; 6:1269. [PMID: 38097729 PMCID: PMC10721858 DOI: 10.1038/s42003-023-05612-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Gtf2i encodes the general transcription factor II-I (TFII-I), with peak expression during pre-natal and early post-natal brain development stages. Because these stages are critical for proper brain development, we studied at the single-cell level the consequences of Gtf2i's deletion from excitatory neurons, specifically on mitochondria. Here we show that Gtf2i's deletion resulted in abnormal morphology, disrupted mRNA related to mitochondrial fission and fusion, and altered autophagy/mitophagy protein expression. These changes align with elevated reactive oxygen species levels, illuminating Gtf2i's importance in neurons mitochondrial function. Similar mitochondrial issues were demonstrated by Gtf2i heterozygous model, mirroring the human condition in Williams syndrome (WS), and by hemizygous neuronal Gtf2i deletion model, indicating Gtf2i's dosage-sensitive role in mitochondrial regulation. Clinically relevant, we observed altered transcript levels related to mitochondria, hypoxia, and autophagy in frontal cortex tissue from WS individuals. Our study reveals mitochondrial and autophagy-related deficits shedding light on WS and other Gtf2i-related disorders.
Collapse
Affiliation(s)
- Ariel Nir Sade
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Atzmon
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orna Elroy Stein
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Pardini E, Cucchiara F, Palumbo S, Tarrini G, Di Vita A, Coppedè F, Nicolì V, Guida M, Maestri M, Ricciardi R, Aprile V, Ambrogi MC, Barachini S, Lucchi M, Petrini I. Somatic mutations of thymic epithelial tumors with myasthenia gravis. Front Oncol 2023; 13:1224491. [PMID: 37671056 PMCID: PMC10475716 DOI: 10.3389/fonc.2023.1224491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023] Open
Abstract
Background Thymic epithelial tumors are rare malignant neoplasms that are frequently associated with paraneoplastic syndromes, especially myasthenia gravis. GTF2I is an oncogene mutated in a subgroup of thymomas that is reputed to drive their growth. However, for GTF2I wild-type tumors, the relevant mutations remain to be identified. Methods We performed a meta-analysis and identified 4,208 mutations in 339 patients. We defined a panel of 63 genes frequently mutated in thymic epithelial tumors, which we used to design a custom assay for next-generation sequencing. We sequenced tumor DNA from 67 thymomas of patients with myasthenia gravis who underwent resection in our institution. Results Among the 67 thymomas, there were 238 mutations, 83 of which were in coding sequences. There were 14 GTF2I mutations in 6 A, 5 AB, 2 B2 thymomas, and one in a thymoma with unspecified histology. No other oncogenes showed recurrent mutations, while sixteen tumor suppressor genes were predicted to be inactivated. Even with a dedicated assay for the identification of specific somatic mutations in thymic epithelial tumors, only GTF2I mutations were found to be significantly recurrent. Conclusion Our evaluation provides insights into the mutational landscape of thymic epithelial tumors, identifies recurrent mutations in different histotypes, and describes the design and implementation of a custom panel for targeted resequencing. These findings contribute to a better understanding of the genetic basis of thymic epithelial tumors and may have implications for future research and treatment strategies.
Collapse
Affiliation(s)
- Eleonora Pardini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Federico Cucchiara
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Sara Palumbo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Tarrini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Alessia Di Vita
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Fabio Coppedè
- Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Vanessa Nicolì
- Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Melania Guida
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Maestri
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberta Ricciardi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vittorio Aprile
- Thoracic Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Marcello C. Ambrogi
- Thoracic Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Lucchi
- Thoracic Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Yamada Y. Histogenetic and disease-relevant phenotypes in thymic epithelial tumors (TETs): The potential significance for future TET classification. Pathol Int 2023; 73:265-280. [PMID: 37278579 DOI: 10.1111/pin.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Thymic epithelial tumors (TETs) encompass morphologically various subtypes. Thus, it would be meaningful to explore the expression phenotypes that delineate each TET subtype or overarching multiple subtypes. If these profiles are related to thymic physiology, they will improve our biological understanding of TETs and may contribute to the establishment of a more rational TET classification. Against this background, pathologists have attempted to identify histogenetic features in TETs for a long time. As part of this work, our group has reported several TET expression profiles that are histotype-dependent and related to the nature of thymic epithelial cells (TECs). For example, we found that beta5t, a constituent of thymoproteasome unique to cortical TECs, is expressed mainly in type B thymomas, for which the nomenclature of cortical thymoma was once considered. Another example is the discovery that most thymic carcinomas, especially thymic squamous cell carcinomas, exhibit expression profiles similar to tuft cells, a recently discovered special type of medullary TEC. This review outlines the currently reported histogenetic phenotypes of TETs, including those related to thymoma-associated myasthenia gravis, summarizes their genetic signatures, and provides a perspective for the future direction of TET classification.
