1
|
Dejeu D, Dejeu P, Muresan A, Bradea P, Dejeu V. Investigation into the Use of Surufatinib and Donafenib as Novel Multi-Kinase Inhibitors Therapeutic Agents in Managing Advanced Differentiated Thyroid Cancer: A Systematic Review. Biomedicines 2025; 13:752. [PMID: 40149728 PMCID: PMC11940717 DOI: 10.3390/biomedicines13030752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
Background and Objectives: Differentiated thyroid cancer is the predominant form of endocrine cancer, with most cases being treatable. However, some patients develop resistance to traditional treatments. This review examines the use of the new multi-kinase inhibitors surufatinib and sonafenib, which target pathways related to angiogenesis and tumor growth in these patients. Methods: An extensive search of the literature was performed to find research involving these drugs in treating differentiated thyroid cancer. Four relevant studies were found, including two each for surufatinib and donafenib. Information regarding the research design, participant details, treatment methods, results on effectiveness, and side effects was collected and analyzed. Results: Surufatinib showed encouraging results, with response rates between 23.2% and 60% and progression-free survival times as long as 11.1 months. Donafenib also demonstrated improved progression-free survival times (12.9 months) compared to a placebo (6.4 months) and had response rates as high as 23.3%. Both drugs were well tolerated, with the most frequent side effects being hypertension and hand-foot syndrome. Conclusions: Both urufatinib and donafenib offer substantial benefits for patients with advanced differentiated thyroid cancer and have acceptable safety profiles. These results support their potential inclusion in treatment strategies for resistant cases, and further investigation of their clinical application is recommended.
Collapse
Affiliation(s)
- Danut Dejeu
- Surgical Oncology Department, Emergency County Hospital Oradea, Strada Gheorghe Doja 65, 410169 Oradea, Romania; (D.D.); (A.M.)
- Surgery Department, Faculty of Medicine and Pharmacy, University of Oradea, Piata 1 Decembrie 10, 410073 Oradea, Romania
- Bariatric Surgery Department, Medlife Humanitas Hospital, Strada Frunzisului 75, 400664 Cluj Napoca, Romania
| | - Paula Dejeu
- Laboratory Medicine Unit, Betania Medical Center, Menumorut 12, 410004 Oradea, Romania
| | - Anita Muresan
- Surgical Oncology Department, Emergency County Hospital Oradea, Strada Gheorghe Doja 65, 410169 Oradea, Romania; (D.D.); (A.M.)
- Surgery Department, Faculty of Medicine and Pharmacy, University of Oradea, Piata 1 Decembrie 10, 410073 Oradea, Romania
| | - Paula Bradea
- Gastroenterology Unit, Betania Medical Center, Menumorut 12, 410004 Oradea, Romania;
| | - Viorel Dejeu
- Bariatric Surgery Department, Life Memorial Hospital, Calea Grivitei 365, 010719 Bucuresti, Romania;
| |
Collapse
|
2
|
Kumari S, Makarewicz A, Klubo-Gwiezdzinska J. Emerging Potential of Metabolomics in Thyroid Cancer-A Comprehensive Review. Cancers (Basel) 2025; 17:1017. [PMID: 40149351 PMCID: PMC11940765 DOI: 10.3390/cancers17061017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Thyroid cancer is a very common endocrine system malignancy. Nevertheless, a dearth of precise markers makes it challenging to apply precision medicine to thyroid cancer. The limitations of standard diagnosis techniques (fine-needle aspiration biopsy), such as indeterminate cases and inaccuracies in distinguishing between different types of cancers, lead to unnecessary surgeries and thus warrant the development of more discriminatory biomarkers to improve the accuracy of existing diagnostic and prognostic techniques. Moreover, individualized therapies for thyroid cancer are necessary to avoid overtreatment of indolent lesions and undertreatment of high-risk progressive disease. As thyroid cancer metabolic signatures are associated with disease aggressiveness and responsiveness to therapy, metabolomics has been recently used for diagnostic and prognostic biomarker discovery. This strategy has enabled the detection of several metabolites from tissue samples or biofluids to facilitate the classification of disease aggressiveness and to potentially assist in individualized therapies. In this review, we summarize the utilization and potential of metabolomics in thyroid cancer.
Collapse
Affiliation(s)
| | | | - Joanna Klubo-Gwiezdzinska
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (S.K.); (A.M.)
| |
Collapse
|
3
|
Zhang Y, Zhang X, Lin L, Xing M. Efficacy and Safety of Targeted Therapy for Radioiodine-Refractory Differentiated Thyroid Cancer. J Clin Endocrinol Metab 2025; 110:873-886. [PMID: 39292866 DOI: 10.1210/clinem/dgae617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
CONTEXT There has been considerable success in the development of drugs for targeted therapy of radioiodine-refractory differentiated thyroid cancer (RR-DTC) and to know the safety and efficacy of these drugs will help their appropriate application. OBJECTIVE To evaluate the efficacy and safety of current targeted drug therapies for radioiodine-refractory differentiated thyroid cancer. METHODS This was a meta-analysis of relevant randomized controlled trials (RCTs) and single-arm studies searched across PubMed, Embase, Cochranes, and Web of Sciences up to September 12, 2023. Stata15.0 software was used to assess overall survival (OS), progression-free survival (PFS), disease control rate (DCR), objective response rate (ORR), and adverse events. The Cochrane Bias Risk tool was used to assess literature quality and trial bias and RevMan 5.4 was used to generate a quality assessment map. RESULTS A total of 8 RCTs and 17 single-arm studies with 3270 patients on 7 drugs-vandetanib, sorafenib, lenvatinib, cabozantinib, apatinib, donafenib, and anlotinib-were included. Targeted therapy with these drugs effectively prolonged PFS and OS in patients with RR-DTC with overall hazard ratios of 0.35 (95% CI 0.23-0.53, P < .00001) and 0.53 (95% CI 0.32-0.86, P < .00001), respectively. ORR and DCR were also prolonged, with overall risk ratios of 27.63 (95% CI 12.39-61.61, P < .00001) and 1.66 (95% CI 1.48-1.86, P < .00001), respectively. The subgroup analysis using effect size (ES) showed that apatinib had the best effect on ORR with an ES of 0.66 (95% CI 0.49-0.83, P < .00001) and DCR with a ES of 0.95 (95% CI 0.91-1.00, P < .00001). Common drug adverse events included hypertension, diarrhea, proteinuria, and fatigue. CONCLUSION The currently used targeted drug therapies for RR-DTC can significantly improve clinical outcomes, and the new drug apatinib demonstrates promise for potentially superior performance.
Collapse
Affiliation(s)
- Yuqing Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoxin Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Lifan Lin
- Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Mingzhao Xing
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
4
|
Lin SF, Hsueh C, Chen WY, Chou TC, Wong RJ. Targeting Ataxia Telangiectasia-Mutated and Rad3-Related for Anaplastic Thyroid Cancer. Cancers (Basel) 2025; 17:359. [PMID: 39941729 PMCID: PMC11816221 DOI: 10.3390/cancers17030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies and has a poor prognosis. Ataxia telangiectasia mutated and Rad3 related (ATR) is a key regulator for the DNA damage response and a potential target to treat cancer. METHODS We assessed the efficacy of BAY 1895344, an ATR inhibitor, in three ATC cell lines. RESULTS BAY 1895344 caused dose-response cytotoxicity in three ATC cell lines. BAY 1895344 induced S-phase and G2-phase arrest, activated caspase-3 activity and induced apoptosis in ATC cells. BAY 1895344 meaningfully retarded the tumor growth of an ATC xenograft model. BAY 1895344 therapy, combined with dabrafenib and trametinib, had synergism in vitro and revealed robust tumor growth suppression in vivo in two xenograft models of ATC harboring mutant BRAFV600E. Furthermore, the combination of BAY 1895344 with lenvatinib was more effective than either agent alone in a xenograft model of ATC. CONCLUSIONS These results reveal that BAY 1895344 has potential in treating ATC.
Collapse
Affiliation(s)
- Shu-Fu Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City 23652, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Chuen Hsueh
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Ting-Chao Chou
- Laboratory of Preclinical Pharmacology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
5
|
Ezzat S, Pasternak JD, Rajaraman M, Abdel-Rahman O, Boucher A, Chau NG, Chen S, Gill S, Hyrcza MD, Lamond N, Massicotte MH, Winquist E, Mete O. Multidisciplinary Canadian consensus on the multimodal management of high-risk and radioactive iodine-refractory thyroid carcinoma. Front Oncol 2024; 14:1437360. [PMID: 39558957 PMCID: PMC11570806 DOI: 10.3389/fonc.2024.1437360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/10/2024] [Indexed: 11/20/2024] Open
Abstract
Most follicular cell-derived differentiated thyroid carcinomas are regarded as low-risk neoplasms prompting conservative therapeutic management. Here, we provide consensus recommendations reached by a multidisciplinary group of endocrinologists, medical oncologists, pathologists, radiation oncology specialists, a surgeon and a medication reimbursement specialist, addressing more challenging forms of this malignancy, focused on radioactive iodine (RAI)-resistant or -refractory differentiated thyroid carcinoma (RAIRTC). In this document we highlight clinical, radiographic, and molecular features providing the basis for these management plans. We distinguish differentiated thyroid cancers associated with more aggressive behavior from thyroid cancers manifesting as poorly differentiated and/or anaplastic carcinomas. Treatment algorithms based on risk-benefit assessments of different multimodal therapy approaches are also discussed. Given the scarcity of data supporting management of this rare yet aggressive disease entity, these consensus recommendations provide much needed guidance for multidisciplinary teams to optimally manage RAIRTC.
Collapse
Affiliation(s)
- Shereen Ezzat
- Endocrine Oncology Site Group, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Jesse D. Pasternak
- Department of Surgery, University Health Network – Toronto Western Hospital, Toronto, ON, Canada
| | - Murali Rajaraman
- Department of Radiation Oncology, Dalhousie University, Halifax, NS, Canada
| | | | - Andrée Boucher
- Endocrinology Division, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Nicole G. Chau
- Division of Medical Oncology, British Columbia Cancer – Vancouver, Vancouver, BC, Canada
| | - Shirley Chen
- Endocrine Oncology Site Group, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Sabrina Gill
- Division of Endocrinology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Martin D. Hyrcza
- Department of Pathology and Laboratory Medicine, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Nathan Lamond
- Division of Medical Oncology, Nova Scotia Cancer Centre, Halifax, NS, Canada
| | - Marie-Hélène Massicotte
- Division of Endocrinology, Department of Medicine, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Winquist
- Verspeeten Family Cancer Centre at London Health Sciences Centre, London, ON, Canada
| | - Ozgur Mete
- Department of Pathology, Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Priantti JN, Rodrigues NMV, de Moraes FCA, da Costa AG, Jezini DL, Heckmann MIO. Efficacy and safety of BRAF/MEK inhibitors in BRAFV600E-mutated anaplastic thyroid cancer: a systematic review and meta-analysis. Endocrine 2024; 86:284-292. [PMID: 38709445 DOI: 10.1007/s12020-024-03845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Approximately 45% of anaplastic thyroid cancer (ATC) patients harbor a BRAFV600E mutation and are eligible for target therapy (TT) with BRAF and MEK inhibitors (BRAFi/MEKi), nevertheless, few data advocate for this. Hence, we've conducted a systematic review and meta-analysis investigating the effectiveness and safety of BRAFi/MEKi in BRAFV600E ATC patients. METHODS PubMed, Embase, and the Cochrane Library were systematically searched for BRAFi/MEKi TT in BRAFV600E ATC patients. Outcomes included objective response rate (ORR), disease control rate (DCR), overall survival (OS), progression-free survival (PFS), duration of response (DOR) and adverse events (AEs). RESULTS Nine studies with 168 patients were included. Median follow-up ranged from 2.0 to 47.9 months. 75% of patients had stage IVc. In a pooled analysis, ORR was 68.15% (95% CI 55.31-80.99, I2 = 47%) and DCR was 85.39% (95% CI 78.10-92.68, I2 = 0), with a median DOR of 14.4 months (95% CI 4.6-14.4) and a median PFS of 6.7 months (95% CI 4.7-34.2). Moreover, 1-year OS rate was 64.97% (95% CI 48.76-81.17, I2 = 84%) and 2-years OS rate was 52.08% (95% CI 35.71-68.45, I2 = 79%). Subgroup analysis showed patients in the neoadjuvant setting had higher rates of 1 and 2-years OS and observational studies tended to report higher rates of ORR than clinical trials. No new or unexpected adverse events were found. CONCLUSIONS Our study demonstrated BRAFi/MEKi have a decent activity for BRAFV600E ATC patients, especially in the neoadjuvant setting, with a tolerable safety profile. However, further clinical trials are warranted to investigate these findings.
