1
|
Falero C, Huanca W, Barrios-Arpi L, Lira-Mejía B, Ramos-Coaguila O, Torres E, Ramos E, Romero A, Ramos-Gonzalez M. Oxidative and Molecular-Structural Alterations of Spermatozoa in Swine and Ram Exposed to the Triazole Ipconazole. TOXICS 2025; 13:176. [PMID: 40137503 PMCID: PMC11945538 DOI: 10.3390/toxics13030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Triazole pesticides are widely used throughout the world, but their abuse causes toxic effects in non-targeted organisms. In the present study, the cytotoxic effect of the triazole ipconazole was evaluated in porcine and ram spermatozoa. Ipconazole significantly reduced sperm viability, increased ROS levels, altered catalase and SOD enzyme activity, and caused alterations in the molecular mRNA expression of structural biomarkers (PRM1, ODF2, AKAP4, THEG, SPACA3 and CLGN) related to fertility in males, as well as the overexpression of BAX (cell death) and ROMO1 (oxidative stress) mRNA. Our results indicate that the fungicide triazole is involved in cellular, enzymatic and molecular alteration of porcine and ram spermatozoa, and is possibly a factor in the development of infertility in male mammals.
Collapse
Affiliation(s)
- Cristian Falero
- Zootecnia an Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru; (C.F.); (O.R.-C.)
| | - Wilfredo Huanca
- Reproduction Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru;
| | - Luis Barrios-Arpi
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru; (L.B.-A.); (B.L.-M.)
| | - Boris Lira-Mejía
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru; (L.B.-A.); (B.L.-M.)
| | - Olger Ramos-Coaguila
- Zootecnia an Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru; (C.F.); (O.R.-C.)
| | - Edith Torres
- Reproduction Laboratory, School of Veterinary and Zootecnic Medicine, Jorge Basadre Grohmann University, Tacna 23001, Peru;
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain; (E.R.); (A.R.)
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain; (E.R.); (A.R.)
| | - Mariella Ramos-Gonzalez
- Zootecnia an Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru; (C.F.); (O.R.-C.)
| |
Collapse
|
2
|
Fan Q, Wang J, Tian M, Sawut A, Xiao D, Yi Z, Chen L. Circulating inflammatory cytokines and colorectal cancer: New insights from Mendelian randomization. Medicine (Baltimore) 2025; 104:e41331. [PMID: 39854755 PMCID: PMC11771603 DOI: 10.1097/md.0000000000041331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/10/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and inflammation is believed to play an important role in CRC. In this study, we comprehensively analyzed the causal association between 91 circulating inflammatory cytokines and the risk of CRC using Mendelian randomization (MR). Based on genome-wide association study summary statistics, we examined the causal effects of 91 circulating inflammatory cytokines on CRC. A series of MR methods, including bidirectional MR, replication sample MR, and multivariable MR, were employed to provide more robust causal estimates. After the validation with 3 MR methods and a series of sensitivity analyses, 2 circulating inflammatory factors were found to be significantly associated with the risk of CRC at the genetic level. Specifically, genetically predicted circulating levels of glial cell line-derived neurotrophic factor (GDNF) (OR = 1.12; 95% CI: 1.05-1.19; P = 2.72 × 10-4) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) (OR = 0.93; 95% CI: 0.91-0.99; P = 1.00 × 10-2) exerted causal effects on CRC risk. In conclusion, this study suggests that increased circulating levels of GDNF and TRAIL are associated with a higher and lower risk of CRC, respectively. GDNF and TRAIL may be 2 potential therapeutic targets that deserve future investigation.