Collapse
Affiliation(s)
- Yosuke Yamada
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
9
|
Kostic Peric J, Cirkovic A, Srzentic Drazilov S, Samardzic N, Skodric Trifunovic V, Jovanovic D, Pavlovic S. Molecular profiling of rare thymoma using next-generation sequencing: meta-analysis. Radiol Oncol 2023; 57:12-19. [PMID: 36942904 PMCID: PMC10039471 DOI: 10.2478/raon-2023-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/31/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Thymomas belong to rare tumors giving rise to thymic epithelial tissue. There is a classification of several forms of thymoma: A, AB, B1, B2, B3, thymic carcinoma (TC) and thymic neuroendocrine thymoma. In this meta-analysis study, we have focused on thymoma using articles based on the disease's next-generation sequencing (NGS) genomic profiling. MATERIALS AND METHODS We conducted a systematic review and meta-analysis of the prevalence of studies that discovered the genes and variants occurring in the less aggressive forms of the thymic epithelial tumors. Studies published before 12th December 2022 were identified through PubMed, Web of Science (WoS), and SCOPUS databases. Two reviewers have searched for the bases and selected the articles for the final analysis, based on well-defined exclusion and inclusion criteria. RESULTS Finally, 12 publications were included in the qualitative as well as quantitative analysis. The three genes, GTF2I, TP53, and HRAS, emerged as disease-significant in the observed studies. The Odds Ratio for all three extracted genes GTF2I (OR = 1.58, CI [1.51, 1.66] p < 0.00001), TP53 (OR = 1.36, CI [1.12, 1.65], p < 0.002), and HRAS (OR = 1.02, CI [1.00, 1.04], p < 0.001). CONCLUSIONS According to obtained data, we noticed that the GTF2I gene exhibits a significant prevalence in the cohort of observed thymoma patients. Moreover, analyzing published articles NGS has suggested GTF2I, TP53, and HRAS genes as the most frequently mutated genes in thymoma that have pathogenic single nucleotide variants (SNV) and Insertion/Deletion (InDel), which contribute to disease development and progression. These variants could be valuable biomarkers and target points specific to thymoma.
Collapse
Affiliation(s)
- Jelena Kostic Peric
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andja Cirkovic
- Department for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Srzentic Drazilov
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natalija Samardzic
- University Hospital of Pulmonology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Vesna Skodric Trifunovic
- University Hospital of Pulmonology, Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Sonja Pavlovic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
He Y, Kim IK, Bian J, Polyzos A, Di Giammartino DC, Zhang YW, Luo J, Hernandez MO, Kedei N, Cam M, Borczuk AC, Lee T, Han Y, Conner EA, Wong M, Tillo DC, Umemura S, Chen V, Ruan L, White JB, Miranda IC, Awasthi PP, Altorki NK, Divakar P, Elemento O, Apostolou E, Giaccone G. A Knock-In Mouse Model of Thymoma With the GTF2I L424H Mutation. J Thorac Oncol 2022; 17:1375-1386. [PMID: 36049655 PMCID: PMC9691559 DOI: 10.1016/j.jtho.2022.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The pathogenesis of thymic epithelial tumors remains largely unknown. We previously identified GTF2I L424H as the most frequently recurrent mutation in thymic epithelial tumors. Nevertheless, the precise role of this mutation in tumorigenesis of thymic epithelial cells is unclear. METHODS To investigate the role of GTF2I L424H mutation in thymic epithelial cells in vivo, we generated and characterized a mouse model in which the Gtf2i L424H mutation was conditionally knocked-in in the Foxn1+ thymic epithelial cells. Digital spatial profiling was performed on thymomas and normal thymic tissues with GeoMx-mouse whole transcriptome atlas. Immunohistochemistry staining was performed using both mouse tissues and human thymic epithelial tumors. RESULTS We observed that the Gtf2i mutation impairs development of the thymic medulla and maturation of medullary thymic epithelial cells in young mice and causes tumor formation in the thymus of aged mice. Cell cycle-related pathways, such as E2F targets and MYC targets, are enriched in the tumor epithelial cells. Results of gene set variation assay analysis revealed that gene signatures of cortical thymic epithelial cells and thymic epithelial progenitor cells are also enriched in the thymomas of the knock-in mice, which mirrors the human counterparts in The Cancer Genome Atlas database. Immunohistochemistry results revealed similar expression pattern of epithelial cell markers between mouse and human thymomas. CONCLUSIONS We have developed and characterized a novel thymoma mouse model. This study improves knowledge of the molecular drivers in thymic epithelial cells and provides a tool for further study of the biology of thymic epithelial tumors and for development of novel therapies.