Collapse
Affiliation(s)
- Jonathan N Priantti
- Department of Internal Medicine, School of Medicine, Federal University of Amazonas - UFAM, Manaus, AM, 69020-160, Brazil.
| | | | | | | | - Deborah Laredo Jezini
- Department of Internal Medicine, School of Medicine, Federal University of Amazonas - UFAM, Manaus, AM, 69020-160, Brazil
- Department of Education and Research, Hospital Universitário Getúlio Vargas, Manaus, AM, 69020-170, Brazil
| | - Maria Izabel Ovellar Heckmann
- Department of Education and Research, Hospital Universitário Getúlio Vargas, Manaus, AM, 69020-170, Brazil
- Institute of Biological Sciences, Federal University of Amazonas - UFAM, Manaus, AM, 69080-900, Brazil
| |
Collapse
|
7
|
Gomes SM, Gaspar MM, Coelho JMP, Reis CP. Targeting superficial cancers with gold nanoparticles: a review of current research. Ther Deliv 2024; 15:781-799. [PMID: 39314189 PMCID: PMC11457633 DOI: 10.1080/20415990.2024.2395249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Superficial cancers typically refer to cancers confined to the surface layers of tissue. Low-targeting therapies or side effects prompt exploration of novel therapeutic approaches. Gold nanoparticles (AuNPs), due to their unique optical properties, serve as effective photosensitizers, enabling tumor ablation through photothermal therapy (PTT). PTT induced by AuNPs can be achieved through light sources externally applied to the skin. Near-infrared radiation is the main light candidate due to its deep tissue penetration capability. This review explores recent advancements in AuNP-based PTT for superficial cancers, specifically breast, head and neck, thyroid, bladder and prostate cancers. Additionally, challenges and future directions in utilizing AuNPs for cancer treatment are discussed, emphasizing the importance of balancing efficacy with safety in clinical applications.
Collapse
Affiliation(s)
- Susana M Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - João MP Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
8
|
Sun Y, Han Y. GNA15 facilitates the malignant development of thyroid carcinoma cells via the BTK-mediated MAPK signaling pathway. Histol Histopathol 2024; 39:1217-1227. [PMID: 38333922 DOI: 10.14670/hh-18-714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
G protein subunit alpha 15 (GNA15) is recognized as an oncogene for some cancers, however, its role in thyroid carcinoma (TC) is elusive and is investigated in this study. Concretely, bioinformatics was employed to analyze the GNA15 expression profile in TC. The effect of GNA15 on TC cell functions was examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, and Transwell assays. Expressions of extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 were determined using Western blot. The involvement of Bruton tyrosine kinase (BTK) in the mechanism of GNA15 was investigated by BTK knockdown and rescue assay. GNA15 presented an overexpression pattern in TC samples, which facilitated the viability, proliferation, migration, and invasion of TC cells; GNA15 silencing led to converse results. Ratios of p-ERK/ERK, p-JNK/JNK, and p-p38/p38 were upregulated by GNA15 overexpression. The BTK deficiency weakened the aforementioned behaviors of TC cells and blocked the MAPK signaling pathway, however, these effects were counteracted by GNA15 overexpression. Collectively, GNA15 contributes to the malignant development of TC cells by binding to BTK and thus activating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yihan Sun
- Neck Surgery Department, The 2nd School of Medicine, WMU/The 2nd Affiliated Hospital and Yuying Children's Hospital of WMU, Longwan District, Wenzhou City, Zhejiang Province, China
| | - Yifan Han
- Neck Surgery Department, The 2nd School of Medicine, WMU/The 2nd Affiliated Hospital and Yuying Children's Hospital of WMU, Longwan District, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
9
|
Wang Y, Xing J, Liang Y, Liang H, Liang N, Li J, Yin G, Li X, Zhang K. The structure and function of multifunctional protein ErbB3 binding protein 1 (Ebp1) and its role in diseases. Cell Biol Int 2024; 48:1069-1079. [PMID: 38884348 DOI: 10.1002/cbin.12196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus. Due to the differences in the structures of these two isoforms, they have different binding partners and protein modifications. Ebp1 can function as both an oncogene and a tumor suppressor factor. However, the underlying mechanisms by which these two isoforms exert opposite functions are still not fully understood. In this review, we summarize the genes and the structures of protein of these two isoforms, protein modifications, binding partners and the association of different isoforms with diseases.
Collapse
Affiliation(s)
- Ying Wang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Nannan Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Guohua Yin
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhua Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Kalampounias G, Varemmenou A, Aronis C, Mamali I, Shaukat AN, Chartoumpekis DV, Katsoris P, Michalaki M. Recombinant Human TSH Fails to Induce the Proliferation and Migration of Papillary Thyroid Carcinoma Cell Lines. Cancers (Basel) 2024; 16:2604. [PMID: 39061242 PMCID: PMC11275150 DOI: 10.3390/cancers16142604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Thyrotropin (TSH) suppression is required in the management of patients with papillary thyroid carcinoma (PTC) to improve their outcomes, inevitably causing iatrogenic thyrotoxicosis. Nevertheless, the evidence supporting this practice remains limited and weak, and in vitro studies examining the mitogenic effects of TSH in cancerous cells used supraphysiological doses of bovine TSH, which produced conflicting results. Our study explores, for the first time, the impact of human recombinant thyrotropin (rh-TSH) on human PTC cell lines (K1 and TPC-1) that were transformed to overexpress the thyrotropin receptor (TSHR). The cells were treated with escalating doses of rh-TSH under various conditions, such as the presence or absence of insulin. The expression levels of TSHR and thyroglobulin (Tg) were determined, and subsequently, the proliferation and migration of both transformed and non-transformed cells were assessed. Under the conditions employed, rh-TSH was not adequate to induce either the proliferation or the migration rate of the cells, while Tg expression was increased. Our experiments indicate that clinically relevant concentrations of rh-TSH cannot induce proliferation and migration in PTC cell lines, even after the overexpression of TSHR. Further research is warranted to dissect the underlying molecular mechanisms, and these results could translate into better management of treatment for PTC patients.
Collapse
Affiliation(s)
- Georgios Kalampounias
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Athina Varemmenou
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Christos Aronis
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Irene Mamali
- Endocrine Division, Department of Internal Medicine, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.); (D.V.C.); (M.M.)
| | | | - Dionysios V. Chartoumpekis
- Endocrine Division, Department of Internal Medicine, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.); (D.V.C.); (M.M.)
| | - Panagiotis Katsoris
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Marina Michalaki
- Endocrine Division, Department of Internal Medicine, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.); (D.V.C.); (M.M.)
| |
Collapse
|
11
|
Behnagh AK, Eghbali M, Abdolmaleki F, Ghadikolaei OA, Asl PR, Afsharpad M, Cheraghi S, Honardoost M. An Overview on Prevalence and Detection Approaches of BRAF V600E Mutation in Anaplastic Thyroid Carcinoma: A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:1496-1507. [PMID: 39086414 PMCID: PMC11287593 DOI: 10.18502/ijph.v53i7.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/20/2023] [Indexed: 08/02/2024]
Abstract
Background BRAF V600E mutation is proved critical in the progression and invasion of thyroid cancer, and as a prognostic biomarker. As anaplastic thyroid cancer (ATC) is a rare and aggressive form of thyroid cancer, this study was conducted to provide a view on prevalence of BRAF V600E as well as the best molecular diagnostic method in ATC patients. Methods A comprehensive literature search was performed from their inception to Oct 2022 in PubMed, Scopus, Google Scholar, and Web of Science (WoS). The data of the prevalence of ATC were extracted. Moreover, the diagnostic feature of the available diagnostic tools was extracted to measure the sensitivity and specificity. To pool the prevalence data, we used meta-proportion analysis and diagnostic meta-analysis was conducted to determine the specificity and sensitivity of the immunohistochemistry method in detecting BRAF V600E mutation among patients with ATC. Results Overall, 34 studies were included in this meta-analysis. The incidence of BRAF V600E was shown 33% in the 978 patients. The sensitivity and specificity of IHC in detecting BRAF V600E were detected 78.9% (95%CI: 60.1-97.2), and 69.7% (95%CI: 41.2-98.1), respectively. Conclusion IHC had an acceptable prognostic profile for detecting BRAF V600E in ATC patients. The diagnosis of BRAF mutation is critical in clinical trials and may be helpful for choosing proper-targeted therapy strategies in ATC patients.
Collapse
Affiliation(s)
- Arman Karimi Behnagh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Eghbali
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Abdolmaleki
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Omolbanin Asadi Ghadikolaei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Rezazadeh Asl
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Afsharpad
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Cheraghi
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ali DS, Gad HA, Hathout RM. Enhancing Effector Jurkat Cell Activity and Increasing Cytotoxicity against A549 Cells Using Nivolumab as an Anti-PD-1 Agent Loaded on Gelatin Nanoparticles. Gels 2024; 10:352. [PMID: 38920901 PMCID: PMC11202840 DOI: 10.3390/gels10060352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
The current research investigated the use of gelatin nanoparticles (GNPs) for enhancing the cytotoxic effects of nivolumab, an immune checkpoint inhibitor. The unique feature of GNPs is their biocompatibility and functionalization potential, improving the delivery and the efficacy of immunotherapeutic drugs with fewer side effects compared to traditional treatments. This exploration of GNPs represents an innovative direction in the advancement of nanomedicine in oncology. Nivolumab-loaded GNPs were prepared and characterized. The optimum formulation had a particle size of 191.9 ± 0.67 nm, a polydispersity index of 0.027 ± 0.02, and drug entrapment of 54.67 ± 3.51%. A co-culture experiment involving A549 target cells and effector Jurkat cells treated with free nivolumab solution, and nivolumab-loaded GNPs, demonstrated that the latter had significant improvements in inhibition rate by scoring 87.88 ± 2.47% for drug-loaded GNPs against 60.53 ± 3.96% for the free nivolumab solution. The nivolumab-loaded GNPs had a lower IC50 value, of 0.41 ± 0.01 µM, compared to free nivolumab solution (1.22 ± 0.37 µM) at 72 h. The results indicate that administering nivolumab-loaded GNPs augmented the cytotoxicity against A549 cells by enhancing effector Jurkat cell activity compared to nivolumab solution treatment.