Collapse
Affiliation(s)
- Qinglu Fan
- Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Jing Wang
- Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Miao Tian
- Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Abdulla Sawut
- Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Di Xiao
- Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Zuohuizi Yi
- Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Liao Chen
- Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
3
|
Tsoneva E, Dimitrova PD, Metodiev M, Shivarov V, Vasileva-Slaveva M, Yordanov A. The effects of ROMO1 on cervical cancer progression. Pathol Res Pract 2023; 248:154561. [PMID: 37285738 DOI: 10.1016/j.prp.2023.154561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION More than 95% of the cases of Cervical cancer (CC) are now linked to infection with Human papilloma virus (HPV) but the infection alone is not sufficient for starting the oncogenesis. Reactive Oxygen Species (ROS) can promote CC cancerogenesis. ROMO1 is a protein that regulates the production of intracellular ROS and influences cancer cell invasion and proliferation. We aimed to investigate the impact of ROS in CC progression, measured by the expression of ROMO1. METHODS AND MATERIALS This is a retrospective study of 75 patients treated at the Department of Oncogynecology, Medical University of Pleven, Bulgaria. Paraffin embedded tumor tissues were immunohistochemically tested for the levels of expression of ROMO1. The results for both Allred score and H-score were investigated for association with tumor size, lymph node status and FIGO stage. RESULTS Levels of ROMO1 were significantly higher in FIGO1 stage compared to FIGO2 and FIGO3 according to both scores (for H-score FIGO1 vs FIGO2 p = 0.00012; FIGO 1 vs FIGO3 p = 0.0008; for Allred score FIGO1 vs FIGO2, p = 0.0029; FIGO1 vs FIGO3 (p = 0.012). Statistically significant difference was found according to the H-score between patients with and without metastatic lymph nodes (p = 0.033). CONCLUSION To the best of our knowledge this is the first study testing immunohistochemically the expression of ROMO1 for CC progression. The levels of ROMO1 were significantly higher in early stage tumors compared to advanced. Bearing in mind that only 75 patients were tested, further studies are required to evaluate the value of ROS in CC.
Collapse
Affiliation(s)
- Eva Tsoneva
- "Dr. Shterev" Hospital, Hristo Blagoev 25, 1330 Sofia, Bulgaria.
| | | | - Metodi Metodiev
- School of biological sciences, Life sciences lab, University of Essex, Wivenhoe Park Colchester, CO4 3SQ, United Kingdom
| | - Velizar Shivarov
- Research Institute, Medical University Pleven, Kliment Ohridski 1, 5800 Pleven, Bulgaria
| | - Mariela Vasileva-Slaveva
- "Dr. Shterev" Hospital, Hristo Blagoev 25, 1330 Sofia, Bulgaria; Research Institute, Medical University Pleven, Kliment Ohridski 1, 5800 Pleven, Bulgaria; Bulgarian Breast and Other Gynecological Cancer Association, 1784 Sofia, Bulgaria
| | - Angel Yordanov
- Department of Oncogynecology, Medical University Pleven, Kliment Ohridski 1, 5800, Pleven, Bulgaria
| |
Collapse
|
4
|
Yan Y, Yang X, Han N, Liu Y, Liang Q, Li LG, Hu J, Li TF, Xu Z. Metal-organic framework-encapsulated dihydroartemisinin nanoparticles induces apoptotic cell death in ovarian cancer by blocking ROMO1-mediated ROS production. J Nanobiotechnology 2023; 21:204. [PMID: 37386404 PMCID: PMC10308639 DOI: 10.1186/s12951-023-01959-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Dihydroartemisinin (DHA), a natural product derived from the herbal medicine Artemisia annua, is recently used as a novel anti-cancer agent. However, some intrinsic disadvantages limit its potential for clinical management of cancer patients, such as poor water solubility and low bioavailability. Nowadays, the nanoscale drug delivery system emerges as a hopeful platform for improve the anti-cancer treatment. Accordingly, a metal-organic framework (MOF) based on zeolitic imidazolate framework-8 was designed and synthesized to carry DHA in the core (ZIF-DHA). Contrast with free DHA, these prepared ZIF-DHA nanoparticles (NPs) displayed preferable anti-tumor therapeutic activity in several ovarian cancer cells accompanied with suppressed production of cellular reactive oxygen species (ROS) and induced apoptotic cell death. 4D-FastDIA-based mass spectrometry technology indicated that down-regulated reactive oxygen species modulator 1 (ROMO1) might be regarded as potential therapeutic targets for ZIF-DHA NPs. Overexpression of ROMO1 in ovarian cancer cells significantly reversed the cellular ROS-generation induced by ZIF-DHA, as well as the pro-apoptosis effects. Taken together, our study elucidated and highlighted the potential of zeolitic imidazolate framework-8-based MOF to improve the activity of DHA to treat ovarian cancer. Our findings suggested that these prepared ZIF-DHA NPs could be an attractive therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaoxin Yang
- School Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Ning Han