Collapse
Affiliation(s)
- Yongfeng He
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - In-Kyu Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Jing Bian
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alexander Polyzos
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | | | - Yu-Wen Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia; New address: Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, Virginia
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Maria O Hernandez
- Collaborative Protein Technology Resource, Office of Science and Technology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Noemi Kedei
- Collaborative Protein Technology Resource, Office of Science and Technology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alain C Borczuk
- Department of Pathology, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York; New address: Department of Pathology, Northwell Health, Greenvale, New York
| | - Trevor Lee
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Yumin Han
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | | | - Madeline Wong
- CCR Genomics Core, National Cancer Institute, Bethesda, Maryland
| | - Desiree C Tillo
- CCR Genomics Core, National Cancer Institute, Bethesda, Maryland
| | - Shigeki Umemura
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Vincent Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Lydia Ruan
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jessica B White
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Ileana C Miranda
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York
| | - Parirokh P Awasthi
- Frederick National Laboratory for Cancer Research, Laboratory Animal Sciences, Mouse Modeling & Cryopreservation, National Cancer Institute, Frederick, Maryland
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | | | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Effie Apostolou
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Giuseppe Giaccone
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York; Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia.
| |
Collapse
|
11
|
Now We Have the First Animal Model for Thymoma. J Thorac Oncol 2022; 17:e91-e92. [PMID: 37014167 DOI: 10.1016/j.jtho.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
|
12
|
He Y, Giaccone G. Reply to Dr. Goto’s Letter: “A Thymoma Mouse Model Harboring a Gtf2i L424H Mutation”. J Thorac Oncol 2022; 17:e92-e93. [PMID: 37014168 DOI: 10.1016/j.jtho.2022.09.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
|
13
|
Human thymoma-associated mutation of the GTF2I transcription factor impairs thymic epithelial progenitor differentiation in mice. Commun Biol 2022; 5:1037. [PMID: 36175547 PMCID: PMC9522929 DOI: 10.1038/s42003-022-04002-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022] Open
Abstract
Few human tumours present with a recurrent pathognomonic mutation in a transcription factor. Thymomas are an exception, with the majority of some subtypes exhibiting a distinct somatically acquired missense mutation in the general transcription factor GTF2I. Co-dominant expression of wild-type and mutated forms of Gtf2i in the mouse thymic epithelium is associated with aberrant thymic architecture and reduced thymopoietic activity. Phenotypic and molecular characterization of the mutant epithelium indicates that medullary differentiation is particularly affected as a result of impaired differentiation of bi-potent epithelial progenitors. The resulting gene expression signature is dominated by that of immature cortex-like thymic epithelial cells. TCR repertoire analysis of the cytopenic T cell compartment indicates efficient intrathymic selection; hence, despite marked homeostatic proliferation of T cell clones, autoimmunity is not observed. Thus, our transgenic mouse model recapitulates some aspects of the pathophysiology of a genetically defined type of human thymoma. Thymic architecture and T cell repertoire analysis of a mouse model for thymoma and the role of the transcription factor GTF2I shows suitability of this model to recapitulate human thymomas and a severe effect of Gtf2i mutations on the medullary compartment.