Collapse
Affiliation(s)
- Dalia S. Ali
- Department of Biotechnology, Central Administration of Biological, Innovative Products and Clinical Studies, Egyptian Drug Authority, Giza 11566, Egypt
| | - Heba A. Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
13
|
Zeng X, Xue L, Li W, Zhao P, Chen W, Wang W, Shen J. Vandetanib as a prospective anti-inflammatory and anti-contractile agent in asthma. Front Pharmacol 2024; 15:1345070. [PMID: 38799165 PMCID: PMC11116788 DOI: 10.3389/fphar.2024.1345070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Background: Vandetanib is a small-molecule tyrosine kinase inhibitor. It exerts its therapeutic effects primarily in a range of lung cancers by inhibiting the vascular endothelial growth factor receptor 2. However, it remains unclear whether vandetanib has therapeutic benefits in other lung diseases, particularly asthma. The present study investigated the pioneering use of vandetanib in the treatment of asthma. Methods: In vivo experiments including establishment of an asthma model, measurement of airway resistance measurement and histological analysis were used primarily to confirm the anticontractile and anti-inflammatory effects of vandetanib, while in vitro experiments, including measurement of muscle tension and whole-cell patch-clamp recording, were used to explore the underlying molecular mechanism. Results: In vivo experiments in an asthmatic mouse model showed that vandetanib could significantly alleviate systemic inflammation and a range of airway pathological changes including hypersensitivity, hypersecretion and remodeling. Subsequent in vitro experiments showed that vandetanib was able to relax the precontracted rings of the mouse trachea via calcium mobilization which was regulated by specific ion channels including VDLCC, NSCC, NCX and K+ channels. Conclusions: Taken together, our study demonstrated that vandetanib has both anticontractile and anti-inflammatory properties in the treatment of asthma, which also suggests the feasibility of using vandetanib in the treatment of asthma by reducing abnormal airway contraction and systemic inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| |
Collapse
|
14
|
Wang K, Zhang Y, Xing Y, Wang H, He M, Guo R. Current and future of immunotherapy for thyroid cancer based on bibliometrics and clinical trials. Discov Oncol 2024; 15:50. [PMID: 38403820 PMCID: PMC10894806 DOI: 10.1007/s12672-024-00904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Thyroid cancer is a leading endocrine malignancy, with anaplastic and medullary subtypes posing treatment challenges. Existing therapies have limited efficacy, highlighting a need for innovative approaches. METHODS We analyzed 658 articles and 87 eligible clinical trials using bibliometric tools and database searches, including annual publication and citation trends, were executed using Web of Science, CiteSpace, and VOS Viewer. RESULTS Post-2018, there is a surge in thyroid cancer immunotherapy research, primarily from China and the University of Pisa. Of the 87 trials, 32 were Phase I and 55 were Phase II, mostly exploring combination therapies involving immune checkpoint inhibitors. CONCLUSION The study's dual approach verifies the swift advancement of thyroid cancer immunotherapy from diverse perspectives. Immune checkpoint inhibitors have become the preferred regimen for advanced MTC and ATC in late therapeutic lines. However, since ICB plays a pivotal role in ATC, current clinical trial data show that ATC patients account for more and the curative effect is more accurate. Anticipated future developments are inclined toward combination regimens integrating immunotherapy with chemotherapy or targeted therapies. Emerging approaches, such as bispecific antibodies, cytokine-based therapies, and adoptive cell therapies like CAR-T and TCR-T, are exhibiting considerable potential. Upcoming research is expected to concentrate on refining the tumor immune milieu and discovering novel biomarkers germane to immunotherapeutic interventions.
Collapse
Affiliation(s)
- Ke Wang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Jilin University, 1 Xinmin Str, Changchun, 130021, Jilin, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Chang Chun, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Chang Chun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Chang Chun, China
| | - Minghua He
- College of Computer Science and Technology, Jilin University, Chang Chun, China
| | - Rui Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Jilin University, 1 Xinmin Str, Changchun, 130021, Jilin, China.
| |
Collapse
|
15
|
Kanin MR, Leung AM. Overview of Thyroid and Parathyroid Disease-The Endocrinology Perspective. Otolaryngol Clin North Am 2024; 57:11-24. [PMID: 37634985 DOI: 10.1016/j.otc.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Thyroid and parathyroid disorders are quite common in the population and range from benign to malignant conditions that may be hormonally active or inactive. Select disorders of the thyroid and parathyroid can be managed medically, although there are a variety of circumstances that may require definitive management with surgery. Surgical intervention may be required for hormonal control, compressive symptoms, or for the removal and/or control of malignancy. The endocrinologist's perspective of the preoperative and postoperative management regarding thyroid and parathyroid surgeries will be discussed.
Collapse
Affiliation(s)
- Maralee R Kanin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 57-145, Los Angeles, CA 90095, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard (111D), Los Angeles CA 90073, USA
| | - Angela M Leung
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 57-145, Los Angeles, CA 90095, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard (111D), Los Angeles CA 90073, USA.
| |
Collapse
|
16
|
Banerjee S, Kejriwal S, Ghosh B, Lanka G, Jha T, Adhikari N. Fragment-based investigation of thiourea derivatives as VEGFR-2 inhibitors: a cross-validated approach of ligand-based and structure-based molecular modeling studies. J Biomol Struct Dyn 2024; 42:1047-1063. [PMID: 37029768 DOI: 10.1080/07391102.2023.2198039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023]
Abstract
Angiogenesis is mediated by the vascular endothelial growth factor (VEGF) that plays a key role in the modulation of progression, invasion and metastasis, related to solid tumors and hematological malignancies. Several small-molecule VEGFR-2 inhibitors are marketed, but their usage is restricted to specific cancers due to severe toxicities. Therefore, cost-effective novel small molecule VEGFR-2 inhibitors may be an alternative to overcome these adverse effects. Here, a set of thiourea-based VEGFR-2 inhibitors were considered for a combined fragment-based QSAR technique, structure-based molecular docking followed by molecular dynamics simulation studies to acquire insights into the key structural attributes and the binding pattern of enzyme-ligand interactions. Noticeably, amine-substituted quinazoline phenyl ring and a higher number of nitrogen atoms, and the hydrazide function in the molecular structure are crucial for VEGFR-2 inhibition whereas methoxy groups are detrimental to VEGFR-2 inhibition. The MD simulation study of sorafenib and thiourea derivatives explored the significance of urea and thiourea moiety binding at VEGFR-2 active site that can be utilized further in the future to design molecules for greater binding stability and better VEGFR-2 selectivity. Therefore, such findings can be beneficial for the development of newer VEGFR-2 inhibitors for further refinement to acquire better therapeutic efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shristi Kejriwal
- Indian Institute of Science Education and Research (IISER) Kolkata, Nadia, West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, India
| | - Goverdhan Lanka
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
17
|
Komatsuda H, Kono M, Wakisaka R, Sato R, Inoue T, Kumai T, Takahara M. Harnessing Immunity to Treat Advanced Thyroid Cancer. Vaccines (Basel) 2023; 12:45. [PMID: 38250858 PMCID: PMC10820966 DOI: 10.3390/vaccines12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
The incidence of thyroid cancer (TC) has increased over the past 30 years. Although differentiated thyroid cancer (DTC) has a good prognosis in most patients undergoing total thyroidectomy followed by radioiodine therapy (RAI), 5-10% of patients develop metastasis. Anaplastic thyroid cancer (ATC) has a low survival rate and few effective treatments have been available to date. Recently, tyrosine kinase inhibitors (TKIs) have been successfully applied to RAI-resistant or non-responsive TC to suppress the disease. However, TC eventually develops resistance to TKIs. Immunotherapy is a promising treatment for TC, the majority of which is considered an immune-hot malignancy. Immune suppression by TC cells and immune-suppressing cells, including tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, is complex and dynamic. Negative immune checkpoints, cytokines, vascular endothelial growth factors (VEGF), and indoleamine 2,3-dioxygenase 1 (IDO1) suppress antitumor T cells. Basic and translational advances in immune checkpoint inhibitors (ICIs), molecule-targeted therapy, tumor-specific immunotherapy, and their combinations have enabled us to overcome immune suppression and activate antitumor immune cells. This review summarizes current findings regarding the immune microenvironment, immunosuppression, immunological targets, and immunotherapy for TC and highlights the potential efficacy of immunotherapy.
Collapse
Affiliation(s)
- Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Takahiro Inoue
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
| |
Collapse
|
18
|
Cortas C, Charalambous H. Tyrosine Kinase Inhibitors for Radioactive Iodine Refractory Differentiated Thyroid Cancer. Life (Basel) 2023; 14:22. [PMID: 38255638 PMCID: PMC10817256 DOI: 10.3390/life14010022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
Patients with differentiated thyroid cancer usually present with early-stage disease and undergo surgery followed by adjuvant radioactive iodine ablation, resulting in excellent clinical outcomes and prognosis. However, a minority of patients relapse with metastatic disease, and eventually develop radioactive iodine refractory disease (RAIR). In the past there were limited and ineffective options for systemic therapy for RAIR, but over the last ten to fifteen years the emergence of tyrosine kinase inhibitors (TKIs) has provided important new avenues of treatment for these patients, that are the focus of this review. Currently, Lenvatinib and Sorafenib, multitargeted TKIs, represent the standard first-line systemic treatment options for RAIR thyroid carcinoma, while Cabozantinib is the standard second-line treatment option. Furthermore, targeted therapies for patients with specific targetable molecular abnormalities include Latrectinib or Entrectinib for patients with NTRK gene fusions and Selpercatinib or Pralsetinib for patients with RET gene fusions. Dabrafenib plus Trametinib currently only have tumor agnostic approval in the USA for patients with BRAF V600E mutations, including thyroid cancer. Redifferentiation therapy is an area of active research, with promising initial results, while immunotherapy studies with checkpoint inhibitors in combination with tyrosine kinase inhibitors are underway.
Collapse
Affiliation(s)
| | - Haris Charalambous
- Medical Oncology Department, Bank of Cyprus Oncology Centre, Nicosia 2006, Cyprus;
| |
Collapse
|
19
|
Lin SF, Lee YY, Wu MH, Lu YL, Yeh CN, Chen WY, Chou TC, Wong RJ. Therapeutic inhibition of ATR in differentiated thyroid cancer. Endocr Relat Cancer 2023; 30:e230142. [PMID: 37902083 PMCID: PMC11271744 DOI: 10.1530/erc-23-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023]
Abstract
Ataxia telangiectasia and Rad3-related protein (ATR) is a critical component of the DNA damage response and a potential target in the treatment of cancers. An ATR inhibitor, BAY 1895344, was evaluated for its use in differentiated thyroid cancer (DTC) therapy. BAY 1895344 inhibited cell viability in four DTC cell lines (TPC1, K1, FTC-133, and FTC-238) in a dose-dependent manner. BAY 1895344 treatment arrested DTC cells in the G2/M phase, increased caspase-3 activity, and caused apoptosis. BAY 1895344 in combination with either sorafenib or lenvatinib showed mainly synergistic effects in four DTC cell lines. The combination of BAY 1895344 with dabrafenib plus trametinib revealed synergistic effects in K1 cells that harbor BRAFV600E. BAY 1895344 monotherapy retarded the growth of K1 and FTC-133 tumors in xenograft models. The combinations of BAY 1895344 plus lenvatinib and BAY 1895344 with dabrafenib plus trametinib were more effective than any single therapy in a K1 xenograft model. No appreciable toxicity appeared in animals treated with either a single therapy or a combination treatment. Our findings provide the rationale for the development of clinical trials of BAY 1895344 in the treatment of DTC.