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Liu-Gen Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jun Hu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
Sandamalika WMG, Udayantha HMV, Liyanage DS, Lim C, Kim G, Kwon H, Lee J. Identification of reactive oxygen species modulator 1 (Romo 1) from black rockfish (Sebastes schlegelii) and deciphering its molecular characteristics, immune responses, oxidative stress modulation, and wound healing properties. FISH & SHELLFISH IMMUNOLOGY 2022; 125:266-275. [PMID: 35580797 DOI: 10.1016/j.fsi.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species modulator 1 (Romo1) is a mitochondrial inner membrane protein that induces mitochondrial reactive oxygen species (ROS) generation. In this study, we identified the Romo1 homolog from the black rockfish (Sebastes schlegelii), named it as SsRomo1, and characterized it at the molecular as well as functional levels. An open reading frame consisting of 240 bp was identified in the SsRomo1 complementary DNA (cDNA) sequence that encodes a 79 amino acid-long polypeptide with a molecular weight of 8,293 Da and a theoretical isoelectric point (pI) of 9.89. The in silico analysis revealed the characteristic features of SsRomo1, namely the presence of a transmembrane domain and the lack of a signal peptide. Homology analysis revealed that SsRomo1 exhibits the highest sequence identity with its fish counterparts (>93%) and shares a similar percentage of sequence identity with mammals (>92%). Additionally, it is closely clustered together with the fish clade in the constructed phylogenetic tree. The subcellular localization analysis confirmed its mitochondrial localization within the fathead minnow (FHM) cells. Under normal physiological conditions, the SsRomo1 mRNA is highly expressed in the rockfish ovary, followed by the blood and testis, indicating the abundance of mitochondria in these tissues. Furthermore, the significant upregulation of SsRomo1 in cells treated with lipopolysachharide (LPS), polyinosinic:polycytidylic acid, and Streptococcus iniae suggest that the increased ROS production is induced by SsRomo1 to eliminate pathogens during infections. Incidentally, we believe that this study is the first to determine the involvement of SsRomo1 in LPS-mediated nitric oxide (NO) production in RAW267.4 cells, based on their higher NO production as compared to that in the control. Moreover, overexpression of SsRomo1 enhanced the wound healing ability of FHM cells, indicating its high invasion and migration properties. We also determined the hydrogen peroxide-mediated cell viability of SsRomo1-overexpressed FHM cells and observed a significant reduction in viability, which is possibly due to increased ROS production. Collectively, our observations suggest that SsRomo1 plays an important role in oxidative stress modulation upon immune stimulation and in maintenance of tissue homeostasis in black rockfish.
Collapse
Affiliation(s)
- W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
6
|
Turan H, Vitale SG, Kahramanoglu I, Della Corte L, Giampaolino P, Azemi A, Durmus S, Sal V, Tokgozoglu N, Bese T, Arvas M, Demirkiran F, Gelisgen R, Ilvan S, Uzun H. Diagnostic and prognostic role of TFF3, Romo-1, NF-кB and SFRP4 as biomarkers for endometrial and ovarian cancers: a prospective observational translational study. Arch Gynecol Obstet 2022; 306:2105-2114. [PMID: 35461390 PMCID: PMC9633503 DOI: 10.1007/s00404-022-06563-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
Purpose This study aimed to evaluate trefoil factor 3 (TFF3), secreted frizzled-related protein 4 (sFRP4), reactive oxygen species modulator 1 (Romo1) and nuclear factor kappa B (NF-κB) as diagnostic and prognostic markers of endometrial cancer (EC) and ovarian cancer (OC). Methods Thirty-one patients with EC and 30 patients with OC undergone surgical treatment were enrolled together with 30 healthy controls in a prospective study. Commercial ELISA kits determined serum TFF-3, Romo-1, NF-кB and sFRP-4 concentrations. Results Serum TFF-3, Romo-1 and NF-кB levels were significantly higher in patients with EC and OC than those without cancer. Regarding EC, none of the serum biomarkers differs significantly between endometrial and non-endometrioid endometrial carcinomas. Mean serum TFF-3 and NF-кB levels were significantly higher in advanced stages. Increased serum levels of TFF-3 and NF-кB were found in those with a higher grade of the disease. Regarding OC, none of the serum biomarkers differed significantly among histological subtypes. Significantly increased serum levels of NF-кB were observed in patients with advanced-stage OC than those with stage I and II diseases. No difference in serum biomarker levels was found between those who had a recurrence and those who had not. The sensibility and specificity of these four biomarkers in discriminating EC and OC from the control group showed encouraging values, although no one reached 70%. Conclusions TFF-3, Romo-1, NF-кB and SFRP4 could represent new diagnostic and prognostic markers for OC and EC. Further studies are needed to validate our results.