Collapse
|
14
|
Szpechcinski A, Szolkowska M, Winiarski S, Lechowicz U, Wisniewski P, Knetki-Wroblewska M. Targeted Next-Generation Sequencing of Thymic Epithelial Tumours Revealed Pathogenic Variants in KIT, ERBB2, KRAS, and TP53 in 30% of Thymic Carcinomas. Cancers (Basel) 2022; 14:3388. [PMID: 35884448 PMCID: PMC9324890 DOI: 10.3390/cancers14143388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
A better understanding of the molecular pathogenesis of thymic epithelial tumours (TETs) could revolutionise their treatment. We evaluated thymomas and thymic carcinomas by next-generation sequencing (NGS) of somatic or germline single nucleotide variants (SNVs) in genes commonly mutated in solid tumours. In total, 19 thymomas and 34 thymic carcinomas were analysed for nonsynonymous SNVs in 15 genes by targeted NGS (reference genome: hg19/GRCh37). Ten SNVs in TP53 (G154V, R158P, L194H, R267fs, R273C, R306 *, Q317 *), ERBB2 (V773M), KIT (L576P), and KRAS (Q61L) considered somatic and pathogenic/likely pathogenic were detected in 10 of 34 (29.4%) thymic carcinomas. No somatic SNVs confirmed as pathogenic/likely pathogenic were found in thymomas. Rare SNVs of uncertain or unknown functional and clinical significance, to our knowledge not reported previously in TETs, were found in ERBB2 (S703R), KIT (I690V), and FOXL2 (P157S) in 3 of 19 (16%) thymomas. The most frequent germline SNVs were TP53 P72R (94% TETs), ERBB2 I655V (40% TETs), and KIT M541L (9% TETs). No significant difference in median disease-free survival (DFS) was found between thymic carcinoma patients with and without pathogenic SNVs (p = 0.190); however, a trend toward a longer DFS was observed in the latter (16.0 vs. 30.0 months, respectively). In summary, NGS analysis of TETs revealed several SNVs in genes related to the p53, AKT, MAPK, and K-Ras signalling pathways. Thymic carcinomas showed greater genetic dysregulation than thymomas. The germline and rare SNVs of uncertain clinical significance reported in this study add to the number of known genetic alterations in TETs, thus extending our molecular understanding of these neoplasms. Druggable KIT alterations in thymic carcinomas have potential as therapeutic targets.
Collapse
Affiliation(s)
- Adam Szpechcinski
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Malgorzata Szolkowska
- Department of Pathology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Sebastian Winiarski
- Clinics of Thoracic Surgery, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Piotr Wisniewski
- Department of Pathology and Laboratory Medicine, The Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Magdalena Knetki-Wroblewska
- Department of Lung Cancer and Chest Tumours, The Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
15
|
Wells K, Lamrca A, Papaxoinis G, Wallace A, Quinn AM, Summers Y, Nonaka D. Unique correlation between GTF2I mutation and spindle cell morphology in thymomas (type A and AB thymomas). J Clin Pathol 2022:jclinpath-2021-207837. [PMID: 35039450 DOI: 10.1136/jclinpath-2021-207837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
AIM Recent study has revealed frequent GTF2I mutation in thymomas, with the frequency being highest in types A and AB, followed by B1, B2, B3 and thymic carcinoma. This has led to the conclusion that GTF2I mutation correlates with more indolent histology subtype and better prognosis. In our study, the GTF2I mutation was tested in thymic epithelial tumours to investigate the relation between the mutation status and histology subtype. METHODS The GTF2I mutation was tested in 111 thymic epithelial tumours by Sanger sequencing. Correlations between GTF2I mutation status and clinicopathological parameters were evaluated. RESULTS There were 16 cases of type A, including atypical type, 37 type AB, 13 B1, 23 B2, 9 B3, 6 micronodular type, 2 metaplastic type and 5 thymic carcinomas. GTF2I mutation was seen in 78.6% of type A and 83.9% of type AB, while it was not expressed in type B, metaplastic type or thymic carcinoma (p<0.001). 75% of micronodular type also showed the mutation. Both thymoma histotype and stage were significantly associated with GTF2I mutation by univariate analysis. The presence of GTF2I mutation showed a trend towards a favourable prognosis, but this is likely due to their strong association with more indolent histologic subtypes (types A and AB). CONCLUSIONS GTF2I mutation appears unique in type A and AB thymomas, including those with atypical features and micronodular type, all of which share spindle cell morphology, indicating they represent a group biologically distinct from type B thymomas.
Collapse
Affiliation(s)
- Kirsty Wells
- Genomic Diagnostic Laboratory, Manchester Centre for Genomic Medicine, Manchester, UK.,Blueprint Genetics, Helsinki, Finland
| | - Angela Lamrca
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, Manchester, UK
| | - George Papaxoinis
- Department of Medical Oncology, Agios Savvas Anticancer Hospital, Athens, Greece
| | - Andrew Wallace
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Yvonne Summers
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, Manchester, UK
| | - Daisuke Nonaka
- Cellular Pathology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| |
Collapse
|
16
|
Manti PG, Trattaro S, Castaldi D, Pezzali M, Spaggiari L, Testa G. Thymic stroma and TFII-I: towards new targeted therapies. Trends Mol Med 2021; 28:67-78. [PMID: 34865984 DOI: 10.1016/j.molmed.2021.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
Thymic epithelial tumors (TETs) have been characterized at the molecular level through bioptic sections and cell lines. Despite these advances, there is a need for a more thorough characterization of the thymic stroma in thymoma, particularly because of the diversity of cell types that populate the tumor and the absence of a healthy thymic counterpart. Recent work on healthy pediatric thymi - both in vitro and at the single-cell level - now sets the stage for new studies on their neoplastic counterparts. Furthermore, general transcription factor IIi (GTF2I), a thymoma-specific oncogene, as well as some of its SNPs, are increasingly associated with autoimmune disease, a significant feature of thymomas. We summarize recent discoveries in the field and discuss the development of new targeted therapies.