Collapse
Affiliation(s)
- Shu-Fu Lin
- Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Yin Lee
- Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Ming-Hsien Wu
- Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Yu-Ling Lu
- Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Chao Chou
- Laboratory of Preclinical Pharmacology Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Current address: PD Science, Inc., 599 Mill Run, Paramus, NJ, USA
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
20
|
Cormier F, Housni S, Dumont F, Villard M, Cochand-Priollet B, Mercier-Nomé F, Perlemoine K, Bertherat J, Groussin L. NF-κB signaling activation and roles in thyroid cancers: implication of MAP3K14/NIK. Oncogenesis 2023; 12:55. [PMID: 37973791 PMCID: PMC10654696 DOI: 10.1038/s41389-023-00496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Among follicular-derived thyroid cancers (TC), those with aggressive behavior and resistance to current treatments display poor prognosis. NF-κB signaling pathways are involved in tumor progression of various cancers. Here, we finely characterize the NF-κB pathways and their involvement in TC. By using immunoblot and gel shift assays, we demonstrated that both classical and alternative NF-κB pathways are activated in ten TC-derived cell lines, leading to activated RelA/p50 and RelB/p50 NF-κB dimers. By analyzing the RNAseq data of the large papillary thyroid carcinoma (PTC) cohort from The Cancer Genome Atlas (TCGA) project, we identified a tumor progression-related NF-κB signature in BRAFV600E mutated-PTCs. That corroborated with the role of RelA and RelB in cell migration and invasion processes that we demonstrated specifically in BRAFV600E mutated-cell lines, together with their role in the control of expression of genes implicated in invasiveness (MMP1, PLAU, LCN2 and LGALS3). We also identified NF-κB-inducing kinase (NIK) as a novel actor of the constitutive activation of the NF-κB pathways in TC-derived cell lines. Finally, its implication in invasiveness and its overexpression in PTC samples make NIK a potential therapeutic target for advanced TC treatment.
Collapse
Affiliation(s)
- Françoise Cormier
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France.
| | - Selma Housni
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
- Service de Médecine Nucléaire, Assistance Publique-Hopitaux de Paris, Hopital Pitié-Salpêtrière, F-75013, Paris, France
| | - Florent Dumont
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
- UMS IPSIT, Université Paris-Saclay, INSERM, CNRS, F-91400, Orsay, France
| | - Mélodie Villard
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
| | - Béatrix Cochand-Priollet
- Service de Pathologie, Assistance Publique-Hopitaux de Paris, Hopital Cochin, Université Paris Cité, F-75014, Paris, France
| | | | - Karine Perlemoine
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
| | - Jérôme Bertherat
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
- Service d'Endocrinologie, Cochin AP-HP Centre, F-75014, Paris, France
| | - Lionel Groussin
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
- Service d'Endocrinologie, Cochin AP-HP Centre, F-75014, Paris, France
| |
Collapse
|
21
|
Di Paola R, De A, Capasso A, Giuliana S, Ranieri R, Ruosi C, Sciarra A, Vitagliano C, Perna AF, Capasso G, Simeoni M. Impact of Thyroid Cancer Treatment on Renal Function: A Relevant Issue to Be Addressed. J Pers Med 2023; 13:jpm13050813. [PMID: 37240983 DOI: 10.3390/jpm13050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Thyroid cancers require complex and heterogeneous therapies with different impacts on renal function. In our systematic literature review, we analyzed several aspects: renal function assessment, the impact of radiotherapy and thyroid surgery on kidney functioning, and mechanisms of nephrotoxicity of different chemotherapy, targeted and immunologic drugs. Our study revealed that the renal impact of thyroid cancer therapy can be a limiting factor in all radiotherapy, surgery, and pharmacological approaches. It is advisable to conduct a careful nephrological follow-up imposing the application of body surface based estimated Glomerular Filtration Rate (eGFR) formulas for the purpose of an early diagnosis and treatment of renal failure, guaranteeing the therapy continuation to thyroid cancer patients.
Collapse
Affiliation(s)
- Rossella Di Paola
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ananya De
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna Capasso
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX 75063, USA
| | - Sofia Giuliana
- Nephrology Unit, Department of Specialist General Surgery, University Hospital "Luigi Vanvitelli", 80131 Naples, Italy
| | - Roberta Ranieri
- Nephrology Unit, Department of Specialist General Surgery, University Hospital "Luigi Vanvitelli", 80131 Naples, Italy
| | - Carolina Ruosi
- Nephrology Unit, Department of Specialist General Surgery, University Hospital "Luigi Vanvitelli", 80131 Naples, Italy
| | - Antonella Sciarra
- Department of Oncologic Surgery, Translational Medical Sciences at University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Caterina Vitagliano
- Nephrology Unit, Department of Specialist General Surgery, University Hospital "Luigi Vanvitelli", 80131 Naples, Italy
| | - Alessandra F Perna
- Nephrology and Dialysis Unit, Department of Translational Medical Sciences at University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | | | - Mariadelina Simeoni
- Nephrology and Dialysis Unit, Department of Translational Medical Sciences at University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| |
Collapse
|
22
|
Meng Y, Xu Y, Liu J, Qin X. Early warning signs of thyroid autoantibodies seroconversion: A retrospective cohort study. Clin Chim Acta 2023; 545:117365. [PMID: 37105454 DOI: 10.1016/j.cca.2023.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Serum anti-thyroid peroxidase antibody (anti-TPO) and anti-thyroglobulin antibody (anti-Tg) levels are key indicators for the diagnosis of autoimmune diseases, especially autoimmune thyroiditis. Before the thyroid autoantibodies turn from negative to positive, it is unknown whether any clinical indicators in the body play a warning role. PURPOSE To establish an early prediction model of seroconversion to positive thyroid autoantibodies. METHODS This retrospective cohort study collected information based on clinical laboratory data. A logistic regression model was used to analyse the risk factors associated with a change in thyroid autoantibodies to an abnormal status. A machine-learning approach was employed to establish an early warning model, and a nomogram was used for model performance assessment and visualisation. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analyses were used for internal and external validation. RESULTS Logistic regression analysis revealed that albumin to globulin ratio, triglyceride levels, and Glutamic acid levels among liver function and some metabolism-related indicators, high density lipoprotein C among metabolism-related indicators, and cystatin C among renal function indicators were all risk factors for thyroid antibody conversion (P<0.05). In addition, several indicators in the blood count correlated with thyroid conversion (P<0.05). Changes in the ratio of free thyroxine to free triiodothyronine were a risk factor for positive thyroid antibody conversion (ORfT4/fT3=1.763; 95% confidence interval 1.554-2.000). The area under the curve (AUC) of the early warning model based on the positive impact of clinical laboratory indicators, age, and sex was 0.85, which was validated by both internal (AUC 0.8515) and external (AUC 0.8378) validation. CONCLUSIONS The early warning model of anti-TPO and anti-Tg conversion combined with some clinical laboratory indicators in routine physical examination has a stable warning efficiency.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Shenyang, Liaoning, People's Republic of China
| | - Yaozheng Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Shenyang, Liaoning, People's Republic of China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Shenyang, Liaoning, People's Republic of China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
23
|
Huang Y, Wang Y, Liu S, Xu Z, Chen WX. An integrative analysis of the tumor suppressors and oncogenes from sexual dimorphism and gene expression alteration features in thyroid cancer. Cancer Biomark 2023; 38:1-16. [PMID: 37355885 DOI: 10.3233/cbm-230029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND The incidence of thyroid cancer has risen rapidly over the last decades. Although mortality rates are relatively low compared to other cancers, the rate of new cases started to increase in the early 2000s. While tumor suppressors and oncogenes were recently identified in thyroid cancer, the potential roles of these genes in thyroid cancer remain unclear. OBJECTIVE Analyze the roles and functions of tumor suppressors and oncogenes in thyroid cancer. METHODS Thyroid cancer data were collected from public databases, such as the UCSC Xena database of TCGA thyroid cancer, TISIDB, and UALCAN. The genes frequently associated with unfavorable thyroid cancer were examined and validated. The association of these target genes with thyroid tumorigenesis, stages, subtypes, and survival rates were analyzed. Additionally, the genes aberrantly expressed in thyroid cancer and significantly involved in thyroid tumorigenesis, stages, subtypes, and survival rates were identified. RESULTS Female sex was identified as a risk factor for thyroid cancer. The expression of PAPSS2, PDLIM3, COPZ2, ALDH1B1, ANTXR1, GUF1, and SENP6 negatively correlated with thyroid cancer prognosis. CONCLUSION Female sex was a risk factor for thyroid cancer. In addition, our analysis suggested that PAPSS2, PDLIM3, COPZ2, ALDH1B1, ANTXR1, GUF1, and SENP6 are negatively correlated with the prognosis of thyroid cancer. The expression of ANTXR1, GUF1, and PDLIM3 was weakly associated with thyroid cancer's immune and molecular subtypes.
Collapse
Affiliation(s)
- Yue Huang
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Yaoxin Wang
- Department of Laboratory Medicine, Wu Song Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Sining Liu
- Department of Otolaryngology-Head and Neck Surgery, Hainan Women and Children's Medical Center, Hainan, China
| | - Zhengmin Xu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Wen-Xia Chen
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
24
|
FU JIAWEI, WU CHUNSHUAI, XU GUANHUA, ZHANG JINLONG, LI YIQIU, JI CHUNYAN, CUI ZHIMING. Role of necroptosis in spinal cord injury and its therapeutic implications. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
25
|
Adenocarcinoma Metastasis from Colon to the Thyroid. Case Rep Surg 2022; 2022:8705143. [PMID: 36386437 PMCID: PMC9663209 DOI: 10.1155/2022/8705143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Background Colorectal cancer metastasis to the thyroid is extremely rare and happens in the late course of the disease. Case Description. Here is the report of a 55-year-old female patient who came to us with the chief complaint of cough, diagnosed with colon metastasize to the lung. Surgical resection of the mass was performed. However, a thyroid mass was found incidentally in her postoperative follow-up. Fine needle aspiration of thyroid mass showed papillary thyroid carcinoma. But, after thyroidectomy, the origin of the mass was reported to be adenocarcinoma metastasis from colon cancer. Conclusion Although thyroid metastasis from colorectal cancer rarely occurs, it should be considered in a patient with a solitary thyroid nodule and a past medical history of colon cancer. Surgical treatment is the preferred choice of treatment in these cases.
Collapse
|
26
|
Tian T, Zhang Z, Chen T. PSG7 indicates that age at diagnosis is associated with papillary thyroid carcinoma: A study based on the cancer genome atlas data. Front Genet 2022; 13:952981. [PMID: 36276966 PMCID: PMC9579346 DOI: 10.3389/fgene.2022.952981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The age of the patients at diagnosis (age at diagnosis) is a self-contained element of danger for the prognosis of patients with papillary thyroid carcinoma (PTC), which has been well recognized and continuously adopted by the international cancer staging system. However, few studies have investigated its intrinsic mechanisms. In this study, we aim to comprehensively reveal the age-related pathogenesis of PTC and identify potential prognostic biomarkers. We divided the samples into two groups, young and elderly, to filter differentially expressed genes in The Cancer Genome Atlas (TCGA), with an age of 55 years serving as a cutoff. Moreover, we combined univariate, LASSO, and multivariate Cox regression analyses to construct age-related signatures for predicting progression-free survival. Additionally, functional enrichment analysis, immune infiltration analysis, differential expression analysis, clinicopathological correlation analysis, and drug sensitivity analysis were performed in different risk subgroups and expression subgroups. We screened 88 upregulated genes and 58 downregulated genes. Both the LASSO regression model that is validated in TCGA and the model of six age-related prognostic genes (IGF2BP1, GPRC6A, IL37, CRCT1, SEMG1, and PSG7) can be used to evaluate the progression-free survival of PTC patients. The GO, KEGG, and GSEA analyses revealed that each key gene was closely associated with PTC development. Furthermore, CD8+ T cells decreased significantly, while regulatory T cells increased dramatically in the high-risk and PSG7 high expression groups. PSG7 was remarkably correlated with clinicopathological parameters (pathologic stage, T stage, and N stage) of PTC patients, and PSG7 expression was elevated in tumor samples from both TCGA and the Gene Expression Omnibus and was strongly associated with progressive stage and poor prognosis. Our results provide an innovative understanding of the age-related molecular mechanisms of PTC development. PSG7 was identified to exert a critical role in PTC progression and may serve as a promising strategy for predicting the prognosis of PTC.