Collapse
Affiliation(s)
- Hasan Turan
- Department of Gynecologic Oncology, Health Science University, Cam Sakura Training and Research Hospital, Istanbul, Turkey
| | - Salvatore Giovanni Vitale
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| | | | - Luigi Della Corte
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples, Naples, Italy
| | - Pierluigi Giampaolino
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini, Naples, Italy
| | - Asli Azemi
- Department of Biochemistry, School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sinem Durmus
- Department of Biochemistry, School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Veysel Sal
- Department of Obstetrics and Gynecology, Memorial Bahcelievler Hospital, Istanbul, Turkey
| | - Nedim Tokgozoglu
- Department of Gynecologic Oncology, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Tugan Bese
- Department of Gynecologic Oncology, School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Macit Arvas
- Department of Gynecologic Oncology, American Hospital, Istanbul, Turkey
| | - Fuat Demirkiran
- Department of Gynecologic Oncology, School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Remise Gelisgen
- Department of Biochemistry, School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sennur Ilvan
- Department of Pathology, School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hafize Uzun
- Department of Biochemistry, School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
7
|
Lv J, Wu Y, Li W, Fan H. High Expression of ROMO1 Aggravates the Malignancy of Hepatoblastoma. JOURNAL OF ONCOLOGY 2021; 2021:2341719. [PMID: 34512752 PMCID: PMC8426091 DOI: 10.1155/2021/2341719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022]
Abstract
Hepatoblastoma (HB) is a kind of tumor that occurs frequently in children and is highly malignant. Here, the function of ROS modulator 1 (ROMO1) was identified in the development of HB. In this study, the mRNA expression of ROMO1 was measured by RT-qPCR. Colony formation assay, MTT assay, and flow cytometric analysis were applied to detect cell viability. The cell migrative and invasive ability was measured by wound healing and transwell assays. Tumor xenografts were performed to examine tumor growth. The results showed that upregulation of ROMO1 was identified in liver hepatocellular carcinoma (LIHC) tissues and predicted poor prognosis in LIHC patients. And ROMO1 expression was also increased in HB tissues and cells. Functionally, ROMO1 knockdown restrained cell viability, migration, and invasion in HB. In addition, knockdown of ROMO1 was found to suppress tumor formation in vivo. In conclusion, upregulation of ROMO1 promotes tumor growth and cell aggressiveness in HB.
Collapse
Affiliation(s)
- Jiangfeng Lv
- Department of Clinical Laboratory, Jinan City People's Hospital, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 271199, China
| | - Yan Wu
- Department of Clinical Laboratory, Yantai Yuhuagding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, China
| | - Wei Li
- Department of Oncology (II), Qingdao Central Hospital Affiliated to Qingdao University, Qingdao, Shandong 266042, China
| | - Huaping Fan
- Department of Pediatrics, Yantai Maternal and Child Health Care Hospital, Yantaishan Hospital, Yantai, Shandong 264000, China
| |
Collapse
|
8
|
Miyata Y, Mukae Y, Harada J, Matsuda T, Mitsunari K, Matsuo T, Ohba K, Sakai H. Pathological and Pharmacological Roles of Mitochondrial Reactive Oxygen Species in Malignant Neoplasms: Therapies Involving Chemical Compounds, Natural Products, and Photosensitizers. Molecules 2020; 25:E5252. [PMID: 33187225 PMCID: PMC7697499 DOI: 10.3390/molecules25225252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays an important role in cellular processes. Consequently, oxidative stress also affects etiology, progression, and response to therapeutics in various pathological conditions including malignant tumors. Oxidative stress and associated outcomes are often brought about by excessive generation of reactive oxygen species (ROS). Accumulation of ROS occurs due to dysregulation of homeostasis in an otherwise strictly controlled physiological condition. In fact, intracellular ROS levels are closely associated with the pathological status and outcome of numerous diseases. Notably, mitochondria are recognized as the critical regulator and primary source of ROS. Damage to mitochondria increases mitochondrial ROS (mROS) production, which leads to an increased level of total intracellular ROS. However, intracellular ROS level may not always reflect mROS levels, as ROS is not only produced by mitochondria but also by other organelles such as endoplasmic reticulum and peroxisomes. Thus, an evaluation of mROS would help us to recognize the biological and pathological characteristics and predictive markers of malignant tumors and develop efficient treatment strategies. In this review, we describe the pathological significance of mROS in malignant neoplasms. In particular, we show the association of mROS-related signaling in the molecular mechanisms of chemically synthesized and natural chemotherapeutic agents and photodynamic therapy.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (Y.M.); (J.H.); (T.M.); (K.M.); (T.M.); (K.O.); (H.S.)
| | | | | | | | | | | | | | | |
Collapse
|