Collapse
Affiliation(s)
- Pierluigi Giuseppe Manti
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy.
| | - Sebastiano Trattaro
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Davide Castaldi
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Martina Pezzali
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Lorenzo Spaggiari
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Division of Thoracic Surgery, European Institute of Oncology-IRCSS, Via Ripamonti 435, 20141 Milan, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy.
| |
Collapse
|
17
|
Sphingomonas and Phenylobacterium as Major Microbiota in Thymic Epithelial Tumors. J Pers Med 2021; 11:jpm11111092. [PMID: 34834444 PMCID: PMC8623653 DOI: 10.3390/jpm11111092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022] Open
Abstract
The microbiota has been reported to be closely associated with carcinogenesis and cancer progression. However, its involvement in the pathology of thymoma remains unknown. In this study, we aimed to identify thymoma-specific microbiota using resected thymoma samples. Nineteen thymoma tissue samples were analyzed through polymerase chain reaction amplification and 16S rRNA gene sequencing. The subjects were grouped according to histology, driver mutation status in the GTF2I gene, PD-L1 status, and smoking habits. To identify the taxa composition of each sample, the operational taxonomic units (OTUs) were classified on the effective tags with 97% identity. The Shannon Index of the 97% identity OTUs was calculated to evaluate the alpha diversity. The linear discriminant analysis effect size (LEfSe) method was used to compare the relative abundances of all the bacterial taxa. We identified 107 OTUs in the tumor tissues, which were classified into 26 genera. Sphingomonas and Phenylobacterium were identified as abundant genera in almost all the samples. No significant difference was determined in the alpha diversity within these groups; however, type A thymoma tended to exhibit a higher bacterial diversity than type B thymoma. Through the LEfSe analysis, we identified the following differentially abundant taxa: Bacilli, Firmicutes, and Lactobacillales in type A thymoma; Proteobacteria in type B thymoma; Gammaproteobacteria in tumors harboring the GTF2I mutation; and Alphaproteobacteria in tumors without the GTF2I mutation. In conclusion, Sphingomonas and Phenylobacterium were identified as dominant genera in thymic epithelial tumors. These genera appear to comprise the thymoma-specific microbiota.
Collapse
|
18
|
Marx A, Chan JKC, Chalabreysse L, Dacic S, Detterbeck F, French CA, Hornick JL, Inagaki H, Jain D, Lazar AJ, Marino M, Marom EM, Moreira AL, Nicholson AG, Noguchi M, Nonaka D, Papotti MG, Porubsky S, Sholl LM, Tateyama H, Thomas de Montpréville V, Travis WD, Rajan A, Roden AC, Ströbel P. The 2021 WHO Classification of Tumors of the Thymus and Mediastinum: What Is New in Thymic Epithelial, Germ Cell, and Mesenchymal Tumors? J Thorac Oncol 2021; 17:200-213. [PMID: 34695605 DOI: 10.1016/j.jtho.2021.10.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
This overview of the fifth edition of the WHO classification of thymic epithelial tumors (including thymomas, thymic carcinomas, and thymic neuroendocrine tumors [NETs]), mediastinal germ cell tumors, and mesenchymal neoplasms aims to (1) list established and new tumor entities and subtypes and (2) focus on diagnostic, molecular, and conceptual advances since publication of the fourth edition in 2015. Diagnostic advances are best exemplified by the immunohistochemical characterization of adenocarcinomas and the recognition of genetic translocations in metaplastic thymomas, rare B2 and B3 thymomas, and hyalinizing clear cell carcinomas. Advancements at the molecular and tumor biological levels of utmost oncological relevance are the findings that thymomas and most thymic carcinomas lack currently targetable mutations, have an extraordinarily low tumor mutational burden, but typically have a programmed death-ligand 1high phenotype. Finally, data underpinning a conceptual advance are illustrated for the future classification of thymic NETs that may fit into the classification scheme of extrathoracic NETs. Endowed with updated clinical information and state-of-the-art positron emission tomography and computed tomography images, the fifth edition of the WHO classification of thymic epithelial tumors, germ cell tumors, and mesenchymal neoplasms with its wealth of new diagnostic and molecular insights will be a valuable source for pathologists, radiologists, surgeons, and oncologists alike. Therapeutic perspectives and research challenges will be addressed as well.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany.