Collapse
Affiliation(s)
- Tianjie Tian
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Zixiong Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Ting Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Ting Chen,
| |
Collapse
|
27
|
Su J, Fu Y, Wang M, Yan J, Lin S. The pathogenesis and treatment differences between differentiated thyroid carcinoma and medullary thyroid carcinoma. Curr Med Res Opin 2022; 38:1769-1770. [PMID: 35621192 DOI: 10.1080/03007995.2022.2083325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jingyang Su
- Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yue Fu
- Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Menglei Wang
- Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiang Yan
- Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Shengyou Lin
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, PR China
| |
Collapse
|
28
|
Ji X, Liang W, Lv G, Ding C, Lai H, Li L, Zeng Q, Lv B, Sheng L. Efficacy and safety of targeted therapeutics for patients with radioiodine-refractory differentiated thyroid cancer: Systematic review and network meta-analysis. Front Pharmacol 2022; 13:933648. [PMID: 36091770 PMCID: PMC9461142 DOI: 10.3389/fphar.2022.933648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 12/26/2022] Open
Abstract
Background: Multiple targeted therapeutics are available for radioiodine-refractory differentiated thyroid cancer (RAIR-DTC), but it remains unclear which treatment is optimal to achieve long-term survival. Methods: A systematic search of the PubMed, Embase, and ClinicalTrials.gov databases was conducted to identify eligible randomized controlled trials (RCTs) comparing the efficacy and safety of targeted treatments for patients with RAIR-DTC from inception to April, 2022. Data were extracted by following the recommendations of the Preferred Reporting Items for Systematic Review and Meta-analysis guidelines. We calculated the odds ratio (OR) or hazard ratio (HR), its corresponding 95% credible intervals (CrI), and the surface under the cumulative ranking curve (SUCRA) to indicate ranking probability using Bayesian network meta-analyses. The primary outcome was progression-free survival (PFS). The secondary outcomes were overall survival (OS), objective response rate (ORR), disease control rate (DCR), and grade 3 or higher adverse events. Results: A total of 12 eligible RCTs involved 1,959 patients and 13 treatments: apatinib, cabozantinib, anlotinib, nintedanib, lenvatinib, lenvatinib with low dose (LD), sorafenib, sorafenib plus everolimus, donafenib (200 mg), donafenib (300 mg), pazopanib (continuous), pazopanib (intermittent), and vandetanib. Pooled analyses indicated that targeted therapeutics significantly prolonged PFS and OS in patients with RAIR-DTC (0.31, 0.21-0.41; 0.69, 0.53-0.85, respectively) compared with placebo. Network meta-analyses indicated that lenvatinib showed the most favorable PFS, with significant differences versus sorafenib (0.33, 0.23-0.48), vandetanib (0.31, 0.20-0.49), nintedanib (0.30, 0.15-0.60), and placebo (0.19, 0.15-0.25), while apatinib was most likely to be ranked first for prolonging OS with a SUCRA of 0.90. Lenvatinib showed the highest ORR (66%, 61%-70%), followed by anlotinib (59%, 48%-70%) and apatinib (54%, 40%-69%). Lenvatinib caused the most adverse events of grade 3 or higher, followed by lenvatinib (LD) and apatinib. Different toxicity profiles of individual treatment were also revealed. Conclusion: This network meta-analysis suggests that lenvatinib and apatinib were associated with the best progression-free survival and overall survival benefits, respectively, for patients with RAIR-DTC, compared with other targeted therapeutics. Patients who received lenvatinib or apatinib also had more grade 3 or higher adverse events. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=302249], identifier [CRD42022302249].
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Thyroid Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Weili Liang
- Department of Thyroid Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Guixu Lv
- Department of Thyroid Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Changyuan Ding
- Department of Thyroid Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hong Lai
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Luchuan Li
- Department of Thyroid Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Qingdong Zeng
- Department of Thyroid Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Lv
- Department of Thyroid Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Sheng
- Department of Thyroid Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
29
|
Zhang X, Yan Z, Meng Z, Li N, Jia Q, Shen Y, Ji Y. Radionuclide 131I-labeled albumin-indocyanine green nanoparticles for synergistic combined radio-photothermal therapy of anaplastic thyroid cancer. Front Oncol 2022; 12:889284. [PMID: 35957867 PMCID: PMC9358776 DOI: 10.3389/fonc.2022.889284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Anaplastic thyroid cancer (ATC) cells cannot retain the radionuclide iodine 131 (131I) for treatment due to the inability to uptake iodine. This study investigated the feasibility of combining radionuclides with photothermal agents in the diagnosis and treatment of ATC. Methods 131I was labeled on human serum albumin (HSA) by the standard chloramine T method. 131I-HSA and indocyanine green (ICG) were non-covalently bound by a simple stirring to obtain 131I-HSA-ICG nanoparticles. Characterizations were performed in vitro. The cytotoxicity and imaging ability were investigated by cell/in vivo experiments. The radio-photothermal therapy efficacy of the nanoparticles was evaluated at the cellular and in vivo levels. Results The synthesized nanoparticles had a suitable size (25–45 nm) and objective biosafety. Under the irradiation of near-IR light, the photothermal conversion efficiency of the nanoparticles could reach 24.25%. In vivo fluorescence imaging and single-photon emission CT (SPECT)/CT imaging in small animals confirmed that I-HSA-ICG/131I-HSA-ICG nanoparticles could stay in tumor tissues for 4–6 days. Compared with other control groups, 131I-HSA-ICG nanoparticles had the most significant ablation effect on tumor cells under the irradiation of an 808-nm laser. Conclusions In summary, 131I-HSA-ICG nanoparticles could successfully perform dual-modality imaging and treatment of ATC, which provides a new direction for the future treatment of iodine-refractory thyroid cancer.
Collapse
|
30
|
Su J, Wang M, Fu Y, Yan J, Shen Y, Jiang J, Wang J, Lu J, Zhong Y, Lin X, Lin Z, Lin S. Efficacy and safety of multi-kinase inhibitors in patients with radioiodine-refractory differentiated thyroid cancer: a systematic review and meta-analysis of clinical trials. Expert Rev Anticancer Ther 2022; 22:999-1008. [PMID: 35833358 DOI: 10.1080/14737140.2022.2102000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Radioiodine-refractory differentiated thyroid cancer (RAI-rDTC) has frequently been associated with poor prognosis. We conducted a meta-analysis of published randomized controlled trials to evaluate multi-kinase inhibitors' efficacy and safety profile treatment. METHODS A comprehensive search was conducted using PubMed, Embase, Cochrane, and Medline databases. The quality of literature and trial risk of bias was assessed using the Cochrane risk of bias tool, while the results of progression-free survival (PFS), overall survival (OS), and adverse events (AEs) were evaluated using RevMan5.3 software. RESULTS A total of 1384 patients in six studies met the criteria. Treatment with MKIs significantly improved PFS and OS, but AEs were significantly higher than those in the control group (P<0.01). The studies demonstrated the median PFS (HR 0.30, 95% CI: 0.18-0.50, P <0.00001) and OS (HR 0.70, 95% CI: 0.57-0.88, P=0.002) in RAI-rDTC patients treated with MKIs, and the median PFS of papillary thyroid carcinoma (HR0.28, 95% CI: 0.22-0.37, P<0.00001) along with follicular thyroid carcinoma (HR0.14, 95%CI 0.09-0.24, P<0.00001) were extended. CONCLUSION MKIs significantly prolonged PFS and OS in patients with RAI-rDTC (P<0.01). Our recommendation is to use MKIs carefully in patients after evaluating their health status to maximize treatment benefits and minimize adverse effects.
Collapse
Affiliation(s)
- Jingyang Su
- Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Menglei Wang
- Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Fu
- Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang Yan
- Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuezhong Shen
- Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Jiang
- Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jue Wang
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinhua Lu
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yazhen Zhong
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianlei Lin
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Zechen Lin
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengyou Lin
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
31
|
Ohno K, Shibata T, Ito KI. Epidermal growth factor receptor activation confers resistance to lenvatinib in thyroid cancer cells. Cancer Sci 2022; 113:3193-3210. [PMID: 35723021 PMCID: PMC9459297 DOI: 10.1111/cas.15465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy. A multitargeted tyrosine kinase inhibitor, lenvatinib, has been used for the treatment of advanced thyroid cancer. To elucidate the mechanism of resistance to lenvatinib in thyroid cancer cells, we established lenvatinib‐resistant sublines and analyzed the molecular mechanisms of resistance. Two thyroid cancer cell lines (TPC‐1 and FRO) were used, and resistant sublines for lenvatinib (TPC‐1/LR, FRO/LR) were established. In TPC‐1/LR, the phosphorylation of epidermal growth factor receptor (EGFR), extracellular signal‐regulated kinase (ERK), and Akt was enhanced whereas in FRO/LR, the phosphorylation of EGFR and downstream signal transduction molecules was not enhanced. The addition of epidermal growth factor decreased sensitivity to lenvatinib in TPC‐1 and FRO. The combination of EGFR inhibitors lapatinib and lenvatinib significantly inhibited the growth of TPC‐1/LR in both in vitro and mouse xenograft models. Short‐term exposure to lenvatinib enhanced the phosphorylation of EGFR in six thyroid cancer cell lines regardless of their histological origin or driver gene mutations; however, phosphorylation of ERK was enhanced in all cells except TPC‐1. A synergistic growth‐inhibitory effect was observed in three thyroid cancer cell lines, including intrinsically lenvatinib‐resistant cells. The results indicate that signal transduction via the EGFR pathway may be involved in the development of lenvatinib resistance in thyroid cancer cells. The inhibition of the EGFR pathway simultaneously by an EGFR inhibitor may have therapeutic potential for overcoming lenvatinib resistance in thyroid cancer.
Collapse
Affiliation(s)
- Koichi Ohno
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Tomohiro Shibata
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Ken-Ichi Ito
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| |
Collapse
|
32
|
Zhao D, Ouyang A, Wang X, Zhang W, Cheng G, Lv B, Liu W. Synthesis, crystal structure and biological evaluation of thyroid cancer targeting photosensitizer for photodynamic therapy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Ren M, Yao Q, Bao L, Wang Z, Wei R, Bai Q, Ping B, Chang C, Wang Y, Zhou X, Zhu X. Diagnostic performance of next-generation sequencing and genetic profiling in thyroid nodules from a single center in China. Eur Thyroid J 2022; 11:e210124. [PMID: 35521779 PMCID: PMC9175606 DOI: 10.1530/etj-21-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The data regarding the mutation landscape in Chinese patients with thyroid cancer are limited. The diagnostic performance of thyroid nodules by fine-needle aspiration (FNA) cytology needs optimization, especially in indeterminate nodules. METHODS A total of 1039 FNA and surgical resection samples tested using the targeted multigene next-generation sequencing (NGS) panel were retrospectively collected. The features of gene alterations in different thyroid tumors were analyzed, and the diagnostic efficacy was evaluated. RESULTS Among 1039 samples, there were 822 FNA and 217 surgical FFPE samples. Among 207 malignant thyroid resections, a total of 181 out of 193 papillary thyroid carcinomas (PTCs) were NGS-positive (93.8%), with a high prevalence of BRAF mutations (81.9%, 158/193) and a low prevalence of RAS (1.0%, 2/193) and TERT promoter mutations (3.6%, 7/193). Gene fusions, involving the RET and NTRK3 genes, were present in 20 PTCs (10.4%) and mutually exclusive with other driver mutations. Two of three follicular thyroid carcinomas harbored multiple mutations. RET gene point mutations were common in medullary thyroid carcinoma (8/11, 72.7%). The combination of cytology and DNA-RNA-based NGS analysis demonstrated superior diagnostic value (98.0%) in FNA samples. For indeterminate thyroid nodules, the diagnostic sensitivity and specificity of NGS testing were 79.2 (38/48) and 80.0% (8/10), respectively. Two mutation-positive benign cases harbored NRAS and TSHR mutations, respectively. CONCLUSIONS Our study revealed the distinct molecular profile of thyroid tumors in the Chinese population. The combination of NGS testing and FNA cytology could facilitate the accurate diagnosis of thyroid nodules, especially for indeterminate nodules.
Collapse
Affiliation(s)
- Min Ren
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Longlong Bao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiting Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ran Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qianming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Ping
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cai Chang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yu Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoli Zhu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Klubo-Gwiezdzinska J. Childhood Exposure to Excess Ionizing Radiation Is Associated with Dose-Dependent Fusions as Molecular Drivers of Papillary Thyroid Cancer. Thyroid 2022; 34:161-164. [PMID: 36969797 PMCID: PMC10038615 DOI: 10.1089/ct.2022;34.161-164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background Exposure to excess ionizing radiation has been identified as a risk factor for the development of thyroid cancer (1). However, there are no well-established biomarkers indicating exposure to radiation as the etiology of thyroid tumors that can be applied in clinical care or in legal claims. Morton et al. analyzed a large cohort of individuals who were exposed to a power plant accident in Chernobyl in 1986 in their childhood and who subsequently developed papillary thyroid cancer (PTC) (2). The goal of the study was to enhance our understanding of radiation-induced carcinogenesis based on assessment of the molecular drivers, transcriptomics, and epigenetic profile of PTC associated with excessive environmental radiation exposure. Methods The authors performed whole-genome sequencing, single-nucleotide polymorphism (SNP) microarray genotyping, mRNA and microRNA sequencing, methylation profiling, transcriptome analysis, and telomere-length quantification in 440 pathologically confirmed fresh-frozen PTC tissue samples for which matched normal tissue from either nontumor thyroid and/or blood was available. In the study group, 359 subjects were exposed to excess ionizing radiation in childhood or in utero; 81 individuals who were born more than 9 months after the Chernobyl accident served as a reference group. The data were analyzed adjusting for covariates that potentially affect PTC incidence, including sex, age at diagnosis, age at radiation exposure, and latency (defined as the time from exposure to PTC diagnosis). Results The median age at exposure to ionizing radiation was 7.3 years and the median latency before the diagnosis of PTC was 22.4 years. The exposure estimates (250 mGy on average and up to 8800 mGy) were based on direct measurements of the thyroid-absorbed dose within 8 weeks after the accident in 53 individuals, while for the remaining cohort, they were imputed from direct measurements in individuals living in a similar area.The molecular drivers were identified in the vast majority of the tumors (98.4%), mainly as a low mutation burden consisting of single candidates in the mitogen-activated protein kinase (MAPK) pathway. The most common driver was the BRAF V600E mutation, but fusions in RET proto-oncogene, receptor tyrosine kinase (RTK), such as NTRK1, NTRK3, ALK, as well as BRAF, PPRAG, and IGF2/IGF2BP3 accounted for the majority of the remaining drivers (41% of the tumors). Moreover, there was a significant association between fusion drivers and radiation dose, after adjustment for age at diagnosis and sex. Same significant association with radiation was observed for small deletions and balanced structural variants resulting from the nonhomologous end-joining repair of double-stranded DNA damage. In contrast, transcriptome, methylome, or telomere length were not significantly associated with the radiation dose, and all tumors were microsatellite-stable. No novel molecular signature unique for radiation-associated PTC has been identified. Conclusions The study reveals potential mechanisms behind radiation-associated PTC, consisting of DNA double-stranded breaks leading to nonhomologous end-joining repair mechanisms, that result in pathogenic gene fusions responsible for clonal growth. There is no unique signature of radiation-associated PTC that could serve as a biomarker of radiation-induced malignancy.
Collapse
Affiliation(s)
- Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
35
|
Capdevila J, Awada A, Führer-Sakel D, Leboulleux S, Pauwels P. Molecular diagnosis and targeted treatment of advanced follicular cell-derived thyroid cancer in the precision medicine era. Cancer Treat Rev 2022; 106:102380. [PMID: 35305441 DOI: 10.1016/j.ctrv.2022.102380] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/18/2023]
Abstract
Most malignant thyroid tumours are initially treated with surgery or a combination of surgery and radioactive iodine (RAI) therapy. However, in patients with metastatic disease, many tumours become refractory to RAI, and these patients require alternative treatments, such as locoregional therapies and/or systemic treatment with multikinase inhibitors. Improvements in our understanding of the genetic alterations that occur in thyroid cancer have led to the discovery of several targeted therapies with clinical efficacy. These alterations include NTRK (neurotrophic tyrosine receptor kinase) gene fusions, with the tropomyosin receptor kinase inhibitors larotrectinib and entrectinib both approved by the European Medicines Agency and in other markets worldwide. Inhibitors of aberrant proteins resulting from alterations in RET (rearranged during transfection) and BRAF (B-Raf proto-oncogene) have also shown promising efficacy, and so far have received approval by the US Food and Drug Administration. Selpercatinib, a RET kinase inhibitor, was approved for use in Europe in early 2021. With the discovery of multiple actionable targets, it is imperative that effective testing strategies for these genetic alterations are integrated into the diagnostic armamentarium to ensure that patients who could potentially benefit from targeted treatments are identified. In this review, we offer our recommendations on the optimal testing strategies for detecting genetic alterations in thyroid cancer that have the potential to be targeted by molecular therapy. We also discuss the future of treatments for thyroid cancers, including the use of immune checkpoint inhibitors, and new generations of targeted treatments that are being developed to counter acquired tumour resistance.
Collapse
Affiliation(s)
- Jaume Capdevila
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), IOB-Teknon, Barcelona, Spain.
| | - Ahmad Awada
- Oncology Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Dagmar Führer-Sakel
- Department of Endocrinology, Diabetes and Metabolism, Endocrine Tumor Center at West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sophie Leboulleux
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy and University Paris Saclay, Villejuif, France; Department of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals, Geneva, Switzerland
| | - Patrick Pauwels
- Department of Pathology, Center for Oncological Research, University Hospital of Antwerp, Edegem, Belgium
| |
Collapse
|
36
|
Zhao Q, Feng H, Yang Z, Liang J, Jin Z, Chen L, Zhan L, Xuan M, Yan J, Kuang J, Cheng X, Zhao R, Qiu W. The central role of a two-way positive feedback pathway in molecular targeted therapies-mediated pyroptosis in anaplastic thyroid cancer. Clin Transl Med 2022; 12:e727. [PMID: 35184413 PMCID: PMC8858618 DOI: 10.1002/ctm2.727] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) is one of the most aggressive tumours. We previously confirmed that apatinib has potential therapeutic effects on ATC via regulated cell death (RCD). As a newly identified RCD, pyroptosis demonstrates direct antitumour activity different from apoptosis or autophagy. Therefore, the clinical significance, regulatory role and underlying mechanisms of pyroptosis in ATC were focused on in this study. METHODS In a phase II trial, patients with anaplastic or poorly differentiated thyroid carcinoma received apatinib 500 mg once daily. Multiple assays were implemented to evaluate the antitumour efficacy of apatinib and/or melittin in vitro and in vivo. High-throughput sequencing was applied to analyse differential mRNAs expression in ATC cells treated by apatinib with or without melittin. In situ Hoechst 33342/PI double-staining, LDH release assay and enzyme-linked immunosorbent assay (ELISA) were employed to determine pyroptosis. In mechanism exploration, quantitative RT-PCR, Western blotting and si-RNA knocking down were executed. RESULTS Seventeen patients were evaluable. Apatinib showed a promising therapeutic effect by a disease control rate (DCR) of 88.2%; however, treatment was terminated in 23.5% of patients due to intolerable toxicity. To reduce adverse events, a pyroptosis-mediated synergistic antitumour effect of apatinib and melittin was identified in treatment of ATC in vitro and in vivo. The caspase-1-gasdermin D (GSDMD) axis-mediated pyroptosis was the key to extra antitumour effect of the combination of apatinib and melittin. Moreover, caspase-3-gasdermin E (GSDME) pyroptosis pathway also functioned importantly in addition to caspase-1-GSDMD pathway. Evidenced by in vitro and in vivo study, a two-way positive feedback interaction was innovatively confirmed between caspase-1-GSDMD and caspase-3-GSDME axes. CONCLUSIONS Through pyroptosis mediated by caspase-1-GSDMD and caspase-3-GSDME axes synchronically, low-dosage apatinib and melittin could synergistically achieve a comparable therapeutic potential with reduced AEs. More importantly, a two-way positive feedback interaction is innovatively proposed between these two axes, which provide a new prospect of targeted therapy.
Collapse
Affiliation(s)
- Qiwu Zhao
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haoran Feng
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheyu Yang
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Juyong Liang
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhijian Jin
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lingxie Chen
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ling Zhan
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ming Xuan
- Department of General SurgeryRuijin Hospital Gubei CampusShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiqi Yan
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Kuang
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xi Cheng
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ren Zhao
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weihua Qiu
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
37
|
Yu K, Tan Z, Xin Y. Systematic evaluation of the anti-tumor effect of Phellinus linteus polysaccharide in thyroid carcinoma in vitro. Mol Biol Rep 2022; 49:2785-2793. [DOI: 10.1007/s11033-021-07090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
|
38
|
Elia G, Ferrari SM, Ragusa F, Paparo SR, Mazzi V, Ulisse S, Benvenga S, Antonelli A, Fallahi P. Advances in pharmacotherapy for advanced thyroid cancer of follicular origin (PTC, FTC). New approved drugs and future therapies. Expert Opin Pharmacother 2022; 23:599-610. [PMID: 35038965 DOI: 10.1080/14656566.2022.2030704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The most common altered signaling found in aggressive iodine-refractory Thyroid cancer derived from follicular cells (RAI-TC) are RTK, MAPK, PI3K, WNT, BRAF, RAS, RET, and TP53. Tyrosine Kinase Inhibitors (TKI) are multi-kinase inhibitors able to act against different pathways, that elicit an anti-neoplastic activity. AREAS COVERED The aim of this paper is to review recent novel molecular therapies of RAI-TC. Recently, sorafenib and lenvatinib, have been approved for the treatment of aggressive RAI-TC. Other studies are evaluating vandetanib and selumetinib in RAI-TC. Furthermore, preliminary studies have evaluated dabrafenib, and vemurafenib in BRAF mutated RAI-TC patients to re-induce 131-iodine uptake. The interplay between cells of the immune system and cancer cells can be altered by immune checkpoints inhibitors. The expression of PDL1 in RAI-TC was related to tumor recurrence and poor survival. Several clinical trials are investigating a combination of different therapies, such as lenvatinib and pembrolizumab. EXPERT OPINION Mechanisms of resistance to TKIs inhibitors can be of intrinsic or acquired origin. An acquired resistance to lenvatinib, or sorafenib can be due to upregulation of FGFR; therefore anti-FGFR agents are evaluated. A new strategy is to combine TKIs with immunotherapy. Several studies are evaluating lenvatinib and pembrolizumab in RAI-TC patients.