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, People's Republic of China
| | - Lara Chalabreysse
- Department of Pathology, Groupement Hospitalier Est, Bron Cedex Lyon, France
| | - Sanja Dacic
- Department of Pathology, University Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Frank Detterbeck
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University, Nagoya, Japan
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Alexander J Lazar
- Department of Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mirella Marino
- Department of Pathology, Istituto di Ricovero e Cura a Carattere Scientifico Regina Elena National Cancer Institute, Rome, Italy
| | - Edith M Marom
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, affiliated with Tel Aviv University, Ramat Gan, Israel
| | - Andre L Moreira
- Department of Pathology, New York University Langone Health, New York, New York
| | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Masayuki Noguchi
- Department of Diagnostic Pathology, University of Tsukuba, Tsukuba-shi, Japan
| | - Daisuke Nonaka
- Department of Cellular Pathology, Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, United Kingdom
| | | | - Stefan Porubsky
- Department of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hisashi Tateyama
- Department of Pathology, Kasugai Municipal Hospital, Kasugai, Japan
| | | | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Arun Rajan
- Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Bousali M, Papatheodoridis G, Paraskevis D, Karamitros T. Hepatitis B Virus DNA Integration, Chronic Infections and Hepatocellular Carcinoma. Microorganisms 2021; 9:1787. [PMID: 34442866 PMCID: PMC8398950 DOI: 10.3390/microorganisms9081787] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B Virus (HBV) is an Old World virus with a high mutation rate, which puts its origins in Africa alongside the origins of Homo sapiens, and is a member of the Hepadnaviridae family that is characterized by a unique viral replication cycle. It targets human hepatocytes and can lead to chronic HBV infection either after acute infection via horizontal transmission usually during infancy or childhood or via maternal-fetal transmission. HBV has been found in ~85% of HBV-related Hepatocellular Carcinomas (HCC), and it can integrate the whole or part of its genome into the host genomic DNA. The molecular mechanisms involved in the HBV DNA integration is not yet clear; thus, multiple models have been described with respect to either the relaxed-circular DNA (rcDNA) or the double-stranded linear DNA (dslDNA) of HBV. Various genes have been found to be affected by HBV DNA integration, including cell-proliferation-related genes, oncogenes and long non-coding RNA genes (lincRNAs). The present review summarizes the advances in the research of HBV DNA integration, focusing on the evolutionary and molecular side of the integration events along with the arising clinical aspects in the light of WHO's commitment to eliminate HBV and viral hepatitis by 2030.
Collapse
Affiliation(s)
- Maria Bousali
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - George Papatheodoridis
- Department of Gastroenterology, “Laiko” General Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
20
|
Tateo V, Manuzzi L, Parisi C, De Giglio A, Campana D, Pantaleo MA, Lamberti G. An Overview on Molecular Characterization of Thymic Tumors: Old and New Targets for Clinical Advances. Pharmaceuticals (Basel) 2021; 14:316. [PMID: 33915954 PMCID: PMC8066729 DOI: 10.3390/ph14040316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Thymic tumors are a group of rare mediastinal malignancies that include three different histological subtypes with completely different clinical behavior: the thymic carcinomas, the thymomas, and the rarest thymic neuroendocrine tumors. Nowadays, few therapeutic options are available for relapsed and refractory thymic tumors after a first-line platinum-based chemotherapy. In the last years, the deepening of knowledge on thymus' biological characterization has opened possibilities for new treatment options. Several clinical trials have been conducted, the majority with disappointing results mainly due to inaccurate patient selection, but recently some encouraging results have been presented. In this review, we summarize the molecular alterations observed in thymic tumors, underlying the great biological differences among the different histology, and the promising targeted therapies for the future.
Collapse
Affiliation(s)
- Valentina Tateo
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
| | - Lisa Manuzzi
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
| | - Claudia Parisi
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
| | - Andrea De Giglio
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Davide Campana
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Giuseppe Lamberti
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| |
Collapse
|