Collapse
Affiliation(s)
- Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | | | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Salvatore Ulisse
- Department of Experimental Medicine, 'Sapienza' University of Rome, Rome, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy.,Interdepartmental Program of Molecular and Clinical Endocrinology and Women's Endocrine Health, Azienda Ospedaliera Universitaria Policlinico 'G. Martino', I-98125, Messina, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
39
|
Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, Wen PY, Zielinski CC, Cabanillas ME, Boran A, Ilankumaran P, Burgess P, Romero Salas T, Keam B. Dabrafenib plus trametinib in patients with BRAF V600E–mutant anaplastic thyroid cancer: updated analysis from the phase II ROAR basket study. Ann Oncol 2022; 33:406-415. [PMID: 35026411 PMCID: PMC9338780 DOI: 10.1016/j.annonc.2021.12.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Combined therapy with dabrafenib plus trametinib was approved in several countries for treatment of BRAF V600E-mutant anaplastic thyroid cancer (ATC) based on an earlier interim analysis of 23 response-assessable patients in the ATC cohort of the phase II Rare Oncology Agnostic Research (ROAR) basket study. We report an updated analysis describing the efficacy and safety of dabrafenib plus trametinib in the full ROAR ATC cohort of 36 patients with ~4 years of additional study follow-up. Patients and methods: ROAR (NCT02034110) is an open-label, nonrandomized, phase II basket study evaluating dabrafenib plus trametinib in BRAF V600E-mutant rare cancers. The ATC cohort comprised 36 patients with unresectable or metastatic ATC who received dabrafenib 150 mg twice daily plus trametinib 2 mg once daily orally until disease progression, unacceptable toxicity, or death. The primary endpoint was investigator-assessed overall response rate (ORR) per Response Evaluation Criteria in Solid Tumors version 1.1. Secondary endpoints were duration of response (DOR), progression-free survival (PFS), overall survival (OS), and safety. Results: At data cutoff (14 September 2020), median follow-up was 11.1 months (range, 0.9–76.6 months). The investigator-assessed ORR was 56% (95% confidence interval, 38.1% to 72.1%), including three complete responses; the 12-month DOR rate was 50%. Median PFS and OS were 6.7 and 14.5 months, respectively. The respective 12-month PFS and OS rates were 43.2% and 51.7%, and the 24-month OS rate was 31.5%. No new safety signals were identified with additional follow-up, and adverse events were consistent with the established tolerability of dabrafenib plus trametinib. Conclusions: These updated results confirm the substantial clinical benefit and manageable toxicity of dabrafenib plus trametinib in BRAF V600E-mutant ATC. Dabrafenib plus trametinib notably improved long-term survival and represents a meaningful treatment option for this rare, aggressive cancer.
Collapse
Affiliation(s)
- V Subbiah
- The University of Texas MD Anderson Cancer Center, Houston
| | | | | | - J Y Cho
- Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| | | | - J C Soria
- Institut Gustave Roussy, University of Paris-Sud, and University of Paris-Saclay, Villejuif, France
| | - P Y Wen
- Dana-Farber Cancer Institute, Boston, USA
| | | | - M E Cabanillas
- The University of Texas MD Anderson Cancer Center, Houston
| | - A Boran
- Novartis Pharmaceuticals Corporation, East Hanover, USA
| | - P Ilankumaran
- Novartis Pharmaceuticals Corporation, East Hanover, USA
| | - P Burgess
- Novartis Pharma AG, Basel, Switzerland
| | | | - B Keam
- Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Prabhash K, Saha S, Joshi A, Noronha V, Patil V, Menon N, Singh A, Shetty O, Mittal N, Chandrani P, Chougule A. NRAS mutation in differentiated thyroid cancer. CANCER RESEARCH, STATISTICS, AND TREATMENT 2022. [DOI: 10.4103/crst.crst_296_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
41
|
Puliafito I, Esposito F, Prestifilippo A, Marchisotta S, Sciacca D, Vitale MP, Giuffrida D. Target Therapy in Thyroid Cancer: Current Challenge in Clinical Use of Tyrosine Kinase Inhibitors and Management of Side Effects. Front Endocrinol (Lausanne) 2022; 13:860671. [PMID: 35872981 PMCID: PMC9304687 DOI: 10.3389/fendo.2022.860671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/12/2022] [Indexed: 01/18/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. TC is classified as differentiated TC (DTC), which includes papillary and follicular subtypes and Hürthle cell variants, medullary TC (MTC), anaplastic TC (ATC), and poorly differentiated TC (PDTC). The standard of care in DTC consists of surgery together with radioactive iodine (131I) therapy and thyroid hormone, but patients with MTC do not benefit from 131I therapy. Patients with advanced TC resistant to 131I treatment (RAI-R) have no chance of cure, as well as patients affected by ATC and progressive MTC, in which conventional therapy plays only a palliative role, representing, until a few years ago, an urgent unmet need. In the last decade, a better understanding of molecular pathways involved in the tumorigenesis of specific histopathological subtypes of TC has led to develop tyrosine kinase inhibitors (TKIs). TKIs represent a valid treatment in progressive advanced disease and were tested in all subtypes of TC, highlighting the need to improve progression-free survival. However, treatments using these novel therapeutics are often accompanied by side effects that required optimal management to minimize their toxicities and thereby enable patients who show benefit to continue treatment and obtain maximal clinical efficacy. The goal of this overview is to provide an update on the current use of the main drugs recently studied for advanced TC and the management of the adverse events.
Collapse
Affiliation(s)
- Ivana Puliafito
- Medical Oncology Unit, Istituto Oncologico del Mediterraneo SpA, Viagrande, Italy
| | - Francesca Esposito
- IOM Ricerca Srl, Viagrande, Italy
- *Correspondence: Francesca Esposito, ; Dario Giuffrida,
| | - Angela Prestifilippo
- Medical Oncology Unit, Istituto Oncologico del Mediterraneo SpA, Viagrande, Italy
| | | | - Dorotea Sciacca
- Medical Oncology Unit, Istituto Oncologico del Mediterraneo SpA, Viagrande, Italy
| | - Maria Paola Vitale
- Hospital Pharmacy Unit, Istituto Oncologico del Mediterraneo SpA, Viagrande, Italy
| | - Dario Giuffrida
- Medical Oncology Unit, Istituto Oncologico del Mediterraneo SpA, Viagrande, Italy
- *Correspondence: Francesca Esposito, ; Dario Giuffrida,
| |
Collapse
|
42
|
Grani G, Sponziello M, Verrienti A, Durante C. Therapy of non-iodine uptaking metastasis in thyroid cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Gubbi S, Koch CA, Klubo-Gwiezdzinska J. Peptide Receptor Radionuclide Therapy in Thyroid Cancer. Front Endocrinol (Lausanne) 2022; 13:896287. [PMID: 35712243 PMCID: PMC9197113 DOI: 10.3389/fendo.2022.896287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 01/03/2023] Open
Abstract
The treatment options that are currently available for management of metastatic, progressive radioactive iodine (RAI)-refractory differentiated thyroid cancers (DTCs), and medullary thyroid cancers (MTCs) are limited. While there are several systemic targeted therapies, such as tyrosine kinase inhibitors, that are being evaluated and implemented in the treatment of these cancers, such therapies are associated with serious, sometimes life-threatening, adverse events. Peptide receptor radionuclide therapy (PRRT) has the potential to be an effective and safe modality for treating patients with somatostatin receptor (SSTR)+ RAI-refractory DTCs and MTCs. MTCs and certain sub-types of RAI-refractory DTCs, such as Hürthle cell cancers which are less responsive to conventional modalities of treatment, have demonstrated a favorable response to treatment with PRRT. While the current literature offers hope for utilization of PRRT in thyroid cancer, several areas of this field remain to be investigated further, especially head-to-head comparisons with other systemic targeted therapies. In this review, we provide a comprehensive outlook on the current translational and clinical data on the use of various PRRTs, including diagnostic utility of somatostatin analogs, theranostic properties of PRRT, and the potential areas for future research.
Collapse
Affiliation(s)
- Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christian A. Koch
- Department of Medicine, Fox Chase Cancer Center, Philadelphia, PA, United States
- Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Joanna Klubo-Gwiezdzinska,
| |
Collapse
|
44
|
Papillary Thyroid Cancer Prognosis: An Evolving Field. Cancers (Basel) 2021; 13:cancers13215567. [PMID: 34771729 PMCID: PMC8582937 DOI: 10.3390/cancers13215567] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Over the last couple of decades, the prognostic stratification systems of differentiated thyroid cancer (DTC) patients have been revised several times in an attempt to achieve a tailored clinical management reflecting the single patients’ needs. Such revisions are likely to continue in the near future, since the prognostic value of a number of promising clinicopathological features and new molecular biomarkers are being evaluated. Here, we will review the current staging systems of thyroid cancer patients and discuss the most relevant clinicopathological parameters and new molecular markers that are potentially capable of refining the prognosis. Abstract Over the last few years, a great advance has been made in the comprehension of the molecular pathogenesis underlying thyroid cancer progression, particularly for the papillary thyroid cancer (PTC), which represents the most common thyroid malignancy. Putative cancer driver mutations have been identified in more than 98% of PTC, and a new PTC classification into molecular subtypes has been proposed in order to resolve clinical uncertainties still present in the clinical management of patients. Additionally, the prognostic stratification systems have been profoundly modified over the last decade, with a view to refine patients’ staging and being able to choose a clinical approach tailored on single patient’s needs. Here, we will briefly discuss the recent changes in the clinical management of thyroid nodules, and review the current staging systems of thyroid cancer patients by analyzing promising clinicopathological features (i.e., gender, thyroid auto-immunity, multifocality, PTC histological variants, and vascular invasion) as well as new molecular markers (i.e., BRAF/TERT promoter mutations, miRNAs, and components of the plasminogen activating system) potentially capable of ameliorating the prognosis of PTC patients.
Collapse
|
45
|
Hescheler DA, Riemann B, Hartmann MJM, Michel M, Faust M, Bruns CJ, Alakus H, Chiapponi C. Targeted Therapy of Papillary Thyroid Cancer: A Comprehensive Genomic Analysis. Front Endocrinol (Lausanne) 2021; 12:748941. [PMID: 34630336 PMCID: PMC8498581 DOI: 10.3389/fendo.2021.748941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background A limited number of targeted therapy options exist for papillary thyroid cancer (PTC) to date. Based on genetic alterations reported by the "The Cancer Genome Atlas (TCGA)", we explored whether PTC shows alterations that may be targetable by drugs approved by the FDA for other solid cancers. Methods Databases of the National Cancer Institute and MyCancerGenome were screened to identify FDA-approved drugs for targeted therapy. Target genes were identified using Drugbank. Genetic alterations were classified into conferring drug sensitivity or resistance using MyCancerGenome, CiViC, TARGET, and OncoKB. Genomic data for PTC were extracted from TCGA and mined for alterations predicting drug response. Results A total of 129 FDA-approved drugs with 128 targetable genes were identified. One hundred ninety-six (70%) of 282 classic, 21 (25%) of 84 follicular, and all 30 tall-cell variant PTCs harbored druggable alterations: 259 occurred in 29, 39 in 19, and 31 in 2 targetable genes, respectively. The BRAF V600 mutation was seen in 68% of classic, 16% of follicular variant, and 93% of tall-cell variant PTCs. The RET gene fusion was seen in 8% of classic PTCs, NTRK1 and 3 gene fusions in 3%, and other alterations in <2% of classic variant PTCs. Ninety-nine of 128 (77%) FDA-approved targetable genes did not show any genetic alteration in PTC. Beside selective and non-selective BRAF-inhibitors, no other FDA-approved drug showed any frequent predicted drug sensitivity (<10%). Conclusion Treatment strategies need to focus on resistance mechanisms to BRAF inhibition and on genetic alteration-independent alternatives rather than on current targeted drugs.
Collapse
Affiliation(s)
- Daniel A. Hescheler
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Burkhard Riemann
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Milan J. M. Hartmann
- Department of General, Visceral, Tumor and Transplant Surgery, University Hospital Cologne, Cologne, Germany
| | - Maximilian Michel
- Institute of Zoology, University of Cologne Germany, Cologne, Germany
| | - Michael Faust
- Policlinic for Prevention, Diabetes and Endocrinology, University of Cologne, Cologne, Germany
| | - Christiane J. Bruns
- Department of General, Visceral, Tumor and Transplant Surgery, University Hospital Cologne, Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral, Tumor and Transplant Surgery, University Hospital Cologne, Cologne, Germany
| | - Costanza Chiapponi
- Department of General, Visceral, Tumor and Transplant Surgery, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
46
|
Rossman P, Zabka TS, Ruple A, Tuerck D, Ramos-Vara JA, Liu L, Mohallem R, Merchant M, Franco J, Fulkerson CM, Bhide KP, Breen M, Aryal UK, Murray E, Dybdal N, Utturkar SM, Fourez LM, Enstrom AW, Dhawan D, Knapp DW. Phase I/II Trial of Vemurafenib in Dogs with Naturally Occurring, BRAF-mutated Urothelial Carcinoma. Mol Cancer Ther 2021; 20:2177-2188. [PMID: 34433660 DOI: 10.1158/1535-7163.mct-20-0893] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/06/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
BRAF-targeted therapies including vemurafenib (Zelboraf) induce dramatic cancer remission; however, drug resistance commonly emerges. The purpose was to characterize a naturally occurring canine cancer model harboring complex features of human cancer, to complement experimental models to improve BRAF-targeted therapy. A phase I/II clinical trial of vemurafenib was performed in pet dogs with naturally occurring invasive urothelial carcinoma (InvUC) harboring the canine homologue of human BRAF V600E The safety, MTD, pharmacokinetics, and antitumor activity were determined. Changes in signaling and immune gene expression were assessed by RNA sequencing and phosphoproteomic analyses of cystoscopic biopsies obtained before and during treatment, and at progression. The vemurafenib MTD was 37.5 mg/kg twice daily. Anorexia was the most common adverse event. At the MTD, partial remission occurred in 9 of 24 dogs (38%), with a median progression-free interval of 181 days (range, 53-608 days). In 18% of the dogs, new cutaneous squamous cell carcinoma and papillomas occurred, a known pharmacodynamic effect of vemurafenib in humans. Upregulation of genes in the classical and alternative MAPK-related pathways occurred in subsets of dogs at cancer progression. The most consistent transcriptomic changes were the increase in patterns of T lymphocyte infiltration during the first month of vemurafenib, and of immune failure accompanying cancer progression. In conclusion, the safety, antitumor activity, and cutaneous pharmacodynamic effects of vemurafenib, and the development of drug resistance in dogs closely mimic those reported in humans. This suggests BRAF-mutated canine InvUC offers an important complementary animal model to improve BRAF-targeted therapies in humans.
Collapse
Affiliation(s)
- Paul Rossman
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Tanja S Zabka
- Development Sciences, Genentech Inc., South San Francisco, California
| | - Audrey Ruple
- Department of Public Health, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, West Lafayette, Indiana
| | - Dietrich Tuerck
- Department Pharmaceutical Sciences, Roche, Basel, Switzerland
| | - José A Ramos-Vara
- Purdue University Center for Cancer Research, West Lafayette, Indiana.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Liling Liu
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, California
| | - Rodrigo Mohallem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana.,Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| | - Mark Merchant
- Translational Oncology, Genentech Inc., South San Francisco, California
| | - Jackeline Franco
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| | - Christopher M Fulkerson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, West Lafayette, Indiana
| | - Ketaki P Bhide
- Bioinformatics Core, College of Agriculture, Purdue University, West Lafayette, Indiana
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Uma K Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana.,Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| | - Elaine Murray
- Global Safety Risk Management, Genentech Inc., South San Francisco, California
| | - Noel Dybdal
- Development Sciences, Genentech Inc., South San Francisco, California
| | - Sagar M Utturkar
- Purdue University Center for Cancer Research, West Lafayette, Indiana
| | - Lindsey M Fourez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Alexander W Enstrom
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Deborah W Knapp
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana. .,Purdue University Center for Cancer Research, West Lafayette, Indiana
| |
Collapse
|
47
|
Ferrari SM, Elia G, Ragusa F, Paparo SR, Mazzi V, Miccoli M, Galdiero MR, Varricchi G, Foddis R, Guglielmi G, Spinelli C, La Motta C, Benvenga S, Antonelli A, Fallahi P. Lenvatinib: an investigational agent for the treatment of differentiated thyroid cancer. Expert Opin Investig Drugs 2021; 30:913-921. [PMID: 34428101 DOI: 10.1080/13543784.2021.1972971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Differentiated thyroid cancer (DTC; >90% of all TCs) derives from follicular cells. Surgery is the main therapeutic strategy, and radioiodine (RAI) is administered after thyroidectomy. When DTC progresses, it does not respond to RAI and thyroid-stimulating hormone (TSH)-suppressive thyroid hormone treatment, and other therapies (i.e. surgery, external beam radiation therapy and chemotherapy) do not lead to a better survival. Thanks to the understanding of the molecular pathways involved in TC progression, important advances have been done. Lenvatinib is a multitargeted tyrosine kinase inhibitor of VEGFR1-3, FGFR1-4, PDGFRα, RET, and KIT signaling networks implicated in tumor angiogenesis, approved in locally recurrent or metastatic, progressive, RAI-refractory DTC. Unmet needs regarding the patient clinical therapy responsiveness in aggressive RAI-refractory DTC still remain. AREAS COVERED We provide an overview from the literature of in vitro, in vivo and real-life studies regarding lenvatinib as an investigational agent for the treatment of aggressive TC. EXPERT OPINION According to the SELECT trial, the treatment should be initiated with a dosage of 24 mg/day, subsequently decreasing it in relation to the side effects. The decision making process in patients with aggressive RAI-refractory DTC should be personalized and the potential toxicity should be properly managed.
Collapse
Affiliation(s)
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Mario Miccoli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR),Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR),Naples, Italy
| | - Rudy Foddis
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanni Guglielmi
- U.O. Medicina Preventiva Del Lavoro, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Claudio Spinelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | | | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy.,Interdepartmental Program of Molecular and Clinical Endocrinology and Women's Endocrine Health, Azienda Ospedaliera Universitaria Policlinico 'G. Martino', Messina, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
48
|
Krajewska J, Kukulska A, Oczko-Wojciechowska M, Jarzab B. Recent advances in precision medicine for the treatment of medullary thyroid cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1964952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jolanta Krajewska
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Aleksandra Kukulska
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Malgorzata Oczko-Wojciechowska
- Department of Tumor Genetics and Molecular Diagnostics, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Barbara Jarzab
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| |
Collapse
|
49
|
Homayun-Sepehr N, McCarter AL, Helaers R, Galant C, Boon LM, Brouillard P, Vikkula M, Dellinger MT. KRAS-driven model of Gorham-Stout disease effectively treated with trametinib. JCI Insight 2021; 6:e149831. [PMID: 34156985 PMCID: PMC8410066 DOI: 10.1172/jci.insight.149831] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022] Open
Abstract
Gorham-Stout disease (GSD) is a sporadically occurring lymphatic disorder. Patients with GSD develop ectopic lymphatics in bone, gradually lose bone, and can have life-threatening complications, such as chylothorax. The etiology of GSD is poorly understood, and current treatments for this disease are inadequate for most patients. To explore the pathogenesis of GSD, we performed targeted high-throughput sequencing with samples from a patient with GSD and identified an activating somatic mutation in KRAS (p.G12V). To characterize the effect of hyperactive KRAS signaling on lymphatic development, we expressed an active form of KRAS (p.G12D) in murine lymphatics (iLECKras mice). We found that iLECKras mice developed lymphatics in bone, which is a hallmark of GSD. We also found that lymphatic valve development and maintenance was altered in iLECKras mice. Because most iLECKras mice developed chylothorax and died before they had significant bone disease, we analyzed the effect of trametinib (an FDA-approved MEK1/2 inhibitor) on lymphatic valve regression in iLECKras mice. Notably, we found that trametinib suppressed this phenotype in iLECKras mice. Together, our results demonstrate that somatic activating mutations in KRAS can be associated with GSD and reveal that hyperactive KRAS signaling stimulates the formation of lymphatics in bone and impairs the development of lymphatic valves. These findings provide insight into the pathogenesis of GSD and suggest that trametinib could be an effective treatment for GSD.
Collapse
Affiliation(s)
- Nassim Homayun-Sepehr
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Anna L McCarter
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | | | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Division of Plastic Surgery, Cliniques universitaires Saint-Luc, University of Louvain, European Reference Network for Rare Multisystemic Vascular Diseases, Vascular Anomalies Working Group, European Reference Centre, Brussels, Belgium
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Division of Plastic Surgery, Cliniques universitaires Saint-Luc, University of Louvain, European Reference Network for Rare Multisystemic Vascular Diseases, Vascular Anomalies Working Group, European Reference Centre, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, University of Louvain, Brussels, Belgium
| | - Michael T Dellinger
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
50
|
Asghar MY, Lassila T, Paatero I, Nguyen VD, Kronqvist P, Zhang J, Slita A, Löf C, Zhou Y, Rosenholm J, Törnquist K. Stromal interaction molecule 1 (STIM1) knock down attenuates invasion and proliferation and enhances the expression of thyroid-specific proteins in human follicular thyroid cancer cells. Cell Mol Life Sci 2021; 78:5827-5846. [PMID: 34155535 PMCID: PMC8316191 DOI: 10.1007/s00018-021-03880-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
Stromal interaction molecule 1 (STIM1) and the ORAI1 calcium channel mediate store-operated calcium entry (SOCE) and regulate a multitude of cellular functions. The identity and function of these proteins in thyroid cancer remain elusive. We show that STIM1 and ORAI1 expression is elevated in thyroid cancer cell lines, compared to primary thyroid cells. Knock-down of STIM1 or ORAI1 attenuated SOCE, reduced invasion, and the expression of promigratory sphingosine 1-phosphate and vascular endothelial growth factor-2 receptors in thyroid cancer ML-1 cells. Cell proliferation was attenuated in these knock-down cells due to increased G1 phase of the cell cycle and enhanced expression of cyclin-dependent kinase inhibitory proteins p21 and p27. STIM1 protein was upregulated in thyroid cancer tissue, compared to normal tissue. Downregulation of STIM1 restored expression of thyroid stimulating hormone receptor, thyroid specific proteins and increased iodine uptake. STIM1 knockdown ML-1 cells were more susceptible to chemotherapeutic drugs, and significantly reduced tumor growth in Zebrafish. Furthermore, STIM1-siRNA-loaded mesoporous polydopamine nanoparticles attenuated invasion and proliferation of ML-1 cells. Taken together, our data suggest that STIM1 is a potential diagnostic and therapeutic target for treatment of thyroid cancer.
Collapse
Affiliation(s)
- Muhammad Yasir Asghar
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland.
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| | - Taru Lassila
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Van Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | | | - Jixi Zhang
- College of Bioengineering, Chongqing University, No. 174 Shizheng Road, Chongqing, 400044, China
| | - Anna Slita
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Artillerigatan 6A, 20520, Turku, Finland
| | - Christoffer Löf
- Research Centre for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Jessica Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Artillerigatan 6A, 20520, Turku, Finland
| | - Kid Törnquist
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland.
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| |
Collapse